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Ancient drainage basin of the Tharsis region, Mars: 
Potential source for outflow channel systems 
and putative oceans or paleolakes 

J. M. Dohm, • J. C. Ferris, • V. R. Baker, •,2 R. C. Anderson, 3,4 
T. M. Hare? R. G. Strom, 2 N. G. Barlow, 6 K. L. Tanaka? 
J. E. Klemaszewski, ? and D. H. Scott 8 

Abstract. Paleotopographic reconstructions based on a synthesis of published geologic 
information and high-resolution topography, including topographic profiles, reveal the 
potential existence of an enormous drainage basin/aquifer system in the eastern part of 
the Tharsis region during the Noachian Period. Large topographic highs formed the 
margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly 
infilled the basin, resulting in an enormous and productive regional aquifer. The stacked 
sequences of water-bearing strata were then deformed locally and, in places, exposed by 
magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a 
potential source of water necessary to carve the large outflow channel systems of the 
Tharsis and surrounding regions and to contribute to the formation of putative northern- 
plains ocean(s) and/or paleolakes. 

1. Introduction 

Stratigraphic, tectonic, and erosional records, compiled 
through geological mapping investigations at regional and lo- 
cal scales, demonstrate a significant contribution of magmatic- 
driven processes to the dynamic geologic history of Mars [for 
example, Mouginis-Mark, 1985; Scott and Tanaka, 1986; Gree- 
ley and Guest, 1987; Baker et al., 1991; Crown et al., 1992; Scott 
et al., 1993; Robinson et al., 1993; Crown and Greeley, 1993; 
Gregg et al., 1998]. These processes are perhaps best exempli- 
fied at Tharsis and the surrounding regions in the western 
hemisphere [Frey, 1979; Wise et al., 1979; Plescia and Saunders, 
1982; Solomon and Head, 1982; Scott and Tanaka, 1986; Morris 
and Tanaka, 1994; Scott and Zimbelman, 1995;Anderson et al., 
1998, 2001; Scott et al., 1998; Golombek, 2000; Solomon and 
Head, 2000], where pulses of magmatic activity associated with 
the development of the Tharsis Magmatic Complex (TMC) 
[e.g., Dohm et al., 2000a, 2000b] may have triggered cata- 
strophic floods and short-lived climatological perturbations 
[Baker et al., 1991, 2000; Baker, 2001]. 

The Tharsis magmatic complex is composed of numerous 
components that formed during specific stages of the complex's 
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development (Plates 1 and 2), including volcanic constructs of 
varying sizes and extensive lava flow fields, large igneous plateaus, 
fault and rift systems of varying extent and relative age of forma- 
tion, gigantic outflow channel systems, vast canyon systems, and 
local and regional centers of tectonic activity. Many of the local 
and regional centers of tectonic activity [Anderson et al., 1998, 
2001; Anderson and Dohm, 2000] are interpreted to be the result 
of magmatic-related activity, including uplift, faulting, dike em- 
placement, volcanism, and local hydrothermal activity [Dohm et 
al., 1998, 2000b, 2000d, 2001a; Dohm and Tanaka, 1999]. The 
geologic history of the numerous components of the Tharsis mag- 
matic complex, which has been analyzed in detail by numerous 
investigators (see Plate 1), is incorporated into the analyses and 
interpretations that follow. 

Inasmuch as the relative age of formation of the primary 
components of the complex are generally understood, the gen- 
eral stratigraphy established, and the high-resolution topogra- 
phy of present-day Mars known, the features and materials can 
be "backstripped" systematically from their present configura- 
tion. This provides an approximate sequential three-dimen- 
sional (3-D) view of the paleotopography at the cessation of 
each of the five stages of the complex's development (Plates 
3-7). Stage information correlates with the scheme devised by 
Dohm and Tanaka [1999] (see Plates i and 2). 

The purpose of the 3-D visualization and quasi-quantitative 
backstripping is not to generate a quantitatively accurate re- 
construction of Martian paleotopography at discrete time 
steps. Such a reconstruction may well be possible at a future 
date when more data become available. However, the more 
qualitative visualizations employed in this study serve to sum- 
marize inferences made from geological mapping and analyses 
and synthesis of published map information. This summary, 
really an illustrated working hypothesis, leads to the identifi- 
cation of an ancient, gigantic drainage basin that persists 
through much of the history of the region. Moreover, the 
drainage basin, once identified, is found to be consistent with 
a diverse series of other observations. The overall coherence of 
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Plate 1. Mars Orbiter Laser Altimeter (MOLA) shaded relief map of the western hemisphere of Mars 
(courtesy of the MOLA Science Team). Shown are the major geologic features of the Tharsis Magmatic 
Complex (TMC) and their stages of development (stage assignments 1-5 of Dohm and Tanaka [1999] and 
Dohm et al. [2001a] correlated with the time-stratigraphic age assignment: Noachian, Hesperian, and Ama- 
zonian periods of Tanaka [1986]), based on numerous detailed geologic investigations [e.g., Milton, 1974; 
Baker and Milton, 1974; Plescia et al., 1980; Plescia and Saunders, 1982; Scott and Tanaka, 1986; Tanaka, 1986; 
Tanaka and Davis, 1988; Frey and Grant, 1990; Tanaka, 1990; Scott and Dohm, 1990a, 1990b; Baker et al., 1991; 
I45'tbeck et al., 1991; Chapman et al., 1991; Morals et al., 1991; Lucchitta et al., 1992; DeHon, 1992; Scott, 1993; 
Gulick, 1993; Morals and Tanaka, 1994; Schultz and Tanaka, 1994; Rotto and Tanaka, 1995; Scott and 
Zimbelman, 1995; Scott et al., 1995; Rice and DeHon, 1996; Chapman and Tanaka, 1996; Scott and Dohm, 1997; 
Scott et al., 1998; Dohm et al., 1998; Anderson et al., 1998; Dohm and Tanaka, 1999; Nelson and Greeley, 1999; 
McKenzie and Nimmo, 1999; Anderson and Dohm, 2000; Dohm et al., 2000b; Chapman and Lucchitta, 2000; 
Head et al., 2000; Baker et al., 2001; Dohm et al., 2001a, 200lb;Anderson et al., 2001]. Also shown are Solis and 
Thaumasia Planae (S.P. and T.P., respectively), approximated margins of the TMC (black dashed outline), 
northwestern slope valleys (NSVs), and the Noachian drainage basin (blue dashed outline). 

these observations can be considered to be a tentative confir- 

mation of utility for the basin hypothesis. While the quantita- 
tive confirmation of detailed validity for various reconstruc- 
tions is beyond the scope of this preliminary study, such 
reconstructions would be among the several possible follow- 
ons to the present study. 

2. Three-Dimensional Portrayal of the 
Evolution of the Tharsis Magmatic Complex 

A 3-D visualization program (Bryce 4 by the MetaCreations 
Corporation) provides a heuristic representation of the geo- 
logical evolution of the Tharsis Magmatic Complex. Although 
this program cannot modify present-day Mars Orbiter Laser 
Altimeter (MOLA)-based topography in absolute elevation 
values, it can mold surfaces and render and animate 3-D 
scenes. Visual appearances for each of the five major stages of 
activity of the Tharsis Magmatic Complex were generated us- 

ing the above referenced topographic, stratigraphic, paleoero- 
sional, and paleotectonic information. This information in- 
cludes spatial and temporal relations among shield volcanoes, 
igneous plateaus, magmatic-driven centers of tectonic activity, 
fault and rift systems, and lava flow fields. In this process, 
features and materials of a known relative age were systemat- 
ically backstripped from their present MOLA-based configu- 
ration, providing approximate sequential views of the paleoto- 
pography at the cessation of each of the five stages of the 
complex's development. 

We emphasize that these illustrations are qualitative at this 
point. They represent a working hypothesis, based on our in- 
terpretation of the geologic mapping and analyses and synthe- 
sis of published map information, that should be tested with 
quantitative data as these become more available in formats 
that can be related to the geology. We also emphasize that the 
thicknesses and areal extent of features/materials are approx- 
imated, because geologic histories for Mars are established 
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Plate 2. Chart comparing the stages of geologic activity in the Tharsis Magmatic Complex region with major 
geologic features, including the Noachian drainage basin (correlates to Plate 1). Size of the solid areas is 
roughly proportional to the degree of exposed deformation. Violet, centers of tectonic activity interpreted to 
be the result of magmatic-driven uplift and local volcanism, dike emplacement, and hydrothermal activity; 
orange, mountain building; blue, water; red, primarily emplacement of shield-forming and lava-field-forming 
lavas. Note that the commencement and/or end of activity of the components of the complex are not absolutely 
constrained and that features such as the shield volcanoes of Tharsis Montes and Olympus Mons could be 
presently active. 

through photogeologic mapping and relative-age determina- 
tion of surfaces and structures. Even on Earth, paleotopo- 
graphic reconstructions are difficult where a much richer set of 
tools for analyzing the geologic record can be used, including 
field mapping and absolute dating of rocks. 

In addition to utilizing published geologic information and 
cross sections (e.g., Plates 8a-8c), our reconstructions make 
use of MOLA-derived topographic profiles (e.g., Plates 9-11) to 
best estimate thicknesses and areal extents of features and mate- 

rials. Plates 9 and 10, for example, show substantial rises in the 
central and western parts of Valles Marineris, which are located 
near the central part of the proposed drainage basin. These rises, 
which have been identified as centers of tectonic activity [Ander- 
son et al., 1998, 2001; Anderson and Dohm, 2000], are interpreted 

to be the result of magmatic-driven uplifts and local volcanism 
and hydrothermal activity along large structural discontinuities in 
the Martian crust [Dohm et al., 1998; Anderson and Grimm, 1998; 
Dohm et al., 2001a]; the Late Noachian-Hesperian centers of 
tectonic activity postdate the proposed drainage basin. 

We started from Stage 5 (present day, Amazonian Period; 
Plate 3) by importing the MOLA Experiment Gridded Data 
Record (EGDR) and ended with Stage 1 (Noachian Period; 
Plate 7). For example, for the Late Hesperian/Amazonian 
(Stages 4-5; Plates 4 and 3, respectively), gigantic volcanic 
constructs of Tharsis Montes and Olympus Mons and their 
associated lavas flow fields were removed from the Noa- 

chian/Early Hesperian (Stages l-3) reconstructions using 
Bryce surface editing tools (Plates 5-7, respectively). In 
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Plate 3. Three-dimensional portrayal of the major geologic features of the Tharsis Magmatic Complex using 
MOLA data (Stage 5, Amazonian [Dohm and Tanaka, 1999; Dohm et al., 2001a]). 

addition, materials of regional extent with no obvious point 
source (e.g., volcanic construct) were removed from the 
topographic reconstructions of earlier stages of the com- 
plex's development using published geologic map informa- 
tion coupled with MOLA-based geologic cross sections. For 
example, Early Hesperian (Stage 3) ridged material was 
removed from the Noachian reconstruction (Stage 1 and 
early part of Stage 2) using the geologic map of the western 
hemisphere [Scott and Tanaka, 1986] and MOLA-based 
geologic cross sections (e.g., Plates 8a-8c). In other situa- 
tions, materials were added to approximate the original 
topography that may have been subsequently worn down by 
erosional processes for each stage of the TMC's develop- 
ment. For example, because Claritas rise developed during 
the Noachian Period [Anderson et al., 1998, 2001] and was 
subsequently modified by erosional and tectonic processes, 
material was added to the rise to approximate its original 
configuration during Stage 1 (Plate 7). Again, we wish to 
reemphasize that this methodology is qualitative, based on 
experience with terrestrial and Martian geology. Although 
the details (e.g., unit thicknesses) will be refined as our 

knowledge of Mars increases, the major features and se- 
quences of events presented here provide an improved 
understanding of the evolution the Tharsis Magmatic Com- 
plex as well as its influence on global geology and paleo- 
climate. 

3. Geologic Summary of the Evolution 
of the Tharsis Magmatic Complex 

This summary provides an interpretive geologic history of 
the Tharsis Magmatic Complex based on topographic, strati- 
graphic, paleoerosional, and paleotectonic information com- 
piled from the work of numerous investigators. Key informa- 
tion used in this construction includes the spatial and temporal 
relations among shield volcanoes, igneous plateaus, magmatic- 
driven centers of tectonic activity, fault and rift systems, and 
lava flow fields (see Plates 1 and 2). Stage information is based 
on Dohm and Tanaka [1999] and Dohm et al. [2001a] and 
roughly corresponds to the Martian stratigraphic scheme 
[Tanaka, 1986]. 
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Plate 4. Three-dimensional portrayal of the major geologic features of the Tharsis Magmatic Complex 
during Stage 4 (Late Hesperian-Early Amazonian [Dohm and Tanaka, 1999; Dohm et al., 2001a]). When 
compared to Stage 5 (Plate 3), significant highlights include (1) less developed shield volcanoes, including 
Olympus Mons, Tharsis Montes, and Alba Patera and their associated lava flows, (2) recession of the 
highland-lowland boundary, (3) less modified Thaumasia plateau (cessation of plateau uplift is mapped as 
Early Hesperian [Dohm and Tanaka, 1999; Dohm et al., 2001a], and (4) less infilled and more defined basins 
(e.g., Chryse and Argyre) and canyons (e.g., Valles Marineris) as well as deeper outflow channels. 

3.1. Early to Middle Noachian, Part of Stage 1 
(Plates 1, 2, and 7) 

The greatest percentage of faults preserved in Noachian 
materials of the western hemisphere originate near the central 
part of the Claritas rise. This region is marked by an enormous 
rift system and highly deformed promontories interpreted to 
be basement complex. The Claritas rise is a center of activity 
representing a region of broad magmatic-driven uplift and 
associated volcanism and tectonism. In addition to Claritas, 
magmatic-driven tectonic activity is also identified for the 
Tempe plateau and pre-Tharsis Montes rises: Uranius, Cerau- 
nius, and Arsia SW. Uncertainty exists in the commencement 
of ancient local and regional centers of magmatic-related ac- 
tivity. Syria Planurn and Arsia rise, for example, most likely 
began as local centers of activity during the Early to Middle 
Noachian with substantial growth, perhaps episodically, 
through the Hesperian. The Noachian magmatic activity 
mostly occurs along large fracture/fault zones, many of which 

may represent large dislocations in the Martian crust/ 
lithosphere. Such dislocations may be the result of the TMC 
development and (or) represent plate or block boundaries 
formed during the period of high heat flow [e.g., Schubert et al., 
1992; Sleep, 1994]. 

Broad rises, rugged mountain ranges, and a ridge of mate- 
rials, which may represent the remains of a highly eroded rim 
of Chryse impact basin, partly form the margin of the proposed 
enormous Noachian drainage basin. The development of the 
highland-lowland boundary sometime during the Middle to 
Late Noachian may have resulted in a substantially different 
paleohydrologic regime in Chryse Planitia region, including an 
enhanced hydraulic gradient. 

3.2. Late Noachian to Early Hesperian, Stage 2 
(Plates 1, 2, and 6) 

In addition to continued growth of the Arsia rise (pre- 
Tharsis Montes), centers of magmatic-driven tectonic activity 
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Plate 5. Three-dimensional portrayal of the major geologic features of the Tharsis Magmatic Complex 
during Stage 3 (Early Hesperian [Dohm and Tanaka, 1999; Dohm et al., 2001a]). When compared to Stage 4 
(Plate 4), significant highlights include (1) absence of Olympus Mons and Tharsis Montes shield volcanoes, 
including associated lava flows, (2) incipient Pavonis rise, (3) less developed Alba Patera and associated lava 
flows, (3) more prominent Syria Planum, Ceraunius Fossae, Uranius Fossae, central Valles Marineris, Arsia, 
Claritas, and Warrego rises and the NSVs, (4) recession of the highland-lowland boundary, (5) less modified 
Thaumasia (cessation of plateau uplift is mapped as Early Hesperian [Dohm and Tanaka, 1999; Dohm et al., 
2001a]) and Tempe Plateaus, and (6) less infilled and more defined basins (e.g., Solis, Chryse, and Argyre) and 
smaller and less defined outflow channels. 

and possible associated volcanic eruptions and hydrothermal 
activity are identified near the central part of Valles Marineris, 
Syria Planum, and the source region of Warrego Vailes. Nu- 
merous faults, for example, are radial to or concentric about the 
central part of Valles Marineris, representing a broad center of 
magmatic-driven uplift along a large crustal/lithospheric disloca- 
tion (Plate 9). Similar to the central part of Valles Marineris, Syria 
Planum is also a site of long-lived (Noachian through at least Late 
Hesperian) magmatic/tectonic activity, which includes domal up- 
lift, volcanism, and associated radial and concentric faulting, but 
at a much larger scale and longer duration than is recognized at 
the central part of Valles Marineris. 

Magmatic-related activity such as doming underlying Arsia 
Mons and at Syria Planurn and central Vailes Marineris may be 
genetically associated with the early development of the cir- 
cum-Chryse outflow channel systems [e.g., Dohm et al., 1998; 
McKenzie and Nimmo, 1999] as well as the formation of the 
newly defined northwest slope valleys [Dohm et al., 2000c, 
200lb], located on the opposite side of the Tharsis rise from 
the circum-Chryse system of outflow channels, several thou- 

sands of kilometers to the west. In addition, the source region 
of Warrego Vailes has been interpreted to be a site of intru- 
sive-related doming and tectonic and hydrothermal activity 
resulting in the formation of well-defined valley networks of 
Warrego Vailes [Gulick, 1993; Dohm and Tanaka, 1999; Dohm 
et al., 2001a]. 

The Thaumasia plateau uplift also occurred during this 
time [Dohm and Tanaka, 1999; Dohm et al., 2001a]. The 
plateau uplift and local/regional centers of magmatic activity 
largely modified the paleotopography of the TMC region. 
These activities resulted in the modification and deforma- 

tion of the Tharsis basin, releasing catastrophic floods that 
led to the early formation of the circum-Chryse system of 
outflow channels [e.g., Rotto and Tanaka, 1995; Nelson and 
Greeley, 1999] and the northwest slope valleys. This probably 
drove volatiles (e.g., groundwater) from uplifted regions 
such as the central part of Valles Marineris and Syria Pla- 
num into nearby topographic lows [e.g., Dohm et al., 2000b; 
Barlow et al., 2001]. The time of initial formation of these 
outflow channel systems is uncertain (Plate 2). For example, 
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Plate 6. Three-dimensional portrayal of the major geologic features of the Tharsis Magmatic Complex 
during Stage 2 (Late Noachian-Early Hesperian [Dohm and Tanaka, 1999; Dohm et al., 2001a]). When 
compared to Stage 3 (Plate 5), significant highlights include (1) absence of Alba Patera and associated lava 
flows, (2) less prominent Warrego and Arsia rises, (3) incipient trough development at Valles Marineris, (3) 
more prominent mountain ranges of Coprates rise and Thaumasia highlands, Tempe Terra and Thua- 
masia igneous plateaus, Syria Planum, Ceraunis Fossae and Claritas rises, (3) recession of the highland- 
lowland boundary, (4) less modified Thaumasia and Tempe plateaus, and (6) less infilled and more 
defined basins (e.g., Solis, Chryse, and Argyre), the NSVs, and Uzboi Vallis and smaller and less defined 
outflow channels. 

lava flows sourcing from Stage 1 and Stage 2 centers of 
activity may have partly infilled and followed paleovalleys 
associated with early development of the large outflow chan- 
nel systems, resulting in an inversion of topography (lava 
ridges/mesas resulting from subsequent erosion of less com- 
petent brecciated surrounding materials). Later episodes of 
magmatic-triggered flooding may have formed new valleys 
or may have followed paleovalleys. Also during this time, 
extensive older ridged plains materials [Dohm and Tanaka, 
1999; Dohm et al., 2001a] and intercrater materials were 
emplaced in topographically low areas. Some intercrater 
materials may be the result of phreatomagmatic explosions, 
such as in the Valles Marineris region, where magma- 

water-water ice interactions have been proposed [Chapman 
and Tanaka, 2001]. 

3.3. Early Hesperian, Stage 3 (Plates 1, 2, and 5) 

Continued magmatic/tectonic activity is identified at Ar- 
sia-SW dome (continued growth of Tharsis rise drainage di- 
vide), Syria Planum, and Tempe plateau. Incipient activity 
(pre-Tharsis Montes activity) is also recognized in the Pavonis 
Mons [Plescia and Saunders, 1982; Anderson et al., 1998, 2001] 
and Alba and Ulysses Paterae regions. Also during the Early 
Hesperian Period, additional development is recorded for the 
circum-Chryse system of outflow channels and at the north- 
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Plate 7. Three-dimensional portrayal of the major geologic features of the Tharsis Magmatic Complex 
[Solomon and Head, 2000; Dohm et al., 2000b; Anderson et al., 2001] during the Early to Middle Noachian 
Period (part of Stage 1 [Dohm and Tanaka, 1999; Dohm et al., 2001a]), including the drainage basin. When 
compared to Stage 2 (Plate 6), significant highlights include (1) drainage basin, (2) narrower and sharper mountain 
ranges of Coprates rise, Thaumasia highlands, and multiringed structures of the Argyre impact basin (the Charitum 
and Nereidum Montes), (3) incipient Ceraunis Fossae, Claritas, and Arsia rises, Syria Planum, and Tempe plateau, 
(4) absence of highland-lowland boundary, Valles Marineris, circum-Chryse outflow channel systems, and Thau- 
masia plateau, (5) more distinct Argyre and putative Chryse impact basins, and (6) less distinct Uzboi Vallis. 

western slope valleys, possibly related to another pulse of mag- 
matic activity at Arsia-SW dome, Syria Planum, and the central 
part of Valles Marineris. Extensive younger ridged plains ma- 
terials were emplaced in topographic lows. 

3.4. Late Hesperian to Early Amazonian, Stage 4 
(Plates 1, 2, and 4) 

Significant volcanic activity is also recorded during the Late 
Hesperian and Early Amazonian, including the development 
of Olympus Mons and the Tharsis Montes shield volcanoes. 
Also emplaced were voluminous sheet lavas centered at the 
large shield volcanoes and at Syria Planum. Lava flows cen- 
tered at Arsia Mons, for example, may extend to the northwest 
as far as the northwestern slope valleys embaying the gigantic 
northwest trending promontories and partly infilling the sys- 
tem of valleys [Zimbelman et al., 2000]. 

A significant transition from magmatic-tectonic activity to 
volcanic activity is observed at the major centers of activity, 

notably at Syria Planum [Dohm and Tanaka, 1999; Dohm et aL, 
2001a]. The final appearance of large-scale tectonism for the 
western hemisphere is associated with the dominant center of 
tectonic activity, Alba Patera [Anderson et al., 1998, 2001]. 
Significant outflow channel formation also occurred in the 
circum-Chryse system of outflow channels during the Late 
Hesperian and into the Early Amazonian. This may be related 
to yet another pulse of magmatic activity at Tharsis Montes, 
Syria Planurn, and the central part of Vailes Marineris, which 
is consistent with the driving mechanism in the MEGAOUT- 
FLO hypothesis [Baker et al., 1991, 2000]. 

3.5. Amazonian, Stage 5 (Plates 1, 2, and 3) 

Evidence for continued growth of Olympus Mons and the 
Tharsis Montes shield volcanoes is identified during this geo- 
logic period. Isolated occurrences of magmatic/tectonic activity 
appear to be associated with continued construction of the 
Tharsis Montes shield volcanoes and Olympus Mons. Other 
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rise, and (c) part of the geologic map of the western equatorial region of Mars (representative map units are 
shown [Scott and Tanaka, 1986]). 

than minor graben formation associated with the final stages of 
Alba Patera, these local volcanic sources may represent late- 
stage pulses of magmatic/tectonic activity in the Tharsis region. 

4. Basin Model: Physiographic Setting 
and Stratigraphic Summary 

During the Early to Middle Noachian (early part of Stage 1), 
topographic highs associated with centers of tectonic activity 
(Uranius Fossae, Ceranius Fossae, Arsia and Claritas rises), 
rugged mountain ranges of the east trending Thaumasia high- 
lands and north trending Coprates rise, high-standing terrain 
located southwest of Chryse Planitia (interpreted here to be a 
highly eroded impact crater rim), and Tempe plateau formed 
the margins of the proposed drainage basin (Plate 7). During 
this same time period, lavas, sediments, and volatiles partly 
infilled the basin, resulting in a large aquifer system. The par- 
tial infilling of the basin perhaps coincides with reported higher 

rates of planetwide surface degradation than for post- 
Noachian time [Masursky et al., 1977; Pieri, 1980; Barlow, 1990; 
Craddock and Maxwell, 1993; Scott et al., 1995; Cart and 
Chuang, 1997; Tanaka et al., 1998]. 

The basin/aquifer system was subsequently obscured and 
deformed by middle Noachian and younger geologic activity 
(Stages 1-5), including (1) the Thaumasia plateau uplift, (2) 
continued growth of the Arsia rise and the development of 
other centers of tectonic activity, which also correspond to 
topographic rises (including central Valles Marineris rise, Syria 
Planum, and pre-Tharsis Montes Pavonis), (3) the emplace- 
ment of the intercrater plains materials, older and younger 
ridged plains materials, and lavas associated with Syria Planum 
and Tharsis Montes and local sources such as fissure fed lavas, 
and (4) the construction of the Tharsis Montes shield volca- 
noes. The interaction of magmatic intrusions with water- 
bearing strata may have resulted in lateral migration of sub- 
surface volatiles away from magmatic-driven heating and 
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Plate 10. (a) Present-day MOLA profile (transect A-A') across the Warrego rise (center of tectonic activity, 
interpreted to be the result of magmatic-driven uplift [Anderson et al., 1998, 2001; Dohm et al., 1998; Dohm 
and Tanaka, 1999; Dohm et al., 2000b, 2001a]), west central part of Thaumasia highlands, central part of the 
Noachian drainage basin (queried blue line represents uncertain basin extent), including west central Valles 
Marineris rise (center of tectonic activity, interpreted to be the result of magmatic-driven uplift [Anderson et 
al., 1998, 2001; Dohm et al., 1998; Dohm and Tanaka, 1999; Dohm et al., 2000b, 2001a]), and Tempe Terra 
plateau, (b) MOLA shaded relief map showing features of interest, including the approximated boundary of 
the Noachian drainage basin (dashed blue line) and the west central Valles Marineris rise, and (c) part of the 
geologic map of the western equatorial region of Mars (representative map units are shown [Scott and Tanaka, 
1986]). 

uplift. Such occurrences were probably common throughout 
the evolution of the drainage basin [Anderson et al., 1998, 2001; 
Dohm et al., 1998, 2000e; Solomon and Head, 2000] and may 
explain the concentrations of near-surface volatiles in the Solis 
Planum region expressed by an anomalous concentration of 
layered ejecta craters [Barlow et al., 2001]. In addition, stacked 
sequences of basin materials were locally exposed in the can- 
yon walls of Valles Marineris by magmatic-driven doming, 
tectonic deformation, and erosion. 

Whether the proposed drainage basin is strictly the result of 
surrounding topographic highs or whether there is an endo- 
genic component is difficult to answer. As noted in the previ- 
ous section, the central part of the proposed basin, Valles 
Marineris, is the location of centers of tectonic activity. These 
centers are interpreted to be the result of magmatic-driven 
uplifts and local volcanism, dike emplacement, and hydrother- 
mal activity. In addition, more than half of the proposed basin 

was modified by the Thaumasia plateau uplift, which may have 
been the result of magma plume head. Such activity may be 
likened to topographic inversions observed on Earth. Large 
igneous plateaus occur on both continental and oceanic crust 
in purely intraplate settings, on present and former plate 
boundaries (large lithospheric weaknesses), and along the 
edges of continents and are interpreted to be the result of 
plume activity [Coffin and Eldholm, 1994]. The largest terres- 
trial example of plume-derived igneous plateau growth among 
topographic basins is Ontong-Java Plateau in the west central 
Pacific [Richardson et al., 2000]. 

5. Aquifer Characteristics 
The sources of the largest Martian outflow channel systems 

(circum-Chryse and the proposed northwestern slope valleys 
(NSVs)) suggest that the infill materials of the gigantic drain- 
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magmatic-driven uplift and volcanism [Tanaka and Davis, 1988;Anderson et al., 1998, 2001; Dohm et al., 1998; 
Dohm and Tanaka, 1999; Dohm et al., 2000b, 2001a]), Arsia rise (center of tectonic activity, interpreted to be 
the result of magmatic-driven uplift and volcanism [Anderson et al., 1998, 2001; Dohm et al., 2000b]), and Arsia 
Mons [Scott and Tanaka, 1986; Scott and Zimbelman, 1995], (b) MOLA shaded relief map showing features 
of interest, including the approximated boundary of the Noachian drainage basin (dashed blue line), and (c) 
part of the geologic map of the western equatorial region of Mars (representative map units are shown [Scott 
and Tanaka, 1986]). 

age basin may have produced a highly productive aquifer. 
Large pulses of magmatic activity related to the development 
of the Tharsis magmatic complex [Dohm et al., 2000a, 2000b] 
probably resulted in the partial infilling of the basin by em- 
placing stacked sequences of lavas. Evidence of this may be the 
layered walls of Vailes Marineris, which have been interpreted 
to consist of flood lavas [e.g., Witbeck et al., 1991; Lucchitta et 
al., 1992]. Depending on Noachian climate conditions, these 
sequences may be interfingered with lacustrine and/or eolian 
deposits. Furthermore, the basaltic sequences are highly frac- 
tured by magmatic and tectonic activities [e.g., Scott and 
Tanaka, 1986; Tanaka and Davis, 1988; Tanaka, 1990; Scott 
and Dohm, 1990a, 1990b, 1997; Anderson et al., 1998, 2001; 
Dohm et al., 1998, 2000b; Dohm and Tanaka, 1999; Solomon 
and Head, 2000; Dohm et aL, 2001a]. Highly fractured basalt 
can have unusually high values of hydraulic conductivity in 

terrestrial aquifers. Preliminary analyses of the equations that 
govern subsurface hydrological behavior imply not only that 
this relationship remains true for a Martian aquifer but that 
the value of hydrologic conductivity may be amplified owing to 
the lowered frictional resistance afforded by the lesser gravity 
of Mars [Dohm et al., 2000c, 200lb]. Additionally, any inter- 
fingered sedimentary deposits would serve as local reservoirs 
for subsurface water capable of being tapped by the highly 
fractured basalts. 

We estimate the average depth of the Tharsis basin to be 
between 2 and 7 km (for example, Plates 9-11). The measured 
area of the basin is approximately 9 x 10 6 km 2 (Plates 1, 7, 
9-1 1), and as such, the fill volume for an average depth of 5 km 
is approximately 4.5 x 10 7 km 3. If the fill were largely com- 
posed of highly fractured vesicular extrusive basalts, then the 
porosity and permeability would be very high. On Earth the 
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porosity of unfractured vesicular basalts ranges from roughly 
20% for low vesicularity to roughly 75% for highly vesicular 
scoriaceous basalts [Saar and Manga, 1999]. The porosity and 
especially the permeability could be even higher in the Tharsis 
region, as they are highly fractured from tectonic processes, 
including faulting. Unlike the highly fractured surfaces that 
prevail throughout the Tharsis Magmatic Complex and thus 
high potential permeabilities, impact crater events may lower 
porosity and permeability because they will produce fines that 
infill pore spaces [MacKinnon and Tanaka, 1989]. When com- 
pared to highly cratered surfaces of the southern highlands, 
however, the proposed basin region (also of the southern high- 
lands) is significantly less cratered. 

If the terrestrial porosities are characteristic of the Tharsis 
basin fill, then the potential volume of water contained in the 
aquifer would be more than equivalent to the volume of water 
required to create the putative ocean in the northern plains 
estimated at 1.4 x 10 7 km 3 [Head et al., 1999]. For example, if 
the porosity of basalts was 44 %, and the removal of total water 
from the aquifer was 60%, the minimum fill volume of the 
northern plains ocean would be achieved. The inferred poros- 
ity is well within the values measured for unfractured basalt 
flows of moderate porosity [Saar and Manga, 1999]. We realize, 
however, that it is hard to imagine that 60% of the entire 
aquifer could have been discharged in one event. In addition, 
one can only guess at the effectiveness of the proposed aquifer 
system. Thus we pose the following considerations. Other hy- 
drogeologic activities associated with catastrophic flooding and 
related short-lived (-•10 4 to 10 5 year) episodes of quasi-stable 
climatic conditions [Baker et al., 1991, 2000] may have also 
contributed water to the hypothesized oceans by mechanisms 
such as spring-fed activity along areas of the highland-lowland 
boundary. Certainly, other aquifers may have contributed to 
the putative northern plains ocean as well, especially following 
catastrophic flood events and related short-lived climatic per- 
turbations described by Baker et al. In addition, a large quan- 
tity of ground ice (e.g., stagnant ice sheets) may have already 
been in place in the northern plains during the period(s) of 
catastrophic flooding [Dohm et al., 2000c, 200lb]. This large 
quantity of ice would be the likely consequence of an earlier 
warm and wet phase of Mars, possibly induced by catastrophic 
flooding [Baker et al., 1991, 2000]. As new floodwaters washed 
over the northern plains, the additional heat would melt the 
upper layers of ice, and the gradients created would allow the 
melt water to cycle into the hydrologic system. Alternatively, a 
proposed massive debris-flow ocean [Tanaka et al., 2001] 
and/or a mud ocean [JOns, 1986] require less source water then 
a putative vast northern ocean [Parker et al., 1987, 1993; Head 
et al., 1999]. In addition, potential paleolakes, which also re- 
quire less source water, have been mapped in the northern 
plains [Scott et al., 1995]. 

6. Discussion 

There are several significant observations/characteristics in 
the Tharsis and surrounding regions that might be collectively 
explained by an Early to Middle Noachian drainage basin. 
These include (1) the paucity of Noachian outcrops (Plates 
8-11) [e.g., Scott and Tanaka, 1986; Rotto and Tanaka, 1995; 
Dohm and Tanaka, 1999; Nelson and Greeley, 1999; Dohm et 
al., 2001a] and crustal magnetic anomalies in the proposed 
basin region [Acuna et al., 1999], (2) a sufficient source of water 
necessary to carve the circum-Chryse outflow channel systems 

and the recently proposed structurally controlled system of 
valleys that routed Noachian and Early Hesperian floods from 
the Arsia Mons region to the northwest into Amazonis Planitia 
[Dohm et al., 2000c, 200lb]), (3) the thick sequences of layered 
materials exposed in the walls of Valles Marineris by mag- 
matic, tectonic, and erosional activity [Scott and Tanaka, 1986; 
Witbeck et al., 1991; Lucchitta et al., 1992; Dohm et al., 1998; 
McKenzie and Nimmo, 1999; McEwen et al., 1999; Dohm et al., 
2001a], (4) an anomalous concentration of layered ejecta cra- 
ters in the Solis and Thaumasia Planae regions [Barlow et al., 
2001], (5) the volatile-rich nature of Valles Marineris [Scott 
and Tanaka, 1986; Witbeck et al., 1991; Lucchitta et al., 1992], 
and (6) the observed hematite deposits detected in Valles 
Marineris [Christensen et al., 1998; Noreen et al., 2000]. 

The thick sequence of layered materials observed in the 
canyon walls of Valles Marineris, for example, may represent 
the accumulation of volcanic and other types of materials shed 
into the basin. In addition, the hematite deposits detected in 
the Valles Marineris region by the Thermal Emission Spec- 
trometer (TES) instrument may be the result of phreatomag- 
matic mixing between magma and groundwater or surface wa- 
ter within the basin [Noreen et al., 2000; Chapman and 
Lucchitta, 2000]. Although the true hydrogeologic complexity 
of the basin and aquifer system undoubtedly eludes us, the 
circum-Chryse catastrophic outflow channels and the NSVs 
demonstrate the tremendous productivity of this Noachian 
aquifer. Likewise, the hypothesis that the circum-Chryse cata- 
strophic outflow channels and northwestern slope valleys re- 
sulted from catastrophic flood events is strengthened by the 
identification of the gigantic drainage basin/aquifer system, a 
potential source for the tremendous amount of water required 
to sculpt the surface. The source region for catastrophic flood- 
ing generally has been thought to be the cratered highlands, 
which are marked by canyon systems of Valles Marineris, lava 
flows, and chaotic terrain [Scott and Tanaka, 1986; Witbeck et 
al., 1991; Lucchitta et al., 1992]. However, the magnitude and 
location of the most significant Martian flood features in the 
Tharsis region can be best explained by the existence of a 
Tharsis basin that facilitated the collection of large amounts of 
volatiles early in Martian history [Masursky et al., 1977; Pieri, 
1980; Craddock and Maxwell, 1993; Scott et al., 1995; Can' and 
Chaung, 1997; Tanaka et al., 1998]. In addition, the magmatic- 
triggered floodwaters that originated from the basin probably 
represent a major source for bodies of water in the northern 
plains, including oceans and paleolakes that may have resulted 
in short-lived climatic perturbations [Baker et al., 1991, 2000]. 

Magmatic-driven uplifts associated with the development of 
the Tharsis magmatic complex subsequently transferred 
groundwater laterally along structurally controlled conduits 
within and outside of the basin. This magmatic-driven activity 
eventually forced some of the volatiles out of the basin by 
catastrophic flooding [Baker et al., 1991, 2000]. Such lateral 
movements of volatiles throughout geologic history would re- 
sult in parts of the TMC being volatile-rich and volatile-poor. 
Impact crater studies have revealed a region in the Solis and 
Thaumasia Planae (located south of Valles Marineris in the 
south central part of the basin; Plate 1) where an anomalous 
concentration of craters displaying multiple-layer ejecta mor- 
phologies is correlated with a large area of smaller onset di- 
ameters for craters displaying single-layer morphologies [Bar- 
low et al., 2001]. Barlow et al. [2001] proposed that the 
anomalous concentration marks a region that was particularly 
rich in volatiles (ice near the surface and liquid at greater 
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depths) at the time of cratering compared to other parts of the 
Tharsis magmatic complex and the rest of the equatorial re- 
gion. Thus the impact cratering record may be consistent with 
a scenario where magmatic-driven uplifts locally deformed the 
basin, driving some of the water from the basin by catastrophic 
flooding and transferring volatiles from the uplifted localities 
into portions of the existing subsurface reservoir. This, in turn, 
may have resulted in a local increase of the hydraulic head. 
Such a linkage of processes is a predictable consequence of the 
interaction of magmatic intrusions and the water-bearing 
strata, which we envisioned to have been a common occur- 
rence throughout the long and complex evolution of the TMC 
and the enormous Noachian drainage basin. 

7. Alternative Models 

The basin model is not the only model that offers explana- 
tions for some of the significant characteristics of the Thatsis 
and surrounding regions, including the putativ½ local presence 
of near-surface water in the Thatsis region. A model proposed 
by Ctifford [1993] also predicts near-surface water. Clifford 
proposed that if the planetary inventory of outgassed H:O 
exceeded the pore volume of the cryosphcr½ by more than a 
few percent, a subpermafrost groundwater system of global 
extent would necessarily result. This interconnected global 
aquifer allows the downward migration of polar basal malt to 
result in the upward migration of water at temperate and 
equatorial latitudes. Theoretically, this would result in the wa- 
ter that was lost from the crust at these latitudes by sublima- 
tion, impact, or catastrophic floods to be replenished. Al- 
though Clifford's model can adequately explain the occurrence 
of near-surface water in the Thatsis and surrounding regions, 
it cannot by itself explain the suite of significant observations 
and characteristics previously discussed. 

The putativ½ presence of local near-surface water in the 
Thatsis region, as identified by anomalous concentrations of 
layered ½j½cta craters in the Solis and Thaumasia Plana½ re- 
gions, can be explained by other means. A warmer and wetter 
climate possibly induced from the carly (e.g., carly to Middle 
Noachian) development of the Thatsis rise [Golombek et al., 
2000], for example, may have resulted in the ponding of water 
into local depressions and infiltration of water into the subsur- 
face as it flowed across the planct's surface. As this water 
moved through the subsurface, it may have encountered lenses 
of material that prevented its downward migration, or it may 
have migrated in the subsurface along the natural gradient 
formed by the Thatsis rise. In the former case the aquitards 
would have led to the creation of perched aquifers. Over time 
these perched aquifers may have risen to the near surface or 
surface. As the Martian climate cooled, these near-surface 
aquifers would have been frozen as interstitial ice. As long as 
they remained frozen, they would remain trapped there, re- 
gardless of the changing gradients caused by the continued 
development of the Tharsis bulge. This water would be re- 
leased only by the energy associated with meteoric impact 
[Newsom, 1980], resulting in the anomalous characteristics of 
impact craters in Solis and Thaumasia Planae. However, this 
model cannot explain the gigantic quantities of water required 
to carve the outflow channels. 

There is yet another model that might explain the near- 
surface presence of water among other characteristics. During 
the early rise of Tharsis [e.g., Banerdt et at., 1992; Gotombek et 
at., 2000], for example, certain topographic irregularities may 

have formed owing to local and regional volcanic constructs. 
Further assuming that the topographic irregularities formed 
early enough in the development of the Tharsis rise that they 
existed within an early warmer and wetter Martian environ- 
ment [e.g., Masursky et at., 1977; Pieri, 1980; Gotombek et at., 
2000], the topographic irregularities would have allowed for 
the trapping of rainfall and runoff within localized topographic 
depressions. As the ponded water infiltrated into the ground, it 
may have become trapped near the surface as the climate 
cooled. If it remained frozen, it would remain in situ as Tharsis 
continued to rise, only to be released upon meteorite impact to 
produce the anomalous field of layered ejecta craters. A prob- 
lem with this hypothesis, however, is that geologic mapping has 
not revealed any Early to Middle Noachian-age volcanic edifices 
within the basin region, with the exception of incipient Syria 
Planum [e.g., Dohm and Tanaka, 1999; Dohm et at., 2001a]. 

Finally, another model to consider is one presented by 
Tanaka et at. [2000] in which Syria-Planum-centered fold and 
thrust structures and a cryosphere perhaps a kilometer or so 
thick resulted in a huge, largely sealed aquifer system within 
the Thaumasia plateau. Although a belt of such structures has 
been recognized centered about Syria Planum [Schuttz and 
Tanaka, 1994], especially in the Thuamasia region [Dohm and 
Tanaka, 1999; Dohm et at., 2001a], a continuous belt within the 
Thaumasia plateau is not observed in the stratigraphic and 
paleotectonic records, especially on the northern and western 
margins of the plateau [Dohm and Tanaka, 1999; Dohm et at., 
2001a; Anderson et at., 2001]. In addition, numerous basement 
structures, which are radial about the Tharsis rise, form po- 
tential conduits for the migration of groundwater away from 
the rise. Thus the model presented by Tanaka et at. [2000] is 
not by itself sufficient to explain the suite of significant obser- 
vations/characteristics discussed earlier. Thrust structures, 
such as those potentially observed in the Coprates rise and 
Thaumasia highlands regions [Schuttz and Tanaka, 1994; 
Dohm and Tanaka, 1999], however, could have played a role in 
forming a highly productive Noachian drainage basin/aquifer 
system. 

8. Conclusion 

Paleotopographic reconstructions based on analyses of syn- 
thesized stratigraphic, paleotectonic, erosional, and MOLA- 
derived topographic map data reveal the potential existence of 
an enormous drainage basin in the Tharsis region during the 
Early to Middle Noachian period. Lavas and sediments partly 
infilled the basin, resulting in a highly productive regional 
aquifer. The stacked sequences of basin materials were subse- 
quently exposed in the canyon walls of Valles Marineris by 
magmatic-driven doming, tectonic deformation, and erosion. 
The basin model may collectively explain (1) the paucity of 
Noachian outcrops and crustal magnetic anomalies in the pro- 
posed basin region, (2) the thick sequences of layered materi- 
als exposed in the walls of Valles Marineris, (3) an anomalous 
concentration of layered ejecta craters in the Solis and Thau- 
masia Planae regions, (4) the volatile-rich nature of Valles 
Marineris, and (5) the observed hematite deposits detected in 
Valles Marineris. The basin may also provide a sufficient 
source of water necessary to carve the circum-Chryse outflow 
channel systems and the recently proposed northwestern slope 
valleys and to form Hesperian and younger putative ocean(s) 
and (or) paleolakes. 
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