A System Dynamics Model to Test Urban Transportation Policy Alternatives

John Paul Burtle
University of Central Florida
A SYSTEM DYNAMICS MODEL TO TEST URBAN
TRANSPORTATION POLICY ALTERNATIVES

BY

JOHN PAUL BURTEL
B.S., UNIVERSITY OF TENNESSEE, 1963

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the Graduate Studies Program of
Florida Technological University

Orlando, Florida

1974
To Molly and the kids
for their many
weekends of patience
TABLE OF CONTENTS

LIST OF FIGURES .. vi

Chapter

I. INTRODUCTION ... 1
 The Problem
 Approach to the Problem

II. SYSTEM DYNAMICS AND DYNAMO 6
 Introduction to System Dynamics
 Introduction to Dynamo

III. DYNAMIC MODEL OF THE URBAN TRANSPORTATION SYSTEM ... 13
 Applicability of the System Dynamics Approach
 Detailed Description of the Model
 Auto and Transit Demand, Block 1
 Projected Auto Demand, Block 2
 Road Inventory, Block 3
 Road Budget, Block 4
 Auto Commuting Cost, Block 5
 Auto Commuting Time, Block 6
 Projected Transit Demand, Block 7
 Transit Vehicle Inventory, Block 8
 Transit Budget, Block 9
 Transit Commuting Cost, Block 10
 Transit Commuting Time, Block 11
 Model Feedback

IV. VALIDATION OF THE DYNAMO MODEL, RESULTS OF SIMULATION, AND ANALYSIS OF POLICIES 52
 Validation of the Model
 Selection of Constants
 Selection of Initial Conditions
 Steady State Experiment
 Results of Simulation
 Steady-State Population, Increased Transit Subsidy
 Steady-State Population, Current Subsidy Levels, and Express Bus Lanes

iv
Steady-State Population, Current Subsidy Levels, Dollar Gasoline
Steady-State Population, No Transit Subsidies
Steady-State Population, No Transit Subsidies, Forty Cent Gasoline
Steady-State Population, No Transit Subsidies, Dollar Gasoline
Steady-State Population, No Transit Subsidies, Express Bus Lanes
Increasing Population, No Transit Subsidies
Increasing Population, No Transit Subsidies, Express Bus Lanes
Increasing Population, Continuing Transit Subsidies
Increasing Population, Continuing Transit Subsidies, Express Bus Lanes
Analysis of Policies

V. CONCLUSIONS AND IMPLICATIONS .. 78
Conclusions
Implications for Orange County Urban Planners
Implications for Further Research

APPENDIX I ... 81
Table of Definitions

APPENDIX II ... 90
Urban Transportation Model Listing

REFERENCES CITED ... 101
SELECTED BIBLIOGRAPHY ... 104
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System Dynamics Schematic, Example</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>a. The First Order Delay</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>b. The Third Order Delay</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Urban Transportation System, Functional Diagram</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Auto and Transit Demand, Block 1, Part 1</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Auto and Transit Demand, Block 1, Part 2</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Projected Auto Demand, Block 2</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Road Inventory, Block 3</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Road Budget, Block 4, Part 1</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Road Budget, Block 4, Part 2</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Auto Commuting Cost, Block 5</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Auto Commuting Time, Block 6</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>Projected Transit Demand, Block 7</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>Transit Vehicle Inventory, Block 8</td>
<td>41</td>
</tr>
<tr>
<td>14</td>
<td>Transit Budget, Block 9, Part 1</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>Transit Budget, Block 9, Part 2</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>Transit Commuting Cost, Block 10</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>Transit Commuting Time, Block 11</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>Results, Steady-State Population, Current Subsidy Levels, Express Bus Lanes</td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td>Results, Steady-State Population, Current Subsidy Levels, Dollar Gasoline</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>Results, Steady-State Population, No Transit Subsidies, Dollar Gasoline</td>
<td>70</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>21.</td>
<td>Results, Steady-State Population, No Transit Subsidies, Express Bus Lanes</td>
<td>71</td>
</tr>
<tr>
<td>22.</td>
<td>Results, Increasing Population, No Transit Subsidies</td>
<td>72</td>
</tr>
<tr>
<td>23.</td>
<td>Results, Increasing Population, No Transit Subsidies, Express Bus Lanes</td>
<td>73</td>
</tr>
<tr>
<td>24.</td>
<td>Results, Increasing Population, Continuing Transit Subsidies</td>
<td>74</td>
</tr>
<tr>
<td>25.</td>
<td>Results, Increasing Population, Continuing Transit Subsidies, Express Bus Lanes</td>
<td>75</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

This study investigates the structure of urban transportation systems, the bases of commuter mode selection, and the effects of alternate transportation system management policies. The study was based on the hypothesis that changes in transportation system management policies are possible which will significantly increase the demand for public transportation in urban areas.

The Problem

American urban transportation since World War II has been characterized by a rapid increase in the use of private automobiles coupled with the decreased use of public transportation. While urban populations have grown rapidly during this post-war period, annual passenger totals for public transportation have fallen from 23.5 billion passengers in 1945 to 8.019 billion passengers in 1968.\(^1\) While national population has been increasing at an annual rate of 1.7 percent, automobile population has been increasing at an annual rate of 5.7 percent.\(^2\)

The trend away from public transportation is due, in part, to the move of the commuters to the suburbs and to the dispersion of industry. In greater part, the trend is attributable to a national prosperity which has allowed the great majority of employed persons to afford the comfort and convenience of a private automobile.
To most commuters the option of using public transportation represents exposure to the weather while awaiting a carrier which is commonly late, uncomfortable, and often overcrowded during rush hours. Increasing public transportation fares coupled with declining service are added deterrents to electing to use public transportation. Public transportation is generally slower than commuting by private automobile since the competing modes normally share the roadways and the public transport must make stops along the way. Rapid transit systems offer a meaningful alternative only in heavily traveled corridors and do not fully satisfy the needs of the commuter who must travel by other modes to and from the rapid transit corridor.

For public transportation to compete favorably with the private automobile, public transportation systems must satisfy the commuters' needs for timely service, convenient service, comfortable facilities, all at a cost which does not exceed (and should be less than) automobile commuting.³

To maintain smooth traffic flow, planners feel they need 300 miles of roadway for every 100,000 added automobiles. Commonly 100 miles of roadway are actually built for every 100,000 added automobiles.⁴ Construction of sufficient roadway to meet demands is inhibited by available tax revenues and by competition for land. Each mile of roadway removes 40 to 50 acres of taxable property from the local tax rolls and from other useful employment.⁵ When necessary funds and land have been available so that sufficient roadway to meet current and projected demand were constructed, the attractive new roadway has consistently upset the demand forecast by generating a
population surge which rapidly overloads the new roadway. A saturation point is being approached where urban planners in the most developed areas realize that urban communities cannot continue indefinitely to relinquish valuable land to transport the flood of private automobiles.

The extensive use of automobiles, through exhaust emissions, land consumed by roadway and parking spaces, and by the production of automobiles and fuels, has become an increasing menace to the quality of the environment.

Dwindling oil supplies reinforce the growing awareness that current commuter trends must be changed. In the United States in 1972, more than 15 million barrels of oil per day were consumed, 40% for gasoline primarily for automobiles. The more than six million barrels of oil a day now consumed for gasoline is projected to grow to ten million barrels a day in another 10 years. In 1972 the United States imported $3.5 billion in oil. This figure is projected to grow to $20 billion by 1980, further aggravating the national balance of payments deficit and increasing our national dependency on oil-rich nations.

In some large metropolitan areas with well-defined traffic corridors, new or revitalized rapid transit systems such as the highly publicized and very expensive Bay Area Rapid Transit System may ease the urban transportation problem. But for most of the nation's urban areas, where such expensive systems cannot be funded or where significant corridorization does not exist, methods must be found to improve existing bus systems to make these systems more responsive to
the needs of commuters. Transportation Secretary John Volpe commented: "In the vast majority of urban centers, better public transportation will have to come from better buses on better schedules making better utilization of rights-of-way already in place." 8

Approach to the Problem

The urban transportation problem defies piecemeal reform. Auto demand is influenced not only by the cost and time associated with auto travel, but also by the cost and time associated with public transportation. Likewise, the demand for public transportation is related to the time and cost of auto travel. Construction of roadway is a function of projected auto demand, but it is also constrained by the availability of land and by the increasing costs associated with increasing population density. And what is the effect of increasing roadway construction costs on transit demand? Decreasing the rate of constructing new roadway may make auto driving less appealing, but what is the effect of this reduction on transit demand when public transportation must use the same increasingly congested roadways? Will a tax levied on auto users to support public transportation cause auto ownership to decline significantly, reducing the revenues derived from the tax?

It is clear from the questions above that a macroscopic model of the total urban transportation system could be a powerful tool to aid urban planners test and evaluate transportation policy alternatives. It is the purpose of this study to develop a macroscopic model of the urban transportation system and to apply the model to test several transportation policy alternatives as they might be applied in Orange
County, Florida.

A modeling effort similar to that undertaken herein was reported at the 1974 Winter Simulation Conference, 14-16 January, 1974, Washington, D.C., in the paper "Urban Transportation Strategies Model" by S. G. Shanks, R. R. Hippler, and P. N. Formica of the Research Corporation of New England.

Other related works include Free Transit by T. A. Domencich and G. Kraft and "An Econometric Model of Urban Bus Transit Operations" included in Economic Characteristics of the Urban Transportation Industry.
CHAPTER II
SYSTEM DYNAMICS AND DYNAMO

Introduction to System Dynamics

System Dynamics was developed by J. W. Forrester at the Massachusetts Institute of Technology as a means to study industrial systems. The techniques have been extended by Forrester and by the Meadows group to modeling other socioeconomic systems. The primary objective of a System Dynamics study is to understand how the organization of a system affects system performance. Alternate management policies are tested by simulation. The simulation is not an effort to predict specific events with accuracy, but rather aims to demonstrate the characteristic behavior of the system and to indicate how that characteristic behavior will be changed under varying management policies.

Fundamental to the structure of a System Dynamics model is the representation of the flow of assets such as material, orders, money, people, equipment, and the like. Flow is modeled as a series of rates and levels with an origin (source) and a sink. The rates describe the continuous inputs to and outputs from the levels. The differences between the input and output rates are integrated to determine the levels. The rates are related to the levels by rate equations (also called decision functions). Equations in the System Dynamics model other than rate and level equations are called auxiliary equations.
Schematically, rates are represented as valves, levels are represented as rectangles, and auxiliaries are represented as circles. Schematic symbols are illustrated in Figure 1.

A significant factor in determining the response of socioeconomic systems is the delay that occurs in transmitting assets and information and in making decisions. Two orders of delay are commonly used: the first order delay and the third order delay. Figure 2 illustrates the first and third order delay responses to step and impulse inputs.

Particular emphasis is given to modeling feedback phenomena. Forrester describes socioeconomic systems as characteristically multiloop, nonlinear feedback systems. He maintains that planners are unable to interpret adequately such systems without an assist from a System Dynamics model or some similar aid. The behavior of socioeconomic systems, in Forrester's terms, are "counterintuitive" so that planners' intuitive solutions are often counterproductive.

Finally, Forrester writes: "The (System Dynamics) approach is easy to understand but difficult to practice. Few people have a high level of skill; but preliminary work is developing all over the world. Some European countries and especially Japan have begun centers of education and research."

Introduction to Dynamo

Dynamo (DYNamic MOdels) was developed at the Massachusetts Institute of Technology by Dr. Phyllis Fox and Alexander L. Pugh, III, based on earlier work by Richard K. Bennett. Dynamo is a user-oriented higher-level language specifically developed to facilitate
Fig. 1.—System Dynamics Schematic Example.
Fig. 2a.--The First Order Delay
SCHEMATIC OF THIRD ORDER DELAY

![Diagram](image)

RESPONSE TO IMPULSE INPUT

RATE IN

RATE OUT

AVGDELAY

RESPONSE TO STEP INPUT

RATE IN

RATE OUT

AVGDELAY

ALTERNATE SCHEMATIC

RATE IN

![Diagram](image)

Fig. 2b.—The Third Order Delay
Fundamental to any dynamic simulation technique is the numerical method of integration. Dynamo employs the simple Euler's Method of integration (rectangular integration). The stability and computational efficiency of rectangular integration are well suited to System Dynamics models which are characteristically not well defined. Because Dynamo employs only rectangular integration, the language may not be appropriate for simulating well-defined physical systems where high precision is meaningful and sometimes necessary.

Rectangular integration is defined as follows:

If \(y^i = f(x,y) \)

Then \(y_{n+1} = y_n + hf(x,y) \).

To convert this definition into Dynamo, set:

\[
\begin{align*}
Y_{n+1} &= Y.K \text{ (i.e., } Y \text{ at time } K) \\
Y_n &= Y.J \text{ (i.e., } Y \text{ at time } J) \\
h &= DT \\
f(x,y) &= \text{ INPUT.JK - OUTPUT.JK} \\
\quad \text{(i.e., the difference between input and output rates during time interval } J \text{ to } K). \\
\end{align*}
\]

Then the Dynamo level (L) statement for integration is:

\[
L \ Y.K = Y.J + DT*(\text{INPUT.JK-OUTPUT.JK}).
\]

To facilitate modeling, Dynamo includes trigonometric functions (such as SIN, LOG, EXP), value selection functions (such as MAX, MIN, TABLE), time triggered functions (such as PULSE, RAMP), random number generators, and built in macros (such as DELAY3 and SMOOTH). The Dynamo program includes extensive error analysis,
comprehensive error messages, and attempts to interpret errors to allow programs to run without resubmission.
CHAPTER III

DYNAMIC MODEL OF THE URBAN TRANSPORTATION SYSTEM

Applicability of the System Dynamics Approach

The urban transportation system is composed of two major sectors: the private automobile sector and the public transportation sector. The functional diagram, Figure 3, depicts the eleven functional blocks of the model. Blocks 2 through 6 describe the private automobile sector while blocks 7 through 11 describe the public transportation sector. Block 1 represents the commuter response to changes in the automobile and public transportation sectors.

Auto and transit demand computations are accomplished in block 1 representing the commuter response to changing auto commuting cost, auto commuting time, transit commuting cost, transit commuting time, and transit accessibility. Demand is computed in terms of peak hour auto and transit demand, total area auto ownership, and total monthly transit users.

Auto demand trends are projected in block 2 to allow planning new roads and evaluating user tax rates.

In block 3 projected peak hour demand is analyzed and construction of new roadway is initiated as required. The model considers construction rates and expected road life to continuously update statistics regarding roadway availability.

Roadway available and planned is compared with current and pro-
Fig. 5.--Urban Transportation System Functional Diagram
jected auto ownership in block 4 to determine the required gasoline tax rate.

Fixed and variable costs associated with automobile commuting are compiled in block 5.

In block 6, auto demand and roadway availability are compared to determine the time required to commute by auto.

Transit demand trends are projected in block 7 to allow planning the purchase of new transit vehicles and evaluating the adequacy of the transit fare.

In block 8, the projected peak hour transit demand is analyzed and procurement of transit vehicles is initiated as required. The model considers procurement rate and expected vehicle life to continuously update statistics regarding transit vehicle availability.

Transit system projected costs are compared in block 9 with transit system projected income to determine the required transit fare.

Monthly transit commuting cost is computed from the transit fare in block 10.

In block 11, transit vehicle availability and road congestion are considered in determining the time required to commute by transit and the accessibility of transit.

By examination of Figure 3, it can be seen that the urban transportation system is a complex, multiloop feedback system involving the flow of assets. The prime objective of this study is to understand how the organization of the system affects performance and to evaluate alternative management policies. The description of the system and the objectives of the study are consistent with the capabili-
ties of the System Dynamics approach.

Detailed Description of the Model

Auto and Transit Demand, Block 1. - The design of this block is based on the postulate that demand for a particular transportation system is dependent on the cost, time, comfort and convenience of the system as compared with these same attributes for competing systems. To compute peak hour demands for two competitive transportation systems, private automobiles and public transit, let:

- \(\text{PAD} = \) PEAK HOUR AUTO DEMAND
- \(\text{PTD} = \) PEAK HOUR TRANSIT DEMAND
- \(\text{MAUTOC} = \) MONTHLY AUTO USER COST
- \(\text{MTRANC} = \) MONTHLY TRANSIT USER COST
- \(\text{AUTOTM} = \) ONE WAY TIME FOR AUTO COMMUTER
- \(\text{TRANIM} = \) ONE WAY TIME FOR TRANSIT COMMUTER
- \(\text{ACOMFT} = \) AUTO COMFORT
- \(\text{TCONV} = \) TRANSIT CONVENIENCE
- \(\text{ACONV} = \) AUTO CONVENIENCE
- \(\text{TCOMFT} = \) TRANSIT CONVENIENCE

Then the equations for peak hour auto and transit demand are of the form:

\[
\text{PAD} = f_1 (\text{MAUTOC}, \text{MTRANC}, \text{AUTOTM}, \text{TRANIM}, \text{ACONV}, \text{TCONV}, \text{ACOMFT}, \text{TCONV}) \quad (1.1)
\]

\[
\text{PTD} = f_2 (\text{MAUTOC}, \text{MTRANC}, \text{AUTOTM}, \text{TRANIM}, \text{ACONV}, \text{TCONV}, \text{ACOMFT}, \text{TCONV}) \quad (1.2)
\]

Applying the chain rule for partial derivatives:

\[
d\text{PAD} = \frac{\partial \text{PAD}}{\partial \text{MAUTOC}} \frac{d\text{MAUTOC}}{dt} + \frac{\partial \text{PAD}}{\partial \text{MTRANC}} \frac{d\text{MTRANC}}{dt} + \frac{\partial \text{PAD}}{\partial \text{AUTOTM}} \frac{d\text{AUTOTM}}{dt} \\
+ \frac{\partial \text{PAD}}{\partial \text{TRANIM}} \frac{d\text{TRANIM}}{dt} + \frac{\partial \text{PAD}}{\partial \text{ACOMFT}} \frac{d\text{ACOMFT}}{dt} + \frac{\partial \text{PAD}}{\partial \text{TCONV}} \frac{d\text{TCONV}}{dt} \\
+ \frac{\partial \text{PAD}}{\partial \text{ACONV}} \frac{d\text{ACONV}}{dt} + \frac{\partial \text{PAD}}{\partial \text{TCONV}} \frac{d\text{TCONV}}{dt} \quad (1.3)
\]
Equations 1.3 and 1.4 may be further definitized by employment of the concept of demand elasticity. As applied to a travel demand model, demand elasticity represents the percent change in demand for a given system in response to a one percent change in one of the variables giving rise to the travel demand, assuming all other variables in the equation are held constant. Elasticities with respect to the variables for the subject mode are called direct elasticities while elasticities with respect to the variables associated with competing modes are called cross elasticities. Mathematically, elasticity is defined as:

\[n_x = \frac{x}{N} \frac{\partial N}{\partial x} \]

where \(n_x \) is the elasticity of travel demand \(N \) with respect to variable \(x \). Inverting the elasticity definition:

\[\frac{\partial N}{\partial x} = \frac{N}{x} n_x \]

This study assumes that auto and transit comfort and auto convenience are not varying with time. Transit convenience is represented by transit access time (TRACC). Applying equation 1.5 to equations 1.3 and 1.4:
\[
\frac{d\text{PAD}}{dt} = \frac{(\text{PAD})(DE1)}{\text{FMAUTOC}} (\text{MAUTOCC}) + \frac{(\text{PAD})(CE1)}{\text{FMTRANC}} (\text{MTRANCC}) \\
+ \frac{(\text{PAD})(DE2)}{\text{FAUTOTM}} (\text{AUTOTMC}) + \frac{(\text{PAD})(CE2)}{\text{FTRANTM}} (\text{TRANMC}) \\
+ \frac{(\text{PAD})(CE5)}{\text{FTRACC}} (\text{TRACC})
\]

\[
\frac{d\text{PTD}}{dt} = \frac{(\text{PTD})(CE3)}{\text{FMAUTOC}} (\text{MAUTOCC}) + \frac{(\text{PTD})(DE3)}{\text{FMTRANC}} (\text{MTRANCC}) \\
+ \frac{(\text{PTD})(CE4)}{\text{FAUTOTM}} (\text{AUTOTMC}) + \frac{(\text{PTD})(DE4)}{\text{FTRANTM}} (\text{TRANMC}) \\
+ \frac{(\text{PTD})(DE5)}{\text{FTRACC}} (\text{TRACC})
\]

where:

\begin{align*}
DE1 & = \text{ELASTICITY RELATING PAD TO MAUTOCC} \\
DE2 & = \text{ELASTICITY RELATING PAD TO AUTOTMC} \\
DE3 & = \text{ELASTICITY RELATING PTD TO MTRANCC} \\
DE4 & = \text{ELASTICITY RELATING PTD TO TRANMC} \\
DE5 & = \text{ELASTICITY RELATING PTD TO TRACC} \\
CE1 & = \text{ELASTICITY RELATING PAD TO MTRANCC} \\
CE2 & = \text{ELASTICITY RELATING PTD TO AUTOTMC} \\
CE3 & = \text{ELASTICITY RELATING PTD TO TRACC} \\
CE4 & = \text{ELASTICITY RELATING PTD TO TRACC} \\
CE5 & = \text{ELASTICITY RELATING PTD TO TRACC}
\end{align*}

\text{MAUTOCC} = \frac{d\text{MAUTOCC}}{dt} \\
\text{MTRANCC} = \frac{d\text{MTRANCC}}{dt} \\
\text{AUTOTMC} = \frac{d\text{AUTOTMC}}{dt} \\
\text{TRANMC} = \frac{d\text{TRANMC}}{dt} \\
\text{TRACC} = \frac{d\text{TRACC}}{dt} \\
\text{FMAUTOC} = \text{MAUTOCC PRIOR TO MAUTOCC} \\
\text{FMTRANC} = \text{MTRANCC PRIOR TO MTRANCC} \\
\text{FAUTOTM} = \text{AUTOTMC PRIOR TO AUTOTMC} \\
\text{FTRANTM} = \text{TRANMC PRIOR TO TRANMC} \\
\text{FTRACC} = \text{TRACC PRIOR TO TRACC}

Equations 1.6 and 1.7 may be programmed in Dynamo as follows:

NOTE BLOCK 1 PART 1

R \text{MAUTOCC} \cdot \text{KL} = \text{MAUTOCC} \cdot \text{K} - \text{FMAUTOC} \cdot \text{K} \\
L \text{FMAUTOC} \cdot \text{J} = \text{FMAUTOC} \cdot \text{J} + \text{DT} \cdot \text{MAUTOCC} \cdot \text{JK} \\
R \text{AUTOTMC} \cdot \text{KL} = \text{AUTOTMC} \cdot \text{K} - \text{FAUTOTM} \cdot \text{K} \\
L \text{FAUTOTM} \cdot \text{J} = \text{FAUTOTM} \cdot \text{J} + \text{DT} \cdot \text{AUTOTMC} \cdot \text{JK} \\
R \text{MTRANCC} \cdot \text{KL} = \text{MTRANCC} \cdot \text{K} - \text{FMTRANC} \cdot \text{K} \\
L \text{FMTRANC} \cdot \text{J} = \text{FMTRANC} \cdot \text{J} + \text{DT} \cdot \text{MTRANCC} \cdot \text{JK} \\
R \text{TRANMC} \cdot \text{KL} = \text{TRANMC} \cdot \text{K} - \text{FTRANMC} \cdot \text{K}
The block 1, part 1 Dynamo schematic is depicted in Figure 4.

The peak hour auto and transit demands computed in block 1, part 1, do not consider the effects of the urban area population trends. These effects are considered by the calculations in block 1, part 2.

Peak hour auto commuters (PAC) is determined as the product of the peak hour auto demand (PAD) and the average commuters per auto (ACPA). Then the total peak hour demand (uncorrected to reflect population trends) is given by the sum of peak transit demand (PTD) and peak hour auto commuters (PAC).

The peak hour transit fraction (PKHRTRF) is found by dividing peak hour transit demand (PTD) by the uncorrected total peak hour demand (TOTPHD). Similarly, the peak hour auto fraction (PKHRAF) is the quotient peak hour auto commuters (PAC) divided by TOTPHD.

The daily peak hour commuters in the modeled area is represented by the level PKHRCCM and the rate MCOMCR, the monthly commuter change rate which may be positive or negative. For this study, MCOMCR is modeled as a constant equal to MCMRA, the monthly commuter change rate average.
Fig. 4.--Auto and Transit Demand Block 1, Part 1
The corrected peak hour auto commuter total is determined as the product of the peak hour auto fraction (PKHRAF) and the total peak hour commuters (PKHRCOM). Similarly, the corrected peak hour transit demand (CPTD) is the product of PKHRCOM and the peak hour transit fraction (PKHRTRF).

The corrected peak hour auto demand (CPAD) is the quotient of corrected peak hour auto commuters (CPAC) divided by the average commuters per auto (ACPA). Total area autoownership (TA) is computed by dividing CPAD by the peak hour auto demand fraction (PADF) of the total area autos.

Total monthly transit demand (TMD) is found as a function of corrected peak hour transit demand (CPTD) and the peak hour transit demand fraction (PTDF) of the total transit demand. The auto fraction (AUTOF) and transit fraction (TRANF) of peak hour commuters are determined from CPTD and CPAC. See Figure 5. The Dynamo coding is:

A PAC.K=PAD.K*ACPA
A TOTPHD.K=PAC.K+PTD.K
A PKHRAF.K=PAC.K/TOTPHD.K
A PKHRTRF.K=PTD.K/TOTPHD.K
L PKHRCOM.K=PKHRCOM.J+DT*MCMCR.JK
R MCMCR.KL=MCMCR
A CPAC.K=PKHRAF.K*PKHRCOM.K
A CPAD,K=CPAC.K/ACPA
A TA.K=CPAD.K/PADF
A CPTD.K=PKHRTRF.K*PKHRCOM.K
A TMD.K=CPTD.K/PTDF
A AUTOF.K=CPAC.K/(CPAC.K+CPTD.K)
A TRANF.K=1-AUTOF.K

Projected Auto Demand, Block 2. - Projected auto demand is determined by: (1) computing the rate of change in peak hour auto demand; (2) exponentially smoothing the rate of change in peak hour auto demand; (3) determining the smoothed rate of change in total auto
Fig. 5.--Auto and Transit Demand Block 1, Part 2
Fig. 6.--Projected Auto Demand, Block 2
ownership in the modeled area; (4) computing the projected peak hour auto demand; and (5) computing the projected total auto ownership.

In order that he may project future roadway needs, the manager must be aware of changes occurring in the peak hour auto demand. If CPAD is the corrected peak hour auto demand, and FCPAD is the former peak hour auto demand, then the change in auto demand, PADC, is determined by the following Dynamo statements:

\[R\ \text{PADC}.K = \text{CPAD}.K - \text{FCPAD}.K \]
\[L\ \text{FCPAD}.K = \text{FCPAD}.J + DT*\text{PADC}.J.K \]

The flow rates in socioeconomic systems are often irregular. However, management actions must respond smoothly. Exponential smoothing is employed in the model to facilitate smooth management responses. Smoothing is a method of interpreting a series of irregular past information values to determine the significant underlying trends. Exponential smoothing assigns progressively less weight to older information values. If T is the smoothing time constant, the exponential average of the data points S is given by:

\[\text{Exponential Avg.} = \frac{1}{T} (S_1 + (1 - \frac{1}{T}) S_2 + \ldots \ldots + (1 - \frac{1}{T})^n S_{n+1}) \]

In planning the amount of new roadway which must be constructed, management will normally attempt to perceive the underlying trend in peak hour auto demand rather than reacting only to the latest data. This attempt to react to the underlying trend is represented by employing the exponential smoothing macro provided by the Dynamo language. If PADC is the peak hour auto demand change and SMCON is the smoothing time constant, then the smoothed peak hour auto demand change, PADCS, is given by:

\[A\ \text{PADCS}.K = \text{SMOOTH(\text{PADC}.J.K, \text{SMCON})} \]
Then, if PADF is the peak hour auto demand fraction of the total area autos, the smoothed change in total auto ownership, TACS, is given by:

\[\text{TACS}_K = \frac{\text{PADCS}_K}{\text{PADF}} \]

In planning the amount of new roadway which must be constructed, management must estimate the future peak hour auto demand. The model represents this projection by multiplying the smoothed monthly change in auto demand, PADCS, by the number of months in the planning horizon and adding this product to the corrected peak hour auto demand, CPAD. In this model, the planning horizon is taken to be the sum of the average time required to plan new roadway (RDPLGD) and the average time required to construct new roadway (RDCSN). The Dynamo statement for the projected peak hour auto demand, PRPAD, is:

\[\text{PRPAD}_K = \text{CPAD}_K + (\text{RDPLGD} + \text{RDCSN}) (\text{PADCS}_K) \]

In determining the appropriate user tax rates, the manager must estimate the future total auto ownership in the area. The model represents this projection by multiplying the smoothed monthly change in auto ownership, TACS, by the number of months in the planning horizon and adding this product to the current total auto ownership, TA.

In this model the tax rate planning horizon is chosen to be the average time required for taxes collected to progress from the collection point (gasoline service station) to the account for roads, RFDCOLD. The Dynamo statement for the projected total auto ownership, PRTA, is:

\[\text{PRTA}_K = \text{TA}_K + \text{RFDCOLD} \times \text{TACS}_K \]

Road Inventory, Block 3. - Block 3 represents the planning, construction, availability and scrapping of major roads. Major roads are defined as expressways, highways, arterials and central business
Fig. 7.--Road Inventory Block 3
district streets.

Road planning is accomplished by comparing the projected availability of roads with the projected demand for roads. If \(RDPAVA \) is the projected availability of roads and \(RDDAVA \) is the desired availability of roads, then the rate at which new roadway is planned, \(RDPLGR \), is:

\[
RDPLGR = \begin{cases}
 RDDAVA - RDPAVA & \text{if } RDDAVA > RDPAVA \\
 0 & \text{if } RDDAVA \leq RDPAVA
\end{cases}
\]

(3.1)

The Dynamo language MACRO "CLIP" accomplishes the function described by equation 3.1 in the following statement:

\[
R \ RDPLGR.KL=\text{CLIP}(RDDAVA.K-RDPAVA.K,0,RDDAVA.K,RDPAVA.K)
\]

Road construction will begin an average of \(RDPLGD \) (the road planning delay) months after the planning decision is made. The road beginning rate, \(RDBGGR \), response to the road planning rate input, \(RDPLGR \), is represented as a third order delay as follows:

\[
R \ RDBGGR.KL=\text{DELAY3}(RDPLGR.JK,RDPLGD)
\]

Roadway will be completed an average of \(RDCSND \) (the road construction delay) months after construction is begun. The road completing rate, \(RDCMGR \), response to the road beginning rate input, \(RDBGGR \), is represented as a third order delay as follows:

\[
R \ RDCMGR.KL=\text{DELAY3}(RDBGGR.JK,RDCSND)
\]

The amount of roadway planned but not under construction (\(RDPLDL \)) and the amount of roadway under construction (\(RDCSNL \)) are determined by integrating the difference between the input and output rates:

\[
L \ RDPLDL.K=RDPLDL.J+DT*(RDPLGR.JK-RDBGGR.JK)
\]

\[
L \ RDCSNL.K=RDCSNL.J+DT*(RDBGGR.JK-RDCMGR.JK)
\]
Roadway will be scrapped an average of RDLIFE (the expected life of roadway) months after construction is completed. The rate of scrapping roadway, RDLVGR, response to the road completing rate (RDCMGR) input is represented as a third order delay. In this case the model includes the explicit Dynamo statements comprising a third order delay to allow the user the opportunity to apportion the initial roadway availability among (1) lane-miles of roadway available in the first third of the expected road life (RDAVLL1), (2) lane-miles of roadway available in the second third of expected road life (RDAVLL2), and (3) lane-miles of roadway available in the final third of expected road life (RDAVLL3).

If RDLVGR1, RDLVGR2, and RDLVGR are the rates at which roadway completes the first, second, and final thirds, respectively, of the expected life, then:

\[
\begin{align*}
L \ RDAVLL1.K &= RDAVLL1.J + DT \times (RDCMGR.JK - RDLVGR1.JK) \\
R \ RDLVGR1.KL &= RDAVLL1.K / (RDLIFE/3) \\
L \ RDAVLL2.K &= RDAVLL2.J + DT \times (RDLVGR1.JK - RDLVGR2.JK) \\
R \ RDLVGR2.KL &= RDAVLL2.K / (RDLIFE/3) \\
L \ RDAVLL3.K &= RDAVLL3.J + DT \times (RDLVGR2.JK - RDLVGR.JK) \\
R \ RDLVGR.KL &= RDAVLL3.K / (RDLIFE/3)
\end{align*}
\]

and, the total roadway available, RDAVLL, is:

\[
\]

The projected availability of roads, RDPAVA, is determined in the model for a planning horizon equal to the total time required to plan and construct new roadway (RDPLGD+RDCSND):

\[
A \ RDPAVA.K = RDAVLL.K + RDCSNL.K + RDPLDL.K - (RDPLGD+RDCSND) \\
X \ast (RDLVGR.JK)
\]

The desired future availability of roads, RDDAVA, is based upon the projection of peak hour auto demand, PRPAD, and the management desired degree of road congestion, DRCONG, in peak hour autos per lane-
mile. If MDFAD is the fraction of the peak hour auto demand moving in the major direction of flow, and MDFRD is the fraction of the available roadway carrying peak hour traffic in the major direction, then:

\[A \cdot RDDAVA.K = \frac{MDFAD \cdot PRPAD.K}{MDFRD \cdot DRCONG} \]

Road Budget, Block 4. - The modeling accomplished in Block 4 consists of (1) determining the rate at which road funds are collected and received, (2) determining the rate at which road funds are committed and expended, and (3) determining the auto user tax rate.

Funds for roads are collected from two sources: receipts from users, MRURPT, and receipts from non-user sources, MNRURPT. If RFDDIVF is the fraction of MRURPT diverted for other than road uses, then the Dynamo statement defining the road fund collection rate (RFDCOLR) is:

\[R \cdot RFDCOLR.KL = MRURPT.K \cdot (1 - RFDDIVF) + MNRURPT.K \]

The time lag between collection of funds for roads and the receipt of the funds at a central point for disbursement is represented by a first order delay with an average delay time of RFDCOLD months. If RFDDUEL is the level of road funds which have been collected but not received at the central receiving point and if RFDRPTR is the rate at which collected funds are received at the central receiving point, then the appropriate Dynamo statements are:

\[L \cdot RFDDUEL.K = RFDDUEL.J + DT \cdot (RFDCOLR.JK - RFDRPTR.JK) \]
\[R \cdot RFDRPTR.KL = RFDDUEL.K / RFDCOLD \]

Road fund commitments are divided into two general categories: roadway total monthly operation and maintenance costs (RDTMOM) and road-
way total monthly capital outlay (RDTMCO)? RDTMOM is given by the sum of the products of the categories of roadway availability and the corresponding unit monthly operating and maintenance costs:

\[\text{RDTMOM}_k = \text{RD1UMOM}_k \times \text{RDAVLL1}_k + \text{RD2UMOM}_k \times \text{RDAVLL2}_k + \text{RD3UMOM}_k \times \text{RDAVLL3}_k \]

RDTMCO is determined as a function of the cost of roadway per lane mile, the amount of roadway constructed or under construction, and the capital recovery factor for roads. Cost of roadway per land mile is a function of population density. Population is modeled as a multiple of total peak hour commuters. If \(\text{POP} \) is the population of the modeled area, \(\text{PKHRCOM} \) is the total number of peak hour commuters, and \(\text{PHCPOPR} \) is the ratio of peak hour commuters to population, then:

\[\text{POP}_k = \frac{\text{PKHRCOM}_k}{\text{PHCPOPR}_k} \]

If \(\text{AREA} \) is the total land area served by the modeled network, and \(\text{POPDENS} \) is the population density, then:

\[\text{POPDENS}_k = \frac{\text{POP}_k}{\text{AREA}} \]

If the cost of roadway per lane mile in an unpopulated area is \(\text{MNCRPLM} \) and the increase in unit cost per unit increase in population density is \(\text{CRPLMRI} \) then the cost of roadway per lane mile (CRPLM) is given by:

\[\text{CRPLM}_k = \text{MNCRPLM} + \text{CRPLMRI} \times \text{POPDENS}_k \]

The monthly capital outlay for major roads is computed using the annual

* The model makes the assumption that costs associated with major roads (expressways, highways, arterials and central business district streets) are primarily supported through user tax collections (MRURPT) at the local, state and federal levels. Inclusion of non-user receipts (MNURPT) is representative of the reality that some roads in the modeled network may be supported by property taxes or other non-user sources. Inclusion of the road fund diverted fraction (RFDDIVF) allows for the diversion of user receipts to other applications such as maintaining shoulders, subsidy of mass transit, or support of rural highways.
cost method19 modified for monthly cost. If RDAVLL is the roadway available, RDCSNL is the roadway under construction, CRFR is the annual capital recovery factor for constructing roads (based on the prevailing interest rate and expected road life), then:

\begin{equation}
\text{A} \quad \text{RDTMCO}.K = (\text{RDAVLL}.K + \text{RDCSNL}.K) \times \text{CRPLM}.K \times (\text{CRFR}/12)
\end{equation}

The rate at which road funds are committed (RFDCOMR) is given by the sum:

\begin{equation}
\text{R} \quad \text{RFDCOMR}.K.L = \text{RDTMOM}.K + \text{RDTMCO}.K
\end{equation}

The amount of road funds (RFDL) which have been received at the central receiving point but which have not been committed is given by:

\begin{equation}
\text{L} \quad \text{RFDL}.K = \text{RFDL}.J + \text{DT} \times (\text{RFDRPTR}.J.K - \text{RFDCOMR}.J.K)
\end{equation}

The time lag between commitment of road funds and the expenditure of those funds is represented by a first order delay with an average delay time of RFDEXPD months. If RFDEXPR is the rate at which road funds are expended, and if RFDCMDL is the amount of funds which have been committed but not expended, then:

\begin{align*}
\text{R} & \quad \text{RFDCMDL}.K = \text{RFDCMDL}.J + \text{DT} \times (\text{RFDCOMR}.J.K - \text{RFDEXPR}.J.K) \\
\text{R} & \quad \text{RFDEXPR}.K.L = \text{RFDCMDL}.K / \text{RFDEXPD}
\end{align*}

Determination of the appropriate road user tax rate requires (1) projecting the future levels of roadway availability and roadway under construction, (2) estimating the future monthly costs of operation and maintenance and of capital outlay, (3) estimating the future monthly road revenue requirement, (4) apportioning the revenue requirement between user and non-user sources, and (5) determining the portion of the revenue requirement to be born by each auto based on the projected total automobile ownership. The planning horizon selected for use in this model is equal to the road fund collection delay, RFDCOLD.

Fig. 9.—Road Budget Block 4, Part 2
The budgetary prediction of roadway availability (RDAVBP) for the planning horizon RFDCOLD is a function of roadway availability, roadway completing rate, and roadway attrition rate:

\[
A_{RDAVBP,K} = A_{RDAVLL1,K} + RFDCOLD \cdot (RDCMGR_{JK} - RDLVGR_{1,JK}) + A_{RDAVLL2,K} + RFDCOLD \cdot (RDLVGR_{1,JK} - RDLVGR_{2,JK}) + A_{RDAVLL3,K} + RFDCOLD \cdot (RDLVGR_{2,JK} - RDLVGR_{JK}) + A_{RDAVBP,K} = A_{RDAVBP,K} + A_{RDAVBP,K} + A_{RDAVBP,K}
\]

The budgetary prediction of roadway under construction (RDCNBP) for the planning horizon RFDCOLD is determined as a function of the current roadway construction level (RDCSNL), the rate at which roadway is being constructed (RDCMGR), and the rate at which new construction is begun (RDBGGR):

\[
A_{RDCNBP,K} = A_{RDCSNL,K} + RFDCOLD \cdot (RDBGGR_{JK} - RDCMGR_{JK})
\]

The estimated monthly road operating and maintenance costs (EMRDOM) is the sum of the products of RDAViBP and RDiUMOM where \(i = 1, 2, 3 \) depending on the road age category:

\[
A_{EMRDOM,K} = A_{RD1UMOM,K} \cdot A_{RDAV1BP,K} + A_{RD2UMOM,K} \cdot A_{RDAV2BP,K} + A_{RD3UMOM,K} \cdot A_{RDAV3BP,K}
\]

The estimated monthly road capital outlay (EMRDCO) is determined in the same manner as RDTMCO except that roadway availability is replaced by RDAVBP and roadway under construction is replaced by RDCNBP:

\[
A_{EMRDCO,K} = (RDAVBP_{K} + RDCNBP_{K}) \cdot CRPLM_{K} \cdot (CRFR/12)
\]

The monthly road revenue needed (MRDREVN) is determined from the estimated monthly road capital outlay, the estimated monthly road operating and maintenance cost, and the current road fund level.

\[
A_{MRDREVN,K} = EMRDCO_{K} + EMRDOM_{K} - RFDL_{K}
\]

If RDSUBF is the fraction of roadway revenue requirements to be satisfied by other than road user taxes, then the monthly road re-
venue required from users (MRREVFU) is given by:

\[A \text{MRREVFU} . K = (1 - \text{RDSUBF}) \times \text{MRREVN} . K \]

and the monthly non-user receipts (MNURPT) is:

\[A \text{MNURPT} . K = \text{RDSUBF} \times \text{MRREVN} . K. \]

Road user taxes are represented exclusively in the model by state and federal gasoline taxes (The U.S. Department of Transportation, Highway Statistics 1970, tabulation of federal revenue from auto user taxes indicates that a total of $3,809,203,000 was collected in 1970, of which $3,611,445,000 was attributed to federal gasoline taxes.). The road tax rate per gallon (RDTXRG) is determined as a function of the monthly revenue required from users (MRREVFU), the average monthly miles per auto (AMMPA), the average miles per gallon (AMPG), the projected total auto ownership (PRTA), and the fraction of the road funds which will be diverted for other uses (RFDDIVF):

\[A \text{RDTXRG} . K = (\text{MRREVFU} . K \times \text{AMPG}) / ([\text{PKTA} . K \times \text{AMMPA}] \times (1 - \text{RFDDIVF})) \]

The monthly road user receipts for the current month (MRURPT) is modeled as a function of the road tax rate (RDTXRG), the current total auto ownership (TA), the average monthly miles per auto (AMMPA), and the average miles per gallon of gasoline (AMPG). The Dynamo statement is:

\[A \text{MRURPT} . K = \text{RDTXRG} . K \times \text{TA} . K \times (\text{AMMPA} / \text{AMPG}) \]

Auto Commuting Cost, Block 5. - The only auto commuting cost variable intrinsically determined by the model is the road tax rate per gallon (RDTXRG). All other factors contributing to the monthly auto commuting cost are represented as constants (which may of course be varied by the user of the model). Factors included in computing
the monthly auto commuting cost are: one-way commuter trips per month (COMTPM), average one-way commuting distance (COMDIS), auto maintenance cost per mile (AMIM), auto gas and oil cost per gallon of gasoline (AGSOILG), auto miles per gallon of gasoline (AMPG), auto insurance cost per mile (AINSURM), auto parking and tolls cost per mile (APKTLSM), auto capital outlay per mile (ACOPM), and auto commuters per auto (ACPA). If MAUTOC is the monthly auto commuting cost, then:

\[\text{MAUTOC.} \text{K} = (\text{COMTPM} \times \text{COMDIS}) \times (\text{AMTM} \times \frac{\text{AGSOILG}}{\text{AMPG}}) + \text{AINSURM} + \text{APKTLSM} + \text{ACOPM} + \frac{\text{RDTXRG.K}}{\text{ACPA}} \]

Auto Commuting Time, Block 6. - Auto commuting time, AUTOTM, is the peak hour auto line-haul time in minutes per mile. AUTOTM is the reciprocal of the peak hour auto speed, ASPEED. ASPEED is determined as a function of the peak hour road congestion, RCONG. If CPAD is the corrected peak hour auto demand, RDAVLL is the total lane-miles of roadway available, MDFAD is the fraction of peak hour auto demand traveling in the major direction, and MDFRD is the fraction of available roadway available for traffic traveling in the major direction, then:

\[\text{RCONG.} \text{K} = \frac{(\text{MDFAD} \times \text{CPAD})}{(\text{MDFRD} \times \text{RDAVLL.K})} \]
\[\text{ASPEED.K} = 45 - 0.375 \times \text{RCONG.K} \]
\[\text{AUTOTM.K} = 60 / \text{ASPEED.K} \]

Projected Transit Demand, Block 7. - Projected transit demand is determined by: (1) computing the rate of change in peak hour transit demand; (2) exponentially smoothing the rate of change in peak hour demand; (3) determining the smoothed rate of change in total monthly transit demand in the modeled area; (4) computing the projected peak hour transit demand; and (5) computing the projected total monthly transit demand.
Fig. 10. -- Auto Commuting Cost Block 5

Fig. 11. -- Auto Commuting Time Block 6
Fig. 12. Projected Transit Demand Block 7
In order that he may project future transit vehicle needs, the manager must be aware of changes occurring in the peak hour transit demand. If CPTD is the corrected peak hour transit demand, and FCPTD is the former corrected peak hour demand, then the change in transit demand, PTDC, is:

\[R \text{ PTDC.KL}=CPTD.K-FCPTD.K \]
\[L \text{ FCPTD.K}=FCPTD.J+D*PTDC.JK \]

In planning the number of new transit vehicles which must be ordered, management will normally attempt to perceive the underlying trend in peak hour transit demand rather than reacting only to the latest data. This attempt is represented by employing the exponential smoothing macro provided by the Dynamo language. If PTDC is the peak hour transit demand change and SMCN is the smoothing time constant, then the smoothed peak hour transit demand change, PTDCS, is given by:

\[A \text{ PTDCS.K}=S\text{MOOTH}(PTDC.JK,SMCON) \]

Then, if PTDF is the peak hour transit demand fraction of total monthly transit demand, the smoothed change in total monthly transit demand, TMTDCS, is given by:

\[A \text{ TMTDCS.K}=PTDCS.K/PTDF \]

To determine the number of new transit vehicles required, the projected peak hour transit demand, PRPTD, is determined by multiplying the smoothed change in peak hour transit demand, PTDCS, by the number of months in the planning horizon and adding this product to the corrected peak hour transit demand, CPTD. In this model, the planning horizon is taken to be the sum of the average time required to plan purchase of new transit vehicles (TVPLGD) and the average elapsed time between ordering and delivery (TVCSND). The Dynamo statement for the
projected peak hour transit demand, \(PRPTD \), is:

\[
PRPTD.K = CPTD.K + (TVPLGD+TVCSND)(PTDCS.K)
\]

In determining the appropriate transit fare, the manager must estimate the future total monthly transit demand in the modeled area. This projection is determined by multiplying the smoothed monthly change in total monthly transit demand, \(TMTDCS \), by the number of months in the planning horizon and adding this product to the current total monthly transit demand, \(TMTD \). In this model, the transit fare planning horizon is chosen to be the average time required for fare receipts to be credited to the operating account, \(TFDCOLD \). The Dynamo statement for the projected total monthly transit demand, \(PRMTD \), is:

\[
PRMTD.K = TMTD.K + TFDCOLD*TMTDCS.K
\]

Transit Vehicle Inventory, Block 8. - Block 8 represents the planning, construction, availability, and scrapping of transit vehicles. Transit vehicle planning is accomplished by comparing the projected availability of transit vehicles with the projected demand for transit vehicles. If \(TVPAVA \) is the projected availability of transit vehicles and \(TVDAVA \) is the desired availability of transit vehicles, then the rate at which new transit vehicles are planned, \(TVPLGR \), is:

\[
R TVPLGR.KL = CLIP(TVDAVA.K-TVPAVA.K,0,TVDAVA.K,TVPAVA.K)
\]

Transit vehicle construction will begin an average of \(TVPLGD \) (the transit vehicle planning delay) months after the planning decision is made. The transit vehicle ordering rate, \(TVORDER \), response to the transit vehicle planning rate input, \(TVPLGR \), is represented as a third order delay:

\[
R TVORDER.KL = DELAY3(TVPLGR.JK,TVPLGD)
\]
Fig. 13. -- Transit Vehicle Inventory Block 8
Transit vehicles will be delivered an average of TVCSND (the transit vehicle construction delay) months after ordering. The transit vehicle delivering rate, TVDLGR, response to the transit vehicle ordering rate input, TVORDER, is represented as a third order delay:

\[R_{TVDLGR, KL} = Delay3(TVORDER, JK, TVCSND) \]

The number of transit vehicles planned but not yet ordered (TVPLDL) and the number of transit vehicles ordered but not yet delivered (TVCSNL) are determined by integrating the difference between the input and output rates:

\[
L_{TVPLDL, K} = TVPLDL, J + DT*(TVPLGR, JK - TVORDER, JK) \\
L_{TVCSNL, K} = TVCSNL, J + DT*(TVORDER, JK - TVDLGR, JK)
\]

Transit vehicles will be scrapped an average of TVLIFE (the expected life of transit vehicles) months after delivery. The rate of scrapping transit vehicles, TVLVGR, response to the transit vehicle delivering rate, TVDLGR, is represented as a third order delay. In this case the model includes the explicit Dynamo statements for a third order delay rather than the macro to allow the user the opportunity to apportion the initial transit vehicle availability among (1) number of transit vehicles available in the first third of the expected vehicle life (TVAVLL1), (2) number of transit vehicles available in the second third of expected vehicle life (TVAVLL2), and (3) number of transit vehicles available in final third of expected road life (TVAVLL3). If TVLVGR1, TVLVGR2, and TVLVGR are the rates at which vehicles complete the first, second, and their segments, respectively, the expected vehicle life, then:

\[
L_{TVAVLL1, K} = TVAVLL1, J + DT*(TVDLGR, JK - TVLVGR1, JK) \\
R_{TVLVGR1, KL} = TVAVLL1, K/(TVLIFE/3) \\
L_{TVAVLL2, K} = TVAVLL2, J + DT*(TVLVGR1, JK - TVLVGR2, JK)
\]
and the total vehicles available, TVAVLL, is:

\[A \text{ TVAVLL}.K = \text{TVAVLL}.1.K + \text{TVAVLL}.2.K + \text{TVAVLL}.3.K \]

The projected availability of transit vehicles, TVPAVA, is determined in the model for a planning horizon equal to the total time required to plan and construct new transit vehicles (TVPLGD+TVCSND).

\[A \text{ TVPAVA}.K = \text{TVAVLL}.K + \text{TVCSNL}.K + \text{TVPLDL}.K - ((\text{TVPLGD} + \text{TVCSND}) \times \text{TVLVGR}.JK) \]

The desired future availability of transit vehicles, TVDAVA, is the larger of required transit vehicles (RQDTV) or minimum transit vehicles (MINTV). RQDTV is a function of projected peak hour transit demand (PRPTD) and the desired peak hour passengers per transit vehicle (DPHPPV):

\[A \text{ RQDTV}.K = \text{PRPTD}.K / \text{DPHPPV} \]
\[A \text{ TVDAVA}.K = \text{MAX}(\text{RQDTV}.K, \text{MINTV}) \]

Transit Budget, Block 9. - The modeling accomplished in Block 9 consists of (1) determining the rate at which transit funds are collected and received, (2) determining the rate at which transit funds are committed and expended, and (3) determining the transit fare.

Funds for transit are collected from two sources: receipts from users, MIURPT, and monthly transit subsidy receipts, MTSBRPT. The transit fund collection rate, TFDCOLR, is given by:

\[R \text{ TFDCOLR}.KL = \text{MIURPT}.K + \text{MTSBRPT}.K \]

The time lag between collection of funds for transit and the crediting of funds to the operating account is represented by a first order delay with an average delay time of TFDDUEL. If TFDDUEL is the level of transit funds which have been collected but not credited and...
Fig. 14.--Transit Budget, Block 9, Part 1
if TFDRPTR is the rate at which transit funds are credited, then:

\[L \text{ TFDDUEL}. K = \text{TFDDUEL}. J + DT^* \left(\text{TFDCOLR}. J K - \text{TFDRPTR}. J K \right) \]
\[R \text{ TFDRPTR}. K L = \text{TFDDUEL}. K / \text{TFDCOLD} \]

Transit fund commitments are divided into two general categories:

transit total monthly operation and maintenance costs (TTMOM) and
transit total monthly capital outlay (TTMCO). TTMOM is given by the
sum of the products of the categories of transit vehicle availability
and the corresponding unit monthly operating and maintenance costs:

\[A \text{ TTMOM}. K = (\text{TVAVLL}. K + \text{TVCSNL}. K) \times \left(\frac{(\text{CPTV} \times \text{CRFV})}{12} \right) + \]
\[X \left(\frac{(\text{FCPV} \times \text{CRFTF})}{12} \right) \]

TTMCO is determined as a function of the cost of a single trans-
mit vehicle (CPTV), the number of vehicles available (TVAVLL), the num-
ber of vehicles on order (TVCSNL), the capital recovery factor for
transit vehicles (CRFTV), the facility cost per vehicle (FCPV), and
the capital recovery factor for transit facilities (CRFTF):

\[R \text{ TFD.COMR}. K L = \text{TTMOM}. K + \text{TTMCO}. K \]

The given rate at which transit funds are committed, TFDCOMR, is
given by the sum:

The amount of transit funds (TFDL) which have been credited to
the transit account but which have not yet been committed is given by:

\[L \text{ TFDL}. K = \text{TFDL}. J + DT^* \left(\text{TFDRPTR}. K L - \text{TFDCOMR}. J K \right) \]

The time lag between commitment of transit funds and the expen-
diture of those funds is represented by a first order delay with an
average delay time of TFDEXPD months. If TFDEXPR is the rate at which
transit funds are expended, and if RFDCMDL is the amount of funds which
have been committed but not expended, then:

- L $TFDCMDL.K = TFDCMDL.J + DT^* (TFDCOMR.JK-TFDEXPR.JK)$
R $TFDEXPR.KL = TFDCMDL.K / TFDEXPD$

Determination of the appropriate transit fare requires (1) projecting the future levels of transit vehicle availability and transit vehicles on order, (2) estimating the future monthly costs of operation and maintenance and for capital outlay, (3) estimating the future transit revenue requirement, (4) determining the portion of transit revenue needs which will be subsidized, and (5) determination of the necessary transit fare. The planning horizon selected for use in this portion of the model is equal to the transit fund collection delay, $TFDCOLD$.

The budgetary prediction of transit vehicle availability ($TVAVB\) for the planning horizon $TFDCOLD$ is a function of transit vehicle availability, transit vehicle delivery rate, and transit vehicle attrition rate:

\[
A \begin{align*}
TVA\text{VBP}.K &= TVAVLL1.K + TFDCOLD^* (TVDLGR.JK-TV\text{VLG}1.JK) \\
TVA\text{VBP}.K &= TVAVLL2.K + TFDCOLD^* (TVL\text{V}1.JK-TV\text{VLG}2.JK) \\
TVA\text{VBP}.K &= TVAVLL3.K + TFDCOLD^* (TVL\text{V}2.JK-TV\text{VLG}3.JK) \\
TVA\text{VBP}.K &= TVAVBP.K + TVAVBP.K + TVAVBP.K
\end{align*}
\]

The budgetary prediction of transit vehicles on order ($TV\text{CNBP}$) is determined as a function of the current number of transit vehicles on order ($TV\text{CSN}L$), the rate at which new vehicles are being delivered ($TV\text{DLGR}$), and the rate at which new vehicles are ordered ($TV\text{ORDER}$):

A $TV\text{CNBP}.K = TV\text{CSN}L.K + TV\text{COLD}^* (TV\text{ORDER}.JK-TV\text{DLGR}.JK)$

The estimated monthly transit operating and maintenance costs ($EM\text{TOM}$) is the sum of the products of $TVA\text{VBP}$ and $TiUM\text{OM}$ where $i = 1, 2, 3$ depending on the vehicle age group:
Fig. 15.—Transit Budget, Block 9, Part 2
The estimated monthly transit capital outlay (EMTCO) is determined in the same manner as TIMCO except that vehicle availability is replaced by TVAVBP and vehicles on order is replaced by TVCNBP:

\[\text{EMTCO}_K = (\text{TVAVBP}_K + \text{TCNBP}_K) \times \left(\frac{\left(\left(\text{CPTV}_K \times \text{CRF1V}_K\right)/12\right)}{\left(\left(\text{FCPV}_K \times \text{CRFTF}_K\right)/12\right)} \right) \]

The monthly transit revenue needed (MTREVN) is determined from the estimated monthly transit capital outlay (EMTCO), the estimated monthly transit operating and maintenance cost (EMTOM), and the current transit fund level (TFDL):

\[\text{MTREVN}_K = \text{EMTCO}_K + \text{EMTOM}_K - \text{TFDL}_K \]

If TCOSBF is the fraction of the transit capital outlay supported by subsidy and if TOMSBF is the fraction of the transit operating and maintenance costs supported by subsidy, then the monthly transit subsidy receipts* (MTSBRPT) is determined by:

\[\text{MTSBRPT}_K = \text{TCOSBF}_K \times \text{EMTCO}_K + \text{TOMSBF}_K \times \text{EMTOM}_K \]

Then the monthly transit revenue required from users, MTREVFU, is given by:

\[\text{MTREVFU}_K = \text{MTREVN}_K - \text{MTSBRPT}_K \]

If PRIMTD is the projected total monthly transit demand, then the required fare, FARE, is the quotient:

\[\text{FARE}_K = \frac{\text{MTREVFU}_K}{\text{PRIMTD}_K} \]

Completing the feedback loop in this block of the model, the monthly transit user receipts (MTURPT) are now computed as the product

* The model assumes that predicted monthly transit subsidy receipts are satisfied by actual monthly transit subsidy receipts.
of the transit fare and the current total monthly transit demand (TMTD):

\[A_{\text{MTURPT}.K} = \text{FARE}.K \times \text{TMTD}.K \]

Transit Commuting Cost, Block 10. - The monthly line-haul cost of commuting by transit is determined as the product of transit fare (FARE) and one-way commuter trips per month (COMTPM). If MTRANC is the monthly transit cost, then:

\[A_{\text{MTRANC}.K} = \text{COMTPM} \times \text{FARE}.K \]

Transit Commuting Time, Block 11. - Transit commuting time is determined in two components: the transit line-haul time in minutes per mile and the accessibility of transit in the modeled area.

Transit line-haul speed is determined as a function of road congestion, RCONG. The maximum transit line-haul speed, with no road congestion, is selected to be 25 miles per hour. The Dynamo expression for transit speed, TSPEED, is programmed as a switch function so that the user may decouple the transit speed from road congestion (to simulate rapid transit conditions). If RTRAN is set to zero, transit speed is coupled with road congestion. If RTRAN is set to one, then TSPEED is the preset rapid transit speed, RTSPEED:

\[A_{\text{TSPEED}.K} = \text{SWITCH}(25 - 0.375 \times \text{RCONG}.K, \text{RTSPEED}, \text{RTRAN}) \]

The transit line-haul time (TRANTM) in minutes per mile is the reciprocal of TSPEED multiplied by 60 minutes per hour:

\[A_{\text{TRANTM}.K} = 60 / \text{TSPEED}.K \]

Transit service (TRANS) is determined as the product of the number of transit vehicles available (TAVLL) and the average daily

* This approximation is based on the form of the ASPEED equation modified to reflect slower speeds associated with transit modes which share streets with auto traffic.
Fig. 16. -- Transit Commuting Cost, Block 10

Fig. 17. -- Transit Commuting Time, Block 11
miles per transit vehicle:

A TRANS.K=TVAVLL.K*AMDPTV

The transit access time (TRACC) is inversely proportional to the transit service in bus-miles (TRANS) and directly proportional to the size of the service area (AREA). If the value selected for the transit access constant of proportionality is VTACP, then:

A TRACC.K=(VTACP*AREA)/TRANS.K

Model Feedback. - Having computed new values of auto commuting time, auto commuting cost, transit commuting time, transit commuting cost, and transit access time, the model returns to Block 1 to determine new values of auto demand and transit demand.
CHAPTER IV

VALIDATION OF THE DYNAMO MODEL, RESULTS OF SIMULATION, AND ANALYSIS OF POLICIES

This chapter describes the selection of constants and initial conditions for the model, describes model behavior under varying conditions, describes simulation experiments under varying management policies and presents an analysis of the result of the experiments.

Validation of the Model

The model was validated by (1) surveying the literature to determine appropriate values for model constants; (2) collecting available data from Orange County, Florida, for initial conditions, (3) running the model under steady state conditions, and (4) comparing the results of the steady state simulation with observed results and results which might reasonably expected when current conditions are projected over the twenty year simulation period.

Selection of Constants. - A survey of the literature was conducted to determine realistic, nominal values of all constants in the private automobile sector and the public transportation sector. The results of the literature survey are described below.

The concept of employing demand elasticity in the transportation model was taken from Free Transit. The values for the direct elasticities and cross elasticities were taken from the same
source. Given the following definitions:

\[\text{DE1} = \text{Direct elasticity relating peak hour auto demand to the change in monthly auto cost} \]

\[\text{DE2} = \text{Direct elasticity relating peak hour auto demand to the change in one-way auto commuter time} \]

\[\text{DE3} = \text{Direct elasticity relating peak hour transit demand to the change in monthly transit cost} \]

\[\text{DE4} = \text{Direct elasticity relating peak hour transit demand to the change in one-way transit commuter line-haul time} \]

\[\text{DE5} = \text{Direct elasticity relating peak hour transit demand to the change in transit access time} \]

\[\text{CE1} = \text{Cross elasticity relating peak hour auto demand to the change in monthly transit cost} \]

\[\text{CE2} = \text{Cross elasticity relating peak hour auto demand to the change in one-way transit commuter line-haul time} \]

\[\text{CE3} = \text{Cross elasticity relating peak hour transit demand to the change in monthly auto commuting cost} \]

\[\text{CE4} = \text{Cross elasticity relating peak hour transit demand to the change in one-way auto commuting time} \]

\[\text{CE5} = \text{Cross elasticity relating peak hour auto demand to the change in transit access time} \]

Then:

\[\begin{align*}
\text{C DE1} &= -0.5 \\
\text{C DE2} &= -0.8 \\
\text{C DE3} &= -0.1 \\
\text{C DE4} &= -0.4 \\
\text{C DE5} &= -0.7 \\
\text{C CE1} &= 0.1 \\
\text{C CE2} &= 0.1 \\
\text{C CE3} &= 0.1 \\
\text{C CE4} &= 0.1 \\
\text{C CE5} &= 0.1 \\
\end{align*} \]

The number of auto commuters per commuter auto (ACPA) has typically been estimated about 1.6: \(^{23}\)

\[\text{C ACPA} = 1.6 \]
The National Academy of Engineering in 1972 reprinted statistics gathered between 1959 and 1962 in five major cities indicating that the percentage of daily volume during the maximum peak hour varies between seven and 13 percent. Statistics gathered in the Orange County, Florida, area indicate an approximate equivalency between total daily traffic volume and total auto registration. Based on these data, the model assigns a value of 0.10 to P_{ADF}, the peak hour auto demand fraction of total autos:

$$C_{PADF} = 0.10$$

The National Academy of Engineering statistics also reflect that during the 1959 to 1962 period the percentage of daily transit volume in Washington, D.C., during the maximum peak hour was 16 percent of the daily volume. Based on this figure, the peak hour transit demand fraction of monthly transit demand (P_{TDF}) is estimated to be 0.006:

$$C_{PTDF} = 0.006.$$

The statistics reprinted by the National Academy of Engineering indicate that the percentage of auto traffic flow in the minor direction during the maximum rush hour varied from 36.3 percent to 42.6 percent. Thus, the fraction of auto demand traveling in the major direction (M_{DFAD}) is estimated to be 0.60:

$$C_{MDFAD} = 0.60.$$

The fraction of available roadway available for traffic traveling in the major direction is normally 0.5. This factor could be varied by management decisions to designate one-way streets:

$$C_{MDFRD} = 0.5.$$
The Highway Research Board's *Highway Capacity Manual*\(^{28}\) includes traffic speed-density relationship charts indicating that a density factor of 30 vehicles/mile/lane is a desirable design goal. To allow steady stability of the model, the desired road congestion is computed to be equal to the road congestion computed for the initial conditions:

\[N \ _{DRCONG} = RCONG. \]

Winfrey\(^{29}\) states: "Since it often takes up to 10 years with 2 to 5 years most common, to move a project from its planning stage through design, right-of-way procurements, and construction, a program of construction needs to be not less than 3 years in advance and often up to 10 years." Based on Winfrey's statement, a road planning horizon of three years has been selected for the model, with the road planning delay (RDPLGD) set to 12 months and the road construction delay (RDCSND) set to 24 months:

\[C \ _{RDPLGD} = 12 \]
\[C \ _{RDCSND} = 24 \]

Ritter and Paquette\(^{30}\) write: "The period of time to be used for the computation of annual costs for each element of (roadway) capital expenditure is a matter for decision by the agency involved. Many organizations use a time of 50 or 60 years for right-of-way costs and 40 years for costs of grading, drainage, and structures. For structures a period of 20 years is frequently used." Because the model aggregates the elements of roadway capital expenditure, a road life (RDLIFE) figure of 30 years (360 months) is used in the model:

\[C \ _{RDLIFE} = 360. \]
The road fund collection delay (RFDCOLD) and the road fund expenditure delay (RFDEXPD) were estimated to be three months each:

\[C \text{ RFDCOLD} = 3 \]
\[C \text{ RFDEXPD} = 3 \]

The ratio of peak hour commuters to total population was derived from estimated 1970 statistics gathered for Orange County, Florida. Orange County auto registration is 224,067.31 Having derived PADF = 0.10, the peak hour auto demand is 22,407. The auto commuters per auto has been approximated at 1.6. Therefore peak hour auto commuters are 35,851. Recent Orange County Transit Authority statistics indicate a daily ridership of about 7500. Using the approximation that 16 percent of the daily ridership occurs during the maximum peak hour, peak hour transit commuters are 1200 and total peak hour commuters are about 37050. The 1970 population of Orange County was 393,100.32 Thus the peak hour commuters to population ratio is 0.092:

\[C \text{ PHCPOP} = 0.092. \]

About half of the federal gas taxes paid in Florida are not applied to Florida roads.33 It is estimated that half the state four cent highway tax and one cent secondary road tax go to rural areas. It is also assumed that the three cent Florida gasoline tax for support of local streets and roads is distributed 50 percent for roads included in the modeled roadway network with the remaining 50 percent for roads and streets not modeled or for other uses.

\[C \text{ RFDDIVF} = 0.5. \]

Typical 1965 costs for roadway operation and maintenance averaged about $130 per lane-mile per month.34 The model uses this
$130 figure for roads 0 to ten years old, and increases the cost by about 25 percent for each additional ten years of road life.

- $\text{RD1UMOM} = 150$
- $\text{RD2UMOM} = 160$
- $\text{RD3UMOM} = 200$

The rate of interest attributed to roadway capital outlay has been variously figured from zero to eight percent. A figure of seven percent has been selected for use in the model. Given a road life of 30 years the capital recovery factor for roads is 0.08059. 35

- $\text{CRF} = 0.08059.$

A portion of the modeled network includes the central business district streets which generally are not supported through users taxes but rather through property taxes. That fraction of the road revenue required which is derived from other than user tax sources is termed the road subsid fraction (RDSUBF) and has been estimated at five percent:

- $\text{RDSUBF} = 0.05.$

The model assumption is that commuters travel to and from work an average of 20 times per month. That is, the one-way commuter trips per month (COMTPM) is set to 40:

- $\text{COMTPM} = 40.$

The structure of the model requires selection of an average commuting distance for the commuter choosing his transportation mode. A figure of ten miles, one way, was arbitrarily chosen.

- $\text{COMDIS} = 10.$

A 1972 study by the Federal Highway Administration 36 of the estimated average cost, in cents per mile, of operating a standard
size 1972 automobile over ten years and 100,000 miles in Baltimore suburbs served as the data base for the elements of automobile cost.

The automobile cost elements included in the model are as follows:

- AMIM: Auto-maintenance cost per mile
- AGSOILG: Average cost of gas and oil per gallon of gas
- AINSURM: Average insurance cost per mile of driving
- APKTLSM: Average parking and tolls cost per mile driven
- ACOPM: Average capital outlay per mile of driving

The values inserted for each of these constants are:

- C AMIM = 0.026
- C AGSOILG = 0.21
- C AINSURM = 0.014
- C APKTLSM = 0.018
- C ACOPM = 0.044

In order to allow experiments involving changes in AGSOILG, an initial value (AGSOILI) and a final value (AGSOILF) are specified:

- C AGSOILI = 0.21
- C AGSOILF = 0.21

Then, in subsequent runs, the value of AGSOILF may be varied. To facilitate the experiment, AGSOILG is expressed as a variable which is stepped twelve months into the simulation:

- A AGSOILG.K = AGSOILI + STEP (AGSINC.K, 12)
- A AGSINC.K = AGSOILF - AGSOILI.

A typical auto miles per gallon figure of 10 was selected and monthly miles per auto, based on 10,000 miles per year, is 833:

- C AMPG = 10
- C AMMPA = 833

The minimum level of transit service is set equal to the normal weekday service provided by the Orange County, Florida, Transit Authority, which is the service provided by 33 buses:
The desired peak hour passengers per vehicle (DPHPPV) is selected to be equal to the number of seats per transit vehicle. The new Orange County, Florida, buses seat 43.

\[\text{DPHPPV} = 43. \]

The average daily miles per transit vehicle (AMDPTV) is based on statistics from the Orange County, Florida, Transit Authority, which is 150 miles (apportioning the total mileage over the 27 routes and the 6 back-up buses).

\[\text{AMDPTV} = 150. \]

The transit vehicle planning delay (TVPLGD) is chosen to be representative of the time required to prepare specifications, solicit bids, evaluate bids, complete negotiations, and award a transit vehicle procurement contract. For standard transit vehicles, a reasonable figure for the TVPLGD is chosen to be six months:

\[\text{TVPLGD} = 6. \]

When the Orange County, Florida, Transit Authority awarded a contract for 33 new buses in December, 1972, the transit vehicle construction delay (TVCSND) was nine months:

\[\text{TVCSND} = 9. \]

Selection of an expected transit vehicle life (TVLIFE) is based on the figure selected by Domencich and Kraft, who chose a figure of 12 years (144 months). Chosing a six percent interest rate, Domencich and Kraft applied a capital recovery factor for transit vehicles (CRFTV) of 0.11928. Domencich and Kraft found that the average facility cost per transit vehicle (FCPV) is $4500. Assuming a facility
life of 40 years and an interest rate of six percent, Domencich and Kraft derived a capital recovery factor for transit facilities (CRFTF) of 0.06646:

\[
\begin{align*}
C_{TVLIFE} &= 144 \\
C_{CRFIV} &= 0.11928 \\
C_{FCPV} &= -4500 \\
C_{CRFTF} &= 0.06646
\end{align*}
\]

The Orange County, Florida, Transit Authority have paid approximately $39,000 per bus in 1973:

\[C_{CPTV} = 39000.\]

The transit fund collection delay (TFDCOLD), representing the time lag between collecting fares on the individual vehicle and crediting the collections to the transit account was selected to be the minimum delay possible with a one-month update rate; that is, one month:

\[C_{TFDCOLD} = 1.\]

The transit fund expenditure delay (TFDEXPD); that is, the average time elapsed between committing transit funds and expending transit funds, was estimated to be three months:

\[C_{TFDEXPD} = 3.\]

The 1969 monthly transit operating and maintenance cost averaged about $1500. The model assumes current costs range from $2125 to $3050 depending on the vehicle age:

\[
\begin{align*}
C_{T1MOM} &= 2125 \\
C_{T2MOM} &= 2540 \\
C_{T3MOM} &= 3050
\end{align*}
\]

Orange County, Florida, subsidizes the local transit system about six cents per passenger. Since the fare charged is thirty cents,
and since all capital outlay has been subsidized by various Government levels, the transit operation and maintenance subsidy fraction is
\[\frac{6}{36} = 0.167 \] and the transit capital outlay subsidy fraction is 1. To allow experiments involving changes in the transit operating and maintenance subsidy fraction (TOMSBF) and the transit capital outlay subsidy fraction (TCOSBF), initial and final values are provided with a switch at 12 months into the simulation:

\[
\begin{align*}
A & \quad \text{TOMSBF,}K = \text{TOMSBF} + \text{STEP (TOMSBFC,}K,12) \\
A & \quad \text{TOMSBF,} = \text{TOMSBF} - \text{TOMSBF} \\
C & \quad \text{TOMSBF} = 0.167 \\
C & \quad \text{TOMSBFF} = 0.167 \\
A & \quad \text{TCOSBF,}K = \text{TCOSBF} + \text{STEP (TCOSBF,}K,12) \\
A & \quad \text{TCOSBF,} = \text{TCOSBF} - \text{TCOSBF} \\
C & \quad \text{TCOSBF} = 1.00 \\
C & \quad \text{TCOSBFF} = 1.00 \\
\end{align*}
\]

To allow for an experiment involving express bus lanes, instituted by stepping RTRAN at month 12, the rapid transit speed (RTSPEED) is selected to be 30 miles per hour:

\[
\begin{align*}
A & \quad \text{RTRAN,}K = \text{RTRAN} + \text{STEP (RTRAN,}12) \\
C & \quad \text{RTRAN} = 0 \\
C & \quad \text{RTRANF} = 0 \\
C & \quad \text{RTSPEED} = 0 \\
\end{align*}
\]

The value of the transit access constant of proportionality (VTACP) was selected to be 53.17 so that the initial value of transit access time will be ten minutes:

\[
C \quad \text{VTACP} = 53.17.
\]

The area included in the model is 900 square miles:

\[
C \quad \text{AREA} = 900.
\]

Current projections indicated Orange County will grow by 1500 persons per month during the next ten years. We have previously determined that the ratio of peak hour commuters to total population.
is 0.091. Thus the average monthly change rate in numbers of peak hour commuters (MOMCRA) is 1500 times 0.092 = 138.

\[C \text{MOMCRA} = 138. \]

The smoothing constant chosen for use in the model is six months and the update rate of the simulation is once every month:

\[C \text{SMCON} = 6 \]
\[C \text{DT} = 1. \]

Statistics from 1963\(^{40}\) indicate that the minimum cost of roadway per lane-mile was about $125,000. The model estimates the current minimum cost at $145,000. The rate at which cost increases per unit increase in population density was assumed to be the 1963 rate, 8.33:

\[C \text{MNRPLM} = 145000 \]
\[C \text{CRPLMRI} = 8.33. \]

Selection of Initial Conditions. - Initial conditions were selected to represent current conditions in Orange County, Florida.

Major roads included in the model are defined as expressways, highways, arterials, and central business district streets. The TOPICS network includes 360 centerline miles of roadway.\(^{41}\) It is estimated that the 360 centerline miles represent about 1000 lane-miles. Because of the accelerating growth of Orange County, the age distribution of the roadway is shifted toward newer roads:

\[N \text{RDAVLL1} = 500 \]
\[N \text{RDAVLL2} = 300 \]
\[N \text{RDAVLL3} = 200. \]

The Orange County Transit Authority procured 33 new buses less than one year ago. Some old buses have been kept in the inventory for emergency uses, but for the purposes of this model are ignored. Because the total modeled transit vehicle inventory is new, the initial
The rationale behind the selection of initial values of peak hour auto demand and peak hour transit demand has been explained on another page. The values are:

\[
\begin{align*}
N_{PAD} &= 22407 \\
N_{PTD} &= 1200.
\end{align*}
\]

Because the rate of road fund commitments should always match the rate of road fund receipts, the initial value selected for the road fund level is

\[
N_{RFDL} = 0
\]

and similarly the initial value selected for the transit fund level is

\[
N_{TFDL} = 0
\]

The remainder of the required initial conditions are computed in the following manner:

\[
\begin{align*}
N_{RDPLGR} &= RDLVGR \\
N_{RDBGGR} &= RDLVGR \\
N_{RDCMGR} &= RDLVGR \\
N_{TVPLGR} &= TVLVGR \\
N_{TVORDER} &= TVLVGR \\
N_{TVDLGR} &= TVLVGR \\
N_{FAUTOTM} &= AUTOTM \\
N_{FMIRANC} &= MIRANC \\
N_{FTRANIM} &= TRANIM \\
N_{FMAUTOC} &= MAUTOC \\
N_{FTRACC} &= TRACC \\
N_{PADCS} &= 0 \\
N_{PTDCS} &= 0 \\
N_{PKHRCOM} &= PTD + PAD*ACPA \\
N_{CPAD} &= PAD \\
N_{FCPAD} &= PAD \\
N_{TA} &= PAD/PADF \\
N_{FCPTD} &= PTD \\
N_{T1MID} &= PTD/PTDF
\end{align*}
\]
N RDAVLL = RDAVLL1 + RDAVLL2 + RDAVLL3
N RDLVGR = RDAVLL3/(RDLIFE/3)
N RDPLDL = RDLVGR*RDPLGD
N RDCSNL = RDLVGR*RDCSND
N POPDENS = POP/AREA
N CRPLM = MNCRPLM + CRPLMRI*POPDENS
N RDTMCO = (RDAVLL + RDCSNL)*CRPLM*(CRFR/12)
N RDTMOM = RD1UMOM*RDAVLL1 + RD2UMOM*RDAVLL2 + RD3UMOM*
 - RAVLLL3
N RFDCOMR = RDTMOM + RDTMCO
N RFDDUEL = RFDCOMR*RFDCOLD
N RFDCMDL = RFDCOMR*RFDEXPD
N MRDREVN = RDTMCO + RDTMOM
N MRREVFU = (1-RDSUBF)*MRDREVN
N RDTXRG = (MRREVFU*AMPG)/(TA*AMMPA)*(1-RFDDIVF))
N RCONG = (MDFAD*CPAD)/(MDFRD*RDAVLL)
N ASPEED = 45 - 0.375*RCONG
N TVAVLL = TVAVLL1 + TVAVLL2 + TVAVLL3
N TVLVGR = TVAVLL3/(TVLIFE/3)
N TVPLDL = TVLVGR*TVPLGD
N TVCSNL = TVLVGR*TVCSND
N TTMOM = T1UMOM*TVAVLL1 + T2UMOM*TVAVLL2 + T3UMOM*TVAVLL3
N TFDCOMR = TTMOM + TTMCO
N TFDDUEL = TFDCOMR*TFDCOLD
N TFDCMDL = TFDCOMR*TFDEXPD
N MTREVN = TTMCO + TTMOM
N MSBRPT = TCOBF*TTMCO + TOMSBF*TTMOM
N MRREVFU = MRREVN - MSBRPT
N FARE = MRREVFU/TIMD
N TSPEED = SWITH(25 - 0.375*RCONG, RTSPEED, RTRAN)
N TRANS = TVAVLL*AMDPTV
N TTMCO = (TVAVLL + TVCSNL)*(((CPTV*CRFTV)/12) + ((FCPV*
 - CRFTV))/12))
N MAUTOC = (COMTPM*COMDIS)*(AMTM + (AGSOILG/AMPG) + AINSURM +
X APKLSM + ACOPM + (RDTXRG/AMPG))/ACPA
N AUTOIM = 60/ASPEED
N MTRANC = COMTPM*FARE
N TRANIM = 60/TSPEED
N TRACC = (VTACP*AREA)/TRANS.

Steady State Experiment. - The model was run initially under
"steady state" conditions. That is, population was held steady at the
1970 level and gasoline prices were held constant at the 1972 level.

Not constant, however, was the age distribution of the roads
and transit vehicles. Initially, these age distributions were skewed
toward newer facilities. During the twenty year (240 month) simulation
the age distributions became more even causing increasing maintenance costs and increasing user costs. The effects of the shifting age distributions were more pronounced in the transit sector where, initially, all vehicles were new. The required transit fare increased from an initial 29.326 cents to a high of 36.929 cents. The tax rate per gallon of gasoline during the same period increased from 12.135 cents to a high of 12.460 cents. Thus an overall gain in the desirability of auto commuting occurred with the fraction of commuters using the transit system declining from 3.2388 percent to 3.0829 percent.

During the preparation period of this thesis (1972-1974) a significant change in the price of gasoline occurred. In 1972 the price of gasoline (less taxes) was about 21 cents per gallon. By early 1974 that price had increased to about 40 cents per gallon with minimal impact on the private auto/transit commuter split. A simulation run duplicating this shift in gasoline price resulted in an initial increase in the percent commuters using transit during peak hour from 3.2388 percent to 3.4891 percent two years after the price increase, then a gradual loss of passengers as the balance settled around 3.378 percent for transit commuting.

Results of Simulation

Simulation experiments were run to investigate the effects of changes in transit subsidy policies, the impact of decoupling transit vehicle movement from road congestion, and the effects of increasing gasoline prices. Because the effects caused by the rapid increase in
Orange County, Florida, tend to obscure the effects of policy changes, experiments were run under both steady-state population and increasing population conditions.

Steady-State Population, Increased Transit Subsidy. - The capital outlay to purchase the initial 33 vehicles included in the model of Orange County was totally subsidized. This experiment assumes a continuation of the policy of total subsidy of transit capital outlay. The existing level of subsidizing transit operation and maintenance is about 16.7 percent. In this experiment the operation and maintenance subsidy is increased to 50 percent. As a result the required transit fare was reduced to 18.815 cents. The percent of peak hour commuters using transit increased from 3.2388 percent to 4.1439 percent three years later then settled to about 3.626 percent.

Steady-State Population, Current Subsidy Levels, and Express Bus Lanes. - This experiment assumes present subsidy levels are continued (100 percent of capital outlay and 16.7 percent of operation and maintenance) and investigates the effects of decoupling transit vehicles from auto congestion (as by providing exclusive express transit traffic lanes). A transit speed of 30 miles per hour was assumed for this test, a substantial increase over the average speed of 12.135 miles per hour for transit vehicles sharing the roadways with autos. Under these conditions, the demand for new transit vehicles increased. The increased numbers of vehicles allowed for improved service which in turn increased demand. The results are illustrated in Figure 18. The fraction of commuters using transit during peak hour increased from 3.2388 percent to a high of 13.539 percent, then
settled at about 11.5 percent.

Steady-State Population, Current Subsidy Levels, Dollar Gasoline. - This experiment investigates the effects of gasoline prices continuing to rise to ninety cents (over a dollar when taxes are included in the price). A steady-state population is assumed and a continuation of transit subsidies at present levels. The price increase was modeled as a step increase occurring twelve months into the simulation. The percent of peak hour commuters using transit increased from an initial 3.2388 percent to a high of 5.9121 percent sixty months into the simulation, then settled to about 4.65 percent. See Figure 19.
<table>
<thead>
<tr>
<th>C</th>
<th>AGSOILP=0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAUTOC</td>
<td>TRANTM</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 19.--Steady-State Population, Current Subsidy Levels, Dollar Gasoline

Steady-State Population, No Transit Subsidies. - The next group of experiments assume discontinuation of the existing levels of subsidizing transit capital outlay and operation and maintenance. In this experiment, with steady-state population conditions, and with all subsidies ended twelve months into the simulation, the required transit fare increased from 29.326 cents to a high of 55.537 cents, then settled to a fare of about 55.46 cents. The resultant decrease in transit desirability was reflected by a decrease in the percent of peak hour
commuters using the transit system from 3.2388 percent to about 2.88 percent.

Steady-State Population, No Transit Subsidies, Forty Cent Gasoline. - Because the basic automobile operating costs included in this model were significantly affected by the events of late 1973 and early 1974, the no transit subsidies experiment was rerun under current conditions of gasoline costing forty cents per gallon plus tax. Under these conditions the auto/transit split becomes more stable when transit subsidies are removed. Transit fare increased from an initial 29.326 cents to a high of 50.799 cents and a final 50.743 cents. The percent of peak hour commuters using the transit system declined from an initial 3.2388 percent to a final 3.1482 percent.

Steady-State Population, No Transit Subsidy, Dollar Gasoline. - The experiment in which gasoline prices were increased to over a dollar (with taxes included) was repeated to observe the interaction of the gasoline price increase with an ending of transit subsidies. The monthly cost of transit commuting increased from about 12 dollars to about 17 dollars while the monthly cost of auto commuting increased from about 35 dollars per month to over 50 dollars per month. Transit fare increased from 29.326 cents to a high of 43.704 cents and a final price of 42.769 cents. The percent of peak hour commuters selecting transit increased from 3.2388 percent to 3.7340 percent. Results are illustrated in Figure 20.

The experiment in which the effects of decoupling transit vehicles from auto congestion were investigated was repeated under the discontinued subsidy conditions. A transit speed of 30 miles per hour was assumed for the test. The increase in transit desireability caused a demand for additional transit vehicles which, in turn, allows for improved transit service. However, in this case, the users must pay for the new transit vehicles. Transit fare increases from 29.326 cents
to a high of 44.124 when the switchover occurs, and a final cost of 41.678 cents. The percent of commuters using transit increases to a high of 11.452 percent and a final 9.576 percent. See Figure 21.

<table>
<thead>
<tr>
<th>C 'TOMSBFF=0</th>
<th>C 'TCOSBF=0</th>
<th>C 'RTRANF=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTRANC</td>
<td>TRANTM</td>
<td>TRACF</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fig. 21.--Steady-State Population, No Transit Subsidies, Express Bus Lanes

Increasing Population, No Transit Subsidy. - In this experiment, and all succeeding experiments, the effects of the Orange County population continuing to increase at the present rate are included. It is estimated that 138 new peak hour commuters enter the system every month. An increased demand on both the roadway system and the transit system causes a requirement for increased roadway and transit vehicles. Roadway becomes increasingly expensive while transit service is reaching an increasing number of potential patrons. A significant shift toward transit commuting occurs without continuing transit
subsidies. Transit fare initially increases to 44.464 cents, then settles to 40.338 cents. The percent of commuters using transit climbs to 10.123. See Figure 22.

C TOSBFF=0 C MCMCRA=138

<table>
<thead>
<tr>
<th>MTRANC</th>
<th>TRACC</th>
<th>TRANF</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fig. 22.--Population Increasing, No Transit Subsidies

Increasing Population, No Transit Subsidy, Express Bus Lanes.

The experiment in which transit vehicle movement was decoupled from auto traffic was repeated under the conditions of no transit subsidies and increasing population. Introduction of express bus lanes re-enforces the strong tendency toward use of transit of the population density increases. The percent of peak hour commuters selecting the transit system increases from an initial 3.2388 percent to an impressive 27.738 percent. See Figure 23.
Increasing Population, Continuing Transit Subsidies. - In this experiment the combination of circumstances investigated included (1) population increasing so that 138 new peak hour commuters enter the system each month and (2) the present level of subsidizing transit capital outlay and transit operation and maintenance is continued. Under these conditions, transit fare decreases slightly from 29.326 cents to a low of 27.230 cents and a final 28.439 cents. More significant is the increased level of transit service brought on by the increasing transit demand caused by the growing population. The percent of peak hour commuters selecting the transit system increases.
from 3.2388 percent to 12.174 percent in twenty years. See Figure 24.

<table>
<thead>
<tr>
<th>MTRANC</th>
<th>TRANTM</th>
<th>TRAFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fig. 24.--Population Increasing, Current Subsidy Levels

Increasing Population, Continuing Transit Subsidies, Express Bus Lanes. - In the final experiment, the interactions of the following conditions were examined: (1) increasing population, (2) continuing transit subsidy levels, and (3) introduction of express bus lanes. Under these conditions, the transit fare held about steady (initially 29.326, finally 28.923 cents). The percent of peak hour commuters using the transit system increased to 34.794 percent. See Figure 25.
Analysis of Policies

Experiments investigate various combinations of varying transit subsidy policies, increasing gasoline cost, and introduction of express bus lanes under steady-state and increasing population conditions.

It was found that continuing current policies under a steady state population condition would result in a decrease in transit use from 3.2388 percent to 3.0829 percent. However if current gasoline price increases are included in the model then transit ridership increases from 3.2388 percent to about 3.49 percent. Discontinuing present subsidy levels under steady state population conditions resulted
in transit ridership declining to 2.88 percent, or, if gas price increases are considered, to 3.1482 percent. An increase in the transit subsidy rate under steady-state population conditions resulted in transit demand increasing to 3.626 percent. It was concluded that the level of transit subsidy was not highly significant in determining the split between auto and transit demand, a finding supporting the findings of Domenich and Kraft. 42

The effects of a continuing increase in the price of gasoline was examined under steady-state population conditions. If current transit subsidy policies are continued and gasoline prices increase to a dollar per gallon (including taxes), the percent of commuters selecting the transit system increases to about 4.65 percent. If current transit subsidies are discontinued while gasoline goes to a dollar a gallon, the percent of commuters who will select transit will be 3.7340 percent. Clearly, a continuation of the increasing price for gasoline is not, in itself, an important method of significantly increasing transit demand.

Decoupling transit movement from auto traffic by introducing express bus lanes did significantly effect the demand split. Under steady-state population conditions, the transit demand percentage increased to about 11.5 percent if current subsidy policies were continued or 9.576 percent if subsidies were discontinued.

Of particular interest among the simulation results was the effect of continuing the rapid population increase of Orange County. With no change from current transit policies the percent demand for transit commuting began to increase ten years into the simulation rising
to 12.174 percent after twenty years. This increase is attributed in part to the increasing cost of new roadway as the population density increases but more to the increased capacity for transit systems to serve more densely populated areas. Even if current transit subsidies are discontinued, the percent of commuters choosing the transit system is 10.123 after twenty years of continuing population increases.

Finally, the policy of providing express bus lanes was examined under conditions of increasing population. The dramatic results were that, with existing subsidy policies, the percent of peak hour commuters using the transit system rose to 34.794 percent after twenty years. If subsidies were discontinued, the percentage after twenty years was 27.738.
CHAPTER V

CONCLUSIONS AND IMPLICATIONS

Conclusions

The results of this study indicate that the application of System Dynamics techniques can provide a valuable new tool to urban planners seeking to understand the organization of the urban transportation system and to evaluate proposals for improving urban transportation. While the results may not be precise quantitatively, in general the effects of various policies may be clearly evaluated. Application of the techniques provides a more systematic, scientific approach to the urban transportation policies problem than has hitherto been available.

Implications for Orange County Urban Planners

The experiments conducted indicate that increasing the subsidy for the Orange County transit system, or even continuing the present subsidy policies, is of marginal value. Nor will increasing the cost of the auto commuter, either through an increasing gasoline price or other means such as increasing gasoline taxes, have a significant effect on the auto/transit commuter split. Orange County urban planners might expect far greater success if the emphasis is placed on introducing express bus lanes into the Orange County transit system. Beyond that innovation, of the conditions tested, the most significant
is the continuing growth of the area which, in itself, can be expected to assure the success of any competently operated transit system in the area.

Implications for Further Research

The data base included in this model was drawn primarily from published data, not always current, and not always appropriate to the area modeled. An important next step to the development of the model is to investigate the sensitivity of each constant. Those constants found to be significantly sensitive will merit further investigation to provide values appropriate to the time and place of the simulation.

The capacity of the model for expansion is virtually limitless. Detailed improvements demanding further study include: (1) developing the necessary elasticity constants so that changes in transit comfort can be modeled; (2) developing a variable car pool equation to replace the auto commuters per auto constant; (3) developing an auto usage equation to replace the average monthly miles per auto constant; (4) modifying the model to include the effect of increasing gasoline costs on transit operating costs; (5) accounting for the cost of express bus lanes to either transit users or auto users; and (6) developing an integer mathematics for Dynamo so that transit vehicles can be modeled in integers rather than in fractions as they are in this simulation.

On a grander scale, the possibility exists of interfacing this model with Forrester's Urban Dynamics model to represent: (1) the relationship of the community's urban transportation system to the
overall desirability of the community; (2) the effect of urban transportation on population, housing and industry; and (3) the competition of urban transportation with others demanding use of available land.
APPENDIX I

TABLE OF DEFINITIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOPM</td>
<td>AUTO CAPITAL OUTLAY PER MILE</td>
</tr>
<tr>
<td>ACPA</td>
<td>AUTO COMMUTERS PER AUTO</td>
</tr>
<tr>
<td>ADCHING1</td>
<td>CHANGE IN AUTO DEMAND DUE TO AUTO COST CHANGE</td>
</tr>
<tr>
<td>ADCHING2</td>
<td>CHANGE IN AUTO DEMAND DUE TO AUTO COMMUTING TIME CHANGE</td>
</tr>
<tr>
<td>ADCHING3</td>
<td>CHANGE IN AUTO DEMAND DUE TO TRANSIT COST CHANGE</td>
</tr>
<tr>
<td>ADCHING4</td>
<td>CHANGE IN AUTO DEMAND DUE TO TRANSIT COMMUTING TIME CHANGE</td>
</tr>
<tr>
<td>ADCHING5</td>
<td>CHANGE IN AUTO DEMAND DUE TO CHANGE IN TRANSIT ACCESSIBILITY</td>
</tr>
<tr>
<td>AGSTNC</td>
<td>INCREASE IN COST OF GASOLINE AND OIL</td>
</tr>
<tr>
<td>AGSOILF</td>
<td>FINAL COST OF GASOLINE AND OIL</td>
</tr>
<tr>
<td>AGSOILG</td>
<td>COST OF GASOLINE AND OIL PER GALLON OF GASOLINE (EXCLUSIVE OF TAXES)</td>
</tr>
<tr>
<td>AGSOILI</td>
<td>INITIAL COST OF GASOLINE AND OIL</td>
</tr>
<tr>
<td>AINSURM</td>
<td>AUTO INSURANCE COST PER MILE</td>
</tr>
<tr>
<td>AMMPA</td>
<td>AVERAGE MONTHLY MILES PER AUTO (ALL USES)</td>
</tr>
<tr>
<td>AMDPTV</td>
<td>AVERAGE MILES PER DAY PER TRANSIT VEHICLE</td>
</tr>
<tr>
<td>AMPG</td>
<td>AVERAGE MILES PER GALLON OF GASOLINE</td>
</tr>
<tr>
<td>ATM</td>
<td>AVERAGE AUTO MAINTENANCE COST PER MILE</td>
</tr>
<tr>
<td>APKTLSM</td>
<td>AUTO PARKING AND TOLLS COST PER MILE DRIVEN</td>
</tr>
<tr>
<td>AREA</td>
<td>LAND AREA MODELED</td>
</tr>
<tr>
<td>ASPEED</td>
<td>AVERAGE PEAK HOUR AUTO SPEED</td>
</tr>
<tr>
<td>AUTOF</td>
<td>FRACTION OF PEAK HOUR COMMUTERS USING AUTOS</td>
</tr>
</tbody>
</table>
AUTOTM AVERAGE AUTO TIME PER MILE DURING PEAK HOUR
AUTOTMC CHANGE IN AUTO TIME PER MILE DURING PEAK HOUR
CE1 CROSS ELASTICITY BETWEEN PEAK HOUR AUTO DEMAND AND MONTHLY TRANSIT COST
CE2 CROSS ELASTICITY BETWEEN PEAK HOUR AUTO DEMAND AND TRANSIT TIME PER MILE DURING PEAK HOUR
CE3 CROSS ELASTICITY BETWEEN PEAK HOUR TRANSIT DEMAND AND MONTHLY TRANSIT COST
CE4 CROSS ELASTICITY BETWEEN PEAK HOUR TRANSIT DEMAND AND AUTO TIME PER MILE DURING PEAK HOUR
CE5 CROSS ELASTICITY BETWEEN PEAK HOUR AUTO DEMAND AND TRANSIT ACCESSIBILITY
COMDIS AVERAGE ONE-WAY COMMUTING DISTANCE
COMTPM ONE-WAY COMMUTER TRIPS PER MONTH
CPAC PEAK HOUR AUTO COMMUTERS, CORRECTED FOR POPULATION CHANGE
CPAD PEAK HOUR AUTO DEMAND, CORRECTED FOR POPULATION CHANGE
CPTD PEAK HOUR TRANSIT DEMAND, CORRECTED FOR POPULATION CHANGE
CPIV COST PER TRANSIT VEHICLE
CRFR CAPITAL RECOVERY FACTOR FOR ROADS
CRFTF CAPITAL RECOVERY FACTOR FOR TRANSIT FACILITIES
CRFTV CAPITAL RECOVERY FACTOR FOR TRANSIT VEHICLES
CRPLM COST OF ROADWAY PER LANE MILE
CRPLMRI COST OF ROADWAY PER LANE MILE RATE OF INCREASE WITH INCREASING POPULATION DENSITY
DE1 DIRECT ELASTICITY BETWEEN PEAK HOUR AUTO DEMAND AND MONTHLY AUTO COST
DE2 DIRECT ELASTICITY BETWEEN PEAK HOUR AUTO DEMAND AND AUTO TIME PER MILE DURING PEAK HOUR
DE3 DIRECT ELASTICITY BETWEEN PEAK HOUR TRANSIT DEMAND AND MONTHLY TRANSIT COST
DE4 DIRECT ELASTICITY BETWEEN PEAK HOUR TRANSIT DEMAND AND TRANSIT TIME PER MILE DURING PEAK HOUR

DE5 DIRECT ELASTICITY BETWEEN PEAK HOUR TRANSIT DEMAND AND TRANSIT ACCESSIBILITY

DPPHV DESIRED PEAK HOUR PASSENGERS PER TRANSIT VEHICLE

DRCONG DESIRED ROAD CONGESTION FACTOR, AUTOS PER LANE MILE

EMRDCO ESTIMATED MONTHLY ROAD CAPITAL OUTLAY

EMRDOM ESTIMATED MONTHLY ROAD OPERATION AND MAINTENANCE COST

EMTICO ESTIMATED MONTHLY TRANSIT CAPITAL OUTLAY

EMTDOM ESTIMATED MONTHLY TRANSIT OPERATION AND MAINTENANCE COST

FARE REQUIRED ONE-WAY TRANSIT FARE

FAUTETM FORMER AUTO TIME PER MILE DURING PEAK HOUR

FCPAD FORMER CORRECTED PEAK HOUR AUTO DEMAND

FCPTD FORMER CORRECTED PEAK HOUR TRANSIT DEMAND

FCPV FACILITY COST PER TRANSIT VEHICLE

EMAUTOC FORMER MONTHLY AUTO COST

MAUTOCC CHANGE IN MONTHLY AUTO COST PER COMMUTING

MCMCRA AVERAGE MONTHLY CHANGE RATE IN NUMBERS OF PEAK HOUR COMMUTERS

MCMOCR MONTHLY CHANGE RATE IN NUMBERS OF PEAK HOUR COMMUTERS

MDFAD FRACTION OF AUTO DEMAND TRAVELING IN MAJOR DIRECTION

MDFRD FRACTION OF ROADWAY AVAILABLE FOR TRAFFIC TRAVELING IN MAJOR DIRECTION

MNCRPLM MINIMUM COST OF ROADWAY PER LANE MILE

MNURRPT MONTHLY NON-ROAD-USER RECEIPTS INTO ROAD RUNDS

MIINTV NUMBER OF TRANSIT VEHICLES REQUIRED TO SUSTAIN MINIMUM DESIRED SERVICE
MONTHLY ROAD REVENUE NEEDED
MONTHLY ROAD REVENUE TO BE PROVIDED BY USERS
MONTHLY ROAD USER TAX RECEIPTS
MONTHLY TRANSIT COST OF COMMUTING
CHANGE IN MONTHLY COST OF COMMUTING BY TRANSIT
MONTHLY TRANSIT REVENUE TO BE PROVIDED BY USERS
MONTHLY TRANSIT REVENUE NEEDED
MONTHLY TRANSIT SUBSIDY RECEIPTS
MONTHLY TRANSIT RECEIPTS FROM USERS
PEAK HOUR AUTO COMMUTERS
PEAK HOUR AUTO DEMAND
CHANGE IN PEAK HOUR AUTO DEMAND
SMOOTHED CHANGE IN PEAK HOUR AUTO DEMAND
PEAK HOUR AUTO DEMAND FRACTION OF TOTAL AUTOS
RATIO OF PEAK HOUR COMMUTERS TO TOTAL POPULATION
FRACTION OF PEAK HOUR COMMUTERS USING AUTOS
TOTAL PEAK HOUR COMMUTERS
FRACTION OF PEAK HOUR COMMUTERS USING TRANSIT
POPULATION OF THE MODELED AREA
POPULATION DENSITY OF THE MODELED AREA
PROJECTED PEAK HOUR AUTO DEMAND
PROJECTED PEAK HOUR TRANSIT DEMAND
PROJECTED TOTAL AUTOS IN MODELED AREA
PROJECTED TOTAL MONTHLY TRANSIT DEMAND
PEAK HOUR TRANSIT DEMAND
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTDC</td>
<td>Change in peak hour transit demand</td>
</tr>
<tr>
<td>PTDCS</td>
<td>Smoothed change in peak hour transit demand</td>
</tr>
<tr>
<td>PTDF</td>
<td>Peak hour transit demand fraction of monthly demand</td>
</tr>
<tr>
<td>RCONG</td>
<td>Road congestion factor</td>
</tr>
<tr>
<td>RDAVBP</td>
<td>Budgetary prediction of total roadway availability</td>
</tr>
<tr>
<td>RDAV1BP</td>
<td>Budgetary prediction of available roadway, first third of expected life</td>
</tr>
<tr>
<td>RDAV2BP</td>
<td>Budgetary prediction of available roadway, second third of expected life</td>
</tr>
<tr>
<td>RDAV3BP</td>
<td>Budgetary prediction of available roadway, final third of expected life</td>
</tr>
<tr>
<td>RDAVLL</td>
<td>Lane miles of roadway available, total</td>
</tr>
<tr>
<td>RDAVLL1</td>
<td>Lane miles of roadway available, first third of expected life</td>
</tr>
<tr>
<td>RDAVLL2</td>
<td>Lane miles of roadway available, second third of expected life</td>
</tr>
<tr>
<td>RDAVLL3</td>
<td>Lane miles of roadway available, final third of expected life</td>
</tr>
<tr>
<td>RDBGGR</td>
<td>Rate at which road construction is begun</td>
</tr>
<tr>
<td>RDCMGR</td>
<td>Rate at which road construction is completed</td>
</tr>
<tr>
<td>RDCNBP</td>
<td>Budgetary prediction of roadway to be under construction</td>
</tr>
<tr>
<td>RDCSNL</td>
<td>Road construction delay</td>
</tr>
<tr>
<td>RDDAVA</td>
<td>Desired roadway availability in lane miles</td>
</tr>
<tr>
<td>RDLIFE</td>
<td>Expected road life in months</td>
</tr>
<tr>
<td>RDLVGR</td>
<td>Road attrition rate, completing final third of expected life</td>
</tr>
<tr>
<td>RDLVGR1</td>
<td>Road attrition rate, completing first third of expected life</td>
</tr>
<tr>
<td>RDLVGR2</td>
<td>Road attrition rate, completing second third of expected life</td>
</tr>
<tr>
<td>RDPAVA</td>
<td>Projected lane miles of roadway available</td>
</tr>
</tbody>
</table>
RDPDL LANE MILES OF NEW ROADWAY PLANNED
RDPDLD ROAD PLANNING DELAY
RDPDLR RATE AT WHICH NEW ROADS ARE BEING PLANNED
RDSUBF FRACTION OF ROADWAY REVENUE NEEDS SATISFIED BY OTHER THAN USER TAXES
RDTMCO TOTAL MONTHLY CAPITAL OUTLAY FOR ROADS
RDTMOM TOTAL MONTHLY OPERATION AND MAINTENANCE COSTS FOR ROADS
RDTXRG TOTAL ROAD USER TAX RATE PER GALLON OF GASOLINE (ALL GOVERNMENT LEVELS)
RDTUMOM UNIT OPERATING AND MAINTENANCE COSTS PER LANE MILE FOR ROADS IN FIRST THIRD OF EXPECTED LIFE
RDTUOMOM UNIT OPERATING AND MAINTENANCE COSTS PER LANE MILE FOR ROADS IN SECOND THIRD OF EXPECTED LIFE
RDTUMOM UNIT OPERATING AND MAINTENANCE COSTS PER LANE MILE FOR ROADS IN FINAL THIRD OF EXPECTED LIFE
RFDCMDL LEVEL OF ROAD FUNDS COMMITTED
RFDCOLD ROAD FUND COLLECTION DELAY
RFDCOLR ROAD FUND COLLECTION RATE
RFDCOMR RATE AT WHICH ROAD FUNDS ARE BEING COMMITTED
RFDDIVF FRACTION OF ROAD FUNDS DIVERTED FROM ROAD USES
RFDDUEL LEVEL OF ROAD FUNDS WHICH HAVE BEEN COLLECTED FROM USERS BUT HAVE NOT BEEN CENTRALLY RECEIVED
RFDEXPD DELAY BETWEEN COMMITMENT OF ROAD FUNDS AND EXPENDITURE OF THOSE FUNDS
RFDEXPR RATE AT WHICH FUNDS ARE EXPENDED
RFDL LEVEL OF ROAD FUNDS RECEIVED BUT NOT COMMITTED
RFDRPTR ROAD FUND RECEIPT RATE
RQTV TRANSIT VEHICLES REQUIRED
RTRAN RAPID TRANSIT DESIGNATOR
RTRANF FINAL RAPID TRANSIT DESIGNATOR
RTRANI INITIAL RAPID TRANSIT DESIGNATOR
RTSPEED RAPID TRANSIT SPEED
SMCON SMOOTHING CONSTANT
TA TOTAL AUTOS IN MODELED AREA
TACS SMOOTHED MONTHLY CHANGE IN TOTAL AUTOS
TCOSBF TRANSIT CAPITAL OUTLAY SUBSIDY FRACTION
TCOSBFC CHANGE IN CAPITAL OUTLAY SUBSIDY FRACTION
TCOSBF F FINAL TRANSIT CAPITAL OUTLAY SUBSIDY FRACTION
TCOSBFI INITIAL TRANSIT CAPITAL OUTLAY SUBSIDY FRACTION
TDCHNG1 CHANGE IN TRANSIT DEMAND DUE TO TRANSIT COST CHANGE
TDCHNG2 CHANGE IN TRANSIT DEMAND DUE TO TRANSIT PEAK HOUR COMMUTING TIME CHANGE
TDCHNG3 CHANGE IN TRANSIT DEMAND DUE TO AUTO COST CHANGE
TDCHNG4 CHANGE IN TRANSIT DEMAND DUE TO PEAK HOUR AUTO COMMUTING TIME CHANGE
TDCHNG5 CHANGE IN TRANSIT DEMAND DUE TO CHANGE IN TRANSIT ACCESSIBILITY
TFDCMDL LEVEL OF TRANSIT FUNDS COMMITTED
TFDCOLD TRANSIT FUND COLLECTION DELAY
TFDCLR TRANSIT FUND COLLECTION RATE
TFDCMR RATE AT WHICH TRANSIT FUNDS ARE COMMITTED
TFDDUEL LEVEL OF TRANSIT FUNDS WHICH HAVE BEEN COLLECTED BUT HAVE NOT BEEN RECEIVED CENTRALLY INTO THE TRANSIT FUND ACCOUNT
TFDEXPD DELAY BETWEEN COMMITMENT OF TRANSIT FUNDS AND EXPENDITURE OF THOSE FUNDS
TFDEXPR RATE AT WHICH TRANSIT FUNDS ARE EXPENDED
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFDL</td>
<td>LEVEL OF TRANSIT FUNDS RECEIVED BUT NOT COMMITTED</td>
</tr>
<tr>
<td>TFDPRTR</td>
<td>TRANSIT FUND RECEIPT RATE</td>
</tr>
<tr>
<td>TMD</td>
<td>TOTAL MONTHLY TRANSIT DEMAND</td>
</tr>
<tr>
<td>TMDDCS</td>
<td>SMOOTHED CHANGE IN TOTAL MONTHLY TRANSIT DEMAND</td>
</tr>
<tr>
<td>TOMSEBF</td>
<td>TRANSIT OPERATING AND MAINTENANCE SUBSIDY FRACTION</td>
</tr>
<tr>
<td>TOMSEBFC</td>
<td>CHANGE IN TRANSIT OPERATING AND MAINTENANCE SUBSIDY FRACTION</td>
</tr>
<tr>
<td>TOMSEBFIF</td>
<td>FINAL TRANSIT OPERATING AND MAINTENANCE SUBSIDY FRACTION</td>
</tr>
<tr>
<td>TOMSEBFII</td>
<td>INITIAL TRANSIT OPERATING AND MAINTENANCE SUBSIDY FRACTION</td>
</tr>
<tr>
<td>TOTPHD</td>
<td>TOTAL PEAK HOUR COMMUTER DEMAND</td>
</tr>
<tr>
<td>TRACC</td>
<td>TRANSIT ACCESSIBILITY</td>
</tr>
<tr>
<td>TRACCC</td>
<td>CHANGE IN TRANSIT ACCESSIBILITY</td>
</tr>
<tr>
<td>TRANF</td>
<td>FRACTION OF PEAK HOUR COMMUTERS CHOOSING TRANSIT</td>
</tr>
<tr>
<td>TRANS</td>
<td>TRANSIT SERVICE IN LINE MILES</td>
</tr>
<tr>
<td>TRANIM</td>
<td>TRANSIT TIME PER MILE DURING PEAK HOUR</td>
</tr>
<tr>
<td>TRANTRMC</td>
<td>CHANGE IN TRANSIT TIME PER MILE DURING PEAK HOUR</td>
</tr>
<tr>
<td>TSPED</td>
<td>AVERAGE PEAK HOUR TRANSIT SPEED</td>
</tr>
<tr>
<td>TTMCO</td>
<td>TRANSIT TOTAL MONTHLY CAPITAL OUTLAY</td>
</tr>
<tr>
<td>TIMOM</td>
<td>TRANSIT TOTAL MONTHLY OPERATING AND MAINTENANCE COSTS</td>
</tr>
<tr>
<td>T1UMOM</td>
<td>TRANSIT UNIT MONTHLY OPERATING AND MAINTENANCE COSTS FOR VEHICLES IN FIRST THIRD OF EXPECTED LIFE</td>
</tr>
<tr>
<td>T2UMOM</td>
<td>TRANSIT UNIT MONTHLY OPERATING AND MAINTENANCE COSTS FOR VEHICLES IN SECOND THIRD OF EXPECTED LIFE</td>
</tr>
<tr>
<td>T3UMOM</td>
<td>TRANSIT UNIT MONTHLY OPERATING AND MAINTENANCE COSTS FOR VEHICLES IN FINAL THIRD OF EXPECTED LIFE</td>
</tr>
<tr>
<td>TVAVBP</td>
<td>BUDGETARY PREDICTION OF TOTAL TRANSIT VEHICLE AVAILABILITY</td>
</tr>
<tr>
<td>TVAV1BP</td>
<td>BUDGETARY PREDICTION OF TRANSIT VEHICLE AVAILABILITY, FIRST THIRD OF EXPECTED LIFE</td>
</tr>
</tbody>
</table>
TVAV2BP BUDGETARY PREDICTION OF TRANSIT VEHICLE AVAILABILITY, SECOND THIRD OF EXPECTED LIFE
TVAVLL TOTAL TRANSIT VEHICLE AVAILABILITY
TVAVLL1 TRANSIT VEHICLE AVAILABILITY, FIRST THIRD OF EXPECTED LIFE
TVAVLL2 TRANSIT VEHICLE AVAILABILITY, SECOND THIRD OF EXPECTED LIFE
TVAVLL3 TRANSIT VEHICLE AVAILABILITY, FINAL THIRD OF EXPECTED LIFE
TVCNBP BUDGETARY PREDICTION OF TRANSIT VEHICLES UNDER CONSTRUCTION
TVCSND TRANSIT VEHICLE CONSTRUCTION DELAY
TVCSNL TRANSIT VEHICLE CONSTRUCTION LEVEL
TVDAVA DESIRED AVAILABILITY OF TRANSIT VEHICLES
TVDLGR RATE AT WHICH NEW TRANSIT VEHICLES ARE BEING DELIVERED
TVLVGR TRANSIT VEHICLE LEAVING RATE, FINAL THIRD OF EXPECTED LIFE
TVLGR1 TRANSIT VEHICLE LEAVING RATE, FIRST THIRD OF EXPECTED LIFE
TVLGR2 TRANSIT VEHICLE LEAVING RATE, SECOND THIRD OF EXPECTED LIFE
TVLIFE TRANSIT VEHICLE EXPECTED LIFE IN MONTHS
TVORDER RATE OF ORDERING NEW TRANSIT VEHICLES
TVPAVA PROJECTED AVAILABILITY OF TRANSIT VEHICLES
TVPLDL LEVEL OF NEW TRANSIT VEHICLES PLANNED
TVPLGD TRANSIT VEHICLE PLANNING DELAY
TVPLCR TRANSIT VEHICLE PLANNING RATE
VTACP VALUE OF TRANSIT ACCESS CONSTANT OF PROPORTIONALITY
* URBAN TRANSPORTATION MODEL

NOTE

NOTE BLOCK 1 AUTO AND TRANSIT DEMAND

NOTE

R AUTOCC.KL=HAUTOCC.K-FMAUTOCC.K
L FMAUTOCC.K=FMAUTOCC.J+DT*HAUTOCC.JK
R AUTOTHM.KL=HAUTOCC.K-FAUTOTHM.K
L FAUTOTHM.K=FAUTOTHM.J+DT*AUTOTHM.JK
R MTRANCC.KL=MTTRANCC.K-FMTRANCC.K
L FMTRANCC.K=FMTRANCC.J+DT*MTRANCC.JK
R FTRANTHM,K=FTTRANTHM.K-FTRANTM.K
R TRACC.KL=TRACC.K-FTRACC.K
R FTRACC.K=FTRACC.J+DT*TRACC.JK
A ADCHNG1.K=PAD.K*DE1*AUTOCC.JK/FMAUTOCC.K
A ADCHNG2.K=PAD.K*DE2*AUTOTHM.JK/FAUTOTHM.K
A ADCHNG3.K=PAD.K*DE3*MTRANCC.JK/FMTRANCC.K
A ADCHNG4.K=PAD.K*DE4*TRANTM.JK/FTRANTM.K
A ADCHNG5.K=PAD.K*DE5*TRACC.JK/FTRACC.K
A TDCHNG1.K=PTD.K*DE1*MTTRANCC.JK/FTRANTM.K
A TDCHNG2.K=PTD.K*DE2*MTRANCC.JK/FMTRANCC.K
A TDCHNG3.K=PTD.K*DE3*TRANC.JK/FTRANC.K
A TDCHNG4.K=PTD.K*DE4*AUTOCC.JK/FMAUTOCC.K
A TDCHNG5.K=PTD.K*DE5*AUTOTHM.JK/FAUTOTHM.K
A PAC.K=PAD.K*ACP.
A TOTPHD.K=PAC.K+PTD.K
A PKHRAF.K=PAC.K/TOTPHD.K
A PKHRTRF.K=PTD.K/TOTPHD.K
A PKHRCOM.K=PKHRCOM.J+DT*MCRCMK.JK
A MCRCMK.K=MCRCMK.K
A CPAC.K=PKHRAF.K*PKHRCOM.K
A CPAD,K=CPAC.K/ACP.
A TAD,K=CPAD.K/PAD.F
A CPTD.K=PKHATRF.K*PKHRCOM.K
A TMTD.K=CPTD.K/PTDF
A AUTOF.K=CPAC.K/(CPAC.K+CPTD.K)
A TRANS.K=1-AUTOF.K

NOTE
NOTE BLOCK 2 PROJECTED AUTO DEMAND
NOTE
R PADC.KL=CPAD.K-FCPAD.K
L FCPAD.K=FCPAD.K+DT*PADC.JK
A PADCS.K=SMOOTH(PADC.JK,SMCON)
A TACS.K=PADC.SK/PADF
A PRPAD.K=CPAD.K+(RDPLGD+RDCSND)*PADCS.K
A PRTA.K=TA.K+(RDPCDL)*TACS.K

NOTE
NOTE BLOCK 3 ROAD INVENTORY
NOTE
R RDPLGR.KL=CLIP(RDADA.V.K-RDAPA.V.K,0,RDADA.V.K,RDAPA.V.K)
L RDPLDL.K=RDPLDL.J+DT*(RDPLGR.JK-RDOLGR.JK)
R RDOLGR.KL=DELAY3(RDPLGR.JK,RDPLGD)
L RDOLSD.K=RDCSND.J+DT*(RDOLGR.JK-RCHMP.JK)
R RCHMP.KL=DELAY3(RDOLGR.JK,RDCSND)
L RDALL.K=RDAL.L.J+DT*(RCHMP.JK-RDLVGR1.JK)
R RDLVGR1.KL=RDAL.L.K/RDOLIFE/3
R RDLVGR2.KL=RDAL.L2.K/RDOLIFE/3
R RDLVGR.KL=RDAL.L3.K/RDOLIFE/3
A RDAPA.V.K=RDAPA.V.K+RDCSND.K+RDPLDL.K-((RDPLGD+RDCSND)*RDLVGR.JK)
A RDADA.V.K=(MDFAD*PRPAD.K)/(MDFRD+RDCONKG)

NOTE
NOTE BLOCK 4 ROAD BUDGET
NOTE
R RFDCLR,K=MRURPT,K*(1-RFDIVF)+MURRPT,K
L RFDUEL,K=RFDUEL,J+DT*(RFDCLR,JK-RFDPRT,JK)
R RFDPRT,K=RFCLUDL,K/RFDCLR
A RDTMOM,K=RDTXMOM*RAVLL1,K+RDTXMOM*RAVLL2.K+RDTXMOM*RAVLL3.K
A POP,K=PKHRCHN,K/FHCPRF
A POPDENS,K=POP,K/AREA
A CRPLM,K=INCPRLM+CRPLM*1*POPDENS,K
A RDTMCN,K=(RAVLL,K+RDCSML,K)*CRPLM,K*(CRFR/12)
R RFDCMDR,K=RFDCMR,K+RDTMCN,K
L RFDL,K=RFDL,J+DT*(RFDPRT,JK-RFDCONR,JK)
L RFDCMDL,K=RFDCMDL,J+DT*(RFDCMR,JK-RFDEXPR,JK)
R RFDEXPR,K=RFDCMDL,K/FDEXPO
A RDAV1BP,K=RAVLL1.K+RFDCOLD*(RDCMGR,JK-RDLCGR1,JK)
A RDAV2BP,K=RAVLL2.K+RFDCOLD*(RDLVGR1,JK-RDLCGR2,JK)
A RDAVB,K=RAVLLBP,K+RDAVB2BP,K+PDAVB3BP.K
A RDCNBP,K=RDCSML,K+RFDCOLD*(RDCMGK,JK-RDRCMR,JK)
A EMRDOM,K=RDT XMOM*RAVLLBP.K+RDT XMOM*RAV2BP.K+RDT XMOM*RAV3BP.K
A EMRDCN,K=(RAVB,K+RDCNBP.K)*CRPLM,K*(CRFR/12)
A MRDREVN,K=EMRDCN.K+EMRDOM,K-RFDL.K
A MRREVNU,K=(1-RDUSM)*MRDREVN.K
A MRURPT,K=RDUSR*MRDREVN.K
A RDTXRG,K=(MREVNU.K*AMP)/((K*RTA.K*AMP)K*(1-RFDIVF))
A MRURPT,K=RDTXRG.K*TA.K*(AMP/AMP)
NOTE
NOTE BLOCK 5 AUTO COMMUTING COST
NOTE
A MAUTO,K=(CMHTRP*COMDIS)*(AMM+(AGSOILG.K/AMP)+AINSURM+APKTSLM+
K AGOPH+(RDTXRG,K/AMP))/ACPA
A AGSOILG,K=AGSOILJ*STEPAGSINC,K,12)
A AGSINC,K=AGSOILF-AGSOILI
NOTE
NOTE BLOCK 6 AUTO COMMUTING TIME
NOTE
A RCONG,K=(MDFAD*CPAD,K)/(MDFRD*RDADVLL,K)
A ASPEED,K=45-0.375*RCONG,K
A AUTOTH,K=60/ASPEED,K
NOTE
NOTE BLOCK 7 PROJECTED TRANSIT DEMAND
NOTE
R PTDC,K=PTDC,K-FCPTDC,K
L FCPTDC,K=FCPTDC,J+DT*PTDC,J,K
A PTDCS,K=SMOOTH(PTDC,J,SMCON)
A TMTCDS,K=PTDCS,K/PTDF
A PRPTD,K=PTDC,K+(TVPPLD+TVCSND)*PTDCS,K
A PRPTDC,K=PRPTD,K+TPFDOLD*TMTCDS,K
NOTE
NOTE BLOCK 8 TRANSIT VEHICLE INVENTORY
NOTE
R TVPLGR,K=CLIP(TVDAVA,K-TVPAVA,K,0,TVDAVA,K,TVPAVA,K)
R TVORDER,K=DELAY3(TVPLGR,JK,TVPLGD)
R TVDLGR,K=DELAY3(TVORDER,JK,TVCSND)
L TVPLDL,K=TVPLDL,K+DT*(TVPLGR,JK-TVORDER,JK)
L TVCSNL,K=TVCSNL,K+DT*(TVORDER,JK-TVDLGR,JK)
L TVAVLL1,K=TVAVLL1,K+DT*(TVDLGR,JK-TVLVGR1,JK)
R TVLVGR1,K=TVAVLL1,K/(TVLIFE/3)
L TVAVLL2,K=TVAVLL2,K+DT*(TVLVGR1,JK-TVLVGR2,JK)
R TVLVGR2,K=TVAVLL2,K/(TVLIFE/3)
L TVAVLL3,K=TVAVLL3,K+DT*(TVLVGR2,JK-TVLVGR3,JK)
R TVLVGR3,K=TVAVLL3,K/(TVLIFE/3)
A TVAVLL,K=TVAVLL1,K+TVAVLL2,K+TVAVLL3,K
A TVPAVA,K=TVAVLL,K+TVCSNL,K+TVPLDL,K-(TVPLGD+TVCSND)*TVLVGR,JK
A RQDTV,K=PRPTD,K/OPHPV
A TVDAVA,K=MAX(RQDTV,K,MINTV)
NOTE
NOTE BLOCK 9 TRANSIT BUDGET
NOTE
R TFDCLR, KL=MTRURPT, K+MTSBRPT, K
L TFDUEL, K=TFDUEL, J+DT*(TFDCLR, JK-TFOPTR, JK)
R TFOPTR, KL=TFDUEL, K/TFDCOLD
A TTMOM, K=T1UMOM*TVAVLL1, K+T2UMOM*TVAVLL2, K+T3UMOM*TVAVLL3, K
A TMTCO, K=(TVAVLL1, K+TVCSNL, K)*(((CPTV*CRFTV)/12)+((FCPV*CRFTF)/12))
R TFDOMR, KL=TTNOM, K+TTCO, K
L TFDL, K=TFDL, J+DT*(TFOPTR, JK-TFDOMR, JK)
L TFDOMDL, K=TFDOMDL, J+DT*(TFDOMR, JK-TFDEXPR, JK)
L TFDCEXPR, K=TFDOMDL, K/TFDEXPD
A TVAVB1P, K=TVAVLL1, K+TFDCOLD*(TVDLGR, JK-TVLVGR1, JK)
A TVAV2BP, K=TVAVLL2, K+TFDCOLD*(TVLVGR1, JK-TVLVGR2, JK)
A TVAV3BP, K=TVAVLL3, K+TFDCOLD*(TVLVGR2, JK-TVLVGR, JK)
A TVAVBP, K=TVAV1BP, K+TVAV2BP, K+TVAV3BP, K
A TVCNP, K=TVCSNL, K+TFDCOLD*(TVORDER, JK-TVDLGR, JK)
A EMOM, K=T1UMOM*TVAV1BP, K+T2UMOM*TVAV2BP, K+T3UMOM*TVAV3BP, K
A EMTCO, K=(TVAVBP, K+TVCNP, K)*(((CPTV*CRFTV)/12)+((FCPV*CRFTF)/12))
A MTREVN, K=EMTCO, K+EMOM, K-TEFL, K
A MTSBRPT, K=TCSBF, K*EMTCO, K+TOMSBF, K*EMOM, K
A TCSBF, K=TCSBF*TCSBF, K+TCSBFFC, K*TCOSBF, K
A TCSBFCC, K=TCSBFCC-TCSBF
A TMSBF, K=TMSBF+STEP(TMSBF, K, 12)
A TMSBFCC, K=TMSBFCC-TMSBF
A MTREVFU, K=MTREVN, K-MTSBRPT, K
A FARE, K=MTRVFU, K/PRMTD, K
A MTRURPT, K=FARE, K*TMTD, K
NOTE
NOTE BLOCK 10 TRANSIT COMMUTING COST
NOTE
A MTRANC, K=COMTPM*FARE, K
NOTE
NOTE

BLOCK 11 TRANSIT COMMUTING TIME

NOTE

A RTRAN,K=RTRANI+STEP(RTRANF,12)
A TSPEED,K=SWITCH(25-0.375*CONG,K,RTSPEED,RTRAN,K)
A TRANMT,K=0/TSPEED,K
A TRANS,K=TVAVLL,K*KMONPTV
A TRACC,K=(VTACP*AREA)/TRANS,K

NOTE

MODEL CONSTANTS

NOTE

C DE1=0.5
C DE2=0.8
C DE3=0.4
C DE4=0.4
C DE5=0.7
C CE1=0.5
C CE2=0.1
C CE3=0.5
C CE4=0.5
C CE5=0.1
C ACPA=1.6
C PADF=0.10
C PTDG=0.006
C MDFAK=0.60
C MDFRAK=0.50
C RDP1GD=12
C RDCSND=24
C ROLIFE=360
C RFDCOLD=3
C RFDEXPD=3
C PHCPDPR=0.092
C RFDDIVF=0.5
C MNCRPLM=145000
C CRPLMRR=8.33
C TCOSBF=1
C RTRAN=0
C RTRANF=0
C RTSPEED=30
C VTACP=53.17
C MCMRA=0
C AREA=900
C SMCON=6

NOTE
NOTE INITIAL CONDITIONS
NOTE
N RDAVLL1=500
N RDAVLL2=300
N RDAVLL3=200
N TVAVLL1=33
N TVAVLL2=0
N TVAVLL3=0
N PAD=22407
N PTD=1200
N RFDL=0
N TFDL=0
N PADCS=0
N PTDCS=0

NOTE
NOTE COMPUTED INITIAL CONDITIONS
NOTE
N RDPGLGR=RDLVGR
N RDBGGR=RDLVGR
N RDCMGRR=RDLVGR
N TVPLGRR=TVLVR
N TVORDER=TVLVR
N TVDLGR=TVLVR
N PKHRCOM=PTD+PAD*ACPA
N CPAD=PAD
N FCAPAD=PAD
N TA=PAD/PADF
N FCPTD=PTD
N AUTOTM=60/ASPEED
N MTRANC=CDMTPM*FAKE
N TRANTM=60/TSPEED
N TRACC=(VTAQP*AREA)/TRANS
N FMAUTO(A=MAUTO)
N FAUTOTM=AUTOTM
N FMTRANC=MTRANC
N FTRANTM=TRANTM
N FTRACC=TRACC
N DRCONG=RCONG
SPEC DT=1/LENGTH=240/PRTPER=12/PLTPER=12
PRINT RDXRG,MAUTOCC,ADCHNG1,TCHNG4,ASPEED,AUTOTMC,ADCHNG2,TCHNG5,
FAKE,MTRANCC,ADCHNG3,TCHNG1*CPAD,CPTD,TSPEED,TRANTMCC,ADCHNG4,TCHNG2,
TRANS,TRACC,TRACC,ADCHNG5,TCHNG3,RAVLL,TRAVLL,RCONG,AUTOF,TRANF
PLOT MAUTO(A=A,MTRANC=T
PLOT AUTOTM=A,TRANTM=T,TRACC=C
PLOT AUTOF=A,TRANF=T
RUN SSPDP/XCSUB6/XCNSUB
C TDFSIF=0.5
RUN SSPDP/XCSUB/IDNSUB
C RTRANF=1.
RUN SSPDP/XSUB/XBUS
C AGSDILF=0.40
RUN SSPDP/XSUB/40GAS
C AGSDILF=0.90
RUN SSPDP/XSUB/90GAS
REFERENCES CITED

4. Ibid., p. 16.

5. Ibid., p. 59.

22 Domencich and Fraft, Free Transit, pp. 18-19.

26 Committee on Transportation, Urban Transportation Research and Development, p. 23.

27 Ibid., p. 24.

29 Winfrey, Economic Analysis for Highways, p. 646.

30 Ritter and Paquette, Highway Engineering, p. 38.

31 Wilbur Smith and Associates, Orlando TOPICS, p. 2.

32 Ibid., p. 2.

33 "Returned Highway Funds Half Amount Paid In," Seminole Sentinel, Casselberry, Florida, October 1, 1972, p. 3.

34 Winfrey, Economic Analysis for Highways, p. 254.
35 Ritter and Paquette, Highway Engineering, p. 36.
38 Institute for Defense Analysis, Economic Characteristics of the Urban Transportation Industry, pp. 3-23.
40 Berry, Technology of Urban Transportation, p. 5.
41 Wilbur Smith and Associates, Orlando TOPICS, p. 10.
42 Domencich and Kraft, Free Transit, p. 102.
SELECTED BIBLIOGRAPHY

Book References

Newspaper and Periodical References

