Future of Coffee, Exhibit Brochure

2015

Schuyler Kerby
Allison Matos

Find similar works at: https://stars.library.ucf.edu/lib-rosen-exhibits

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

https://stars.library.ucf.edu/lib-rosen-exhibits/1

This Future of Coffee is brought to you for free and open access by the Rosen Library at STARS. It has been accepted for inclusion in Rosen Library Exhibits by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
The Universal Orlando Foundation Library is located at 9907 Universal Blvd., near International Drive and the heart of Orlando’s tourism area. For more info, visit the library’s website at http://library.ucf.edu/rosen or call 407-903-8100.

Sources


Exhibit Design

Curators:

♦ Schuyler Kerby, Sr. Library Technical Assistant
♦ Allison Matos, Sr. Library Technical Assistant Supervisor

On display

January-February 2015

at the Rosen College Library
Coffee is made from the seeds of an evergreen shrub in the genus *Coffea*. The most common variety is *Coffea arabica*, which makes up “approximately 70% of the world’s coffee production” (A Botanist’s Guide). This lack of genetic diversity makes coffee vulnerable to environmental pressures. The other common variety is *Coffea canephora*, also known as robusta. It is a hardier bean but has a harsher flavor.

Each strain of *Coffea Arabica* can only grow in specific climates. This means that “a temperature rise of even half a degree can make a big difference” (Coffee and Climate). Climate change not only results in “shifts in rainfall and harvest patterns” but also leads to “increased erosion and infestation by pests” (Arrington). An example of this is coffee rust, “a devastating fungus that previously did not survive the cool mountain weather” (Coffee and Climate).

One way to battle growing environmental pressure on coffee is to harness genetics. Tim Schilling, a geneticist overseeing World Coffee Research wants to “exploit adaptations that already exist in the gene pools of *C. Arabica* and the other cultivated coffee species *Coffea canephora*” (Rosner). Another goal of Schilling is to “develop a plant that has the flavor of *C. Arabica* and the temperament and yield of *C. canephora*” (Rosner).

Work to protect coffee is not only being done in the lab. Farmers are working to make the production of coffee more environmentally friendly. One method of making farms more ecological is to “adopt practices that curb emissions and increase carbon storage” (Coffee farmers). This is done by “using organic matter as compost and burying fertilizers” (Coffee farmers).