Steady State Oscillations in Switching Regulated DC to DC Power Supplies

1974

Jayant Gajanan Vaidya

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

Part of the Engineering Commons

STARS Citation

https://stars.library.ucf.edu/rtd/132

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
STEADY STATE OSCILLATIONS
IN
SWITCHING REGULATED DC TO DC POWER SUPPLIES

BY
JAYANT GAJANAN VAIDYA
B.E., University of Bombay, 1959

THESIS
Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Graduate Studies program of Florida Technological University

Orlando, Florida
1974
ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his adviser Dr. Herbert C. Towle, for his guidance and direction. He also wishes to thank Mr. Donald J. Wilson of Scott Electronics Corporation for suggesting the project. He is also thankful to his wife Rajani Vaidya for her patience and encouragement and for the many hours she spent in typing this thesis.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... v

LIST OF ILLUSTRATIONS vi

INTRODUCTION ... 1

Regulation by Switching Specifications Operating Principles The Approach

Chapter
1. STEADY STATE OSCILLATIONS IN SWITCHING REGULATED DC TO DC POWER SUPPLIES .. 6

Introductory The Basic Assumption Circuit Model Application of the Dual-Input Describing Function Technique An Example The Time Delay Function Other Implications Remarks

2. MATHEMATICAL MODEL 35

The Nonlinear Section The linear Section The Nyquist Plot

3. THE LABORATORY MODEL AND ITS CHARACTERISTICS 43

The Hysteresis The Time Delay

4. COMPARISON AND CONCLUSIONS 51

LIST OF REFERENCES 55

iv
LIST OF TABLES

Table 1. $N_0(\alpha, \beta)$ under Different Values of α 17
Table 2. Values of $\beta(\alpha)$ and $-1/N_1(\alpha, \beta)$ for Varying α 23
Table 3. Change of Calculated Frequency with Varying Time Delay 29
Table 4. Comparison of Calculations and Test Results Varying Input Voltage 52
Table 5. Comparison of Calculations and Test Results Varying Load Current 53
LIST OF ILLUSTRATIONS

Figure
1. The Basic Circuit 9
2. Nonlinear Section 11
3. Hysteresis Loop 11
4. Control System Representation 13
5. Control System Model 15
6. Output from Nonlinear Section 16
7. The Laboratory Model 21
8. The Graphical Solution 24
9. Oscillatory Frequency Versus Load Current 26
10. Oscillatory Frequency Versus Input Voltage 27
11. Effect of Varying Time Delay 28
12. Effect of Reducing R_C and Δ 32
13. The Linear Section 39
14. The Normal Tree for Linear Section 39
15. The Laboratory Model and Its Components . 44
16. LM 300 Voltage Regulator 45
INTRODUCTION

Regulation by Switching

The switching regulated power supply has gained considerable popularity and acceptance in applications requiring sources of power that can provide regulated dc voltages. The switching regulator differs from the conventional series regulator in its basic approach. In the series regulator, a resistance in series with the unregulated dc voltage is varied so that the excess voltage is dropped across it and only the required voltage appears at the output terminals. This results in a considerable power loss in the series resistor and hence the series regulator has a low overall efficiency. On the other hand, the switching regulator continually switches the unregulated power on and off in such a manner that a desired voltage is obtained at the output terminals. The output voltage thus obtained, has a high ripple content which is reduced to acceptable levels by filtering. The switching operation takes place at frequencies in the range of 10 kHz. to 40 kHz. The switching technique offers a theoretical efficiency of 100 percent, although practical units have efficiencies in the range
of 90 to 95 percent.

Apart from the improved power efficiency, the switching regulator results in a more compact unit compared to a series regulated unit. This is so because the reduction in power loss reduces the need for heat sinks and ventilation fans. As a result switching regulated power supplies are more efficient and compact compared to the series regulated power supplies.

One important class of the switching regulated power supplies is the dc to dc step down power supply where the output voltage is lower than the input voltage under all operating conditions. This is the type of unit that finds applications in computers, business machines and industrial equipment where the basic dc power is obtained by rectifying the power from ac supply lines and the power supply is used for getting a lower, regulated dc voltage at the output. Also in some cases where dc power is available, and a lower dc voltage may be desired, it can be accomplished by this class of switching regulators.

Specifications

The basic specification of a switching regulated power supply is given in terms of the input and output requirements. The input requirements are specified as the nominal dc input voltage and the range over which it is likely to vary in operation. The output requirements are
specified in terms of the desired dc output voltage, the required voltage regulation under a specified range of the load current and the allowable peak to peak ripple in the output voltage.

Operating Principles

Figure 1 in chapter 1 shows a simple circuit arrangement of a switching regulated dc to dc power supply, suitable for step down voltage applications. The transistor (Q) operates as a switch that is driven into the on state, or into the off state by the driver circuit. The driver circuit receives its signal from the voltage comparator that determines the value of \((v_0 - V_R) \), where \(v_0 \) is the output voltage and \(V_R \) is the reference voltage. The driver circuit itself is a triggering circuit such as an IC voltage regulator. The diode (D) provides a path for the load current when the transistor (Q) is not conducting. The combination of inductor (L) and capacitor (C) provides the filtered output voltage \((v_0) \) across the load resistor (R).

To start with, assume that the transistor (Q) is driven into the on state and a voltage equal to the input voltage less the transistor voltage drop, appears across the diode (D). This voltage causes reverse biasing of the diode which remains in the off state. The dc input voltage \((V_i) \) will then charge the capacitor (C) via the transistor (Q) and the inductor (L) and at the same time feed the load
resistor \((R)\). As the capacitor is charged, the output voltage \((v_0)\) will rise until it reaches a predetermined value such that

\[
(v_0 - V_R) = \Delta_1,
\]

where \(\Delta_1\) is the upper switching voltage for the driver circuit.

As soon as the above state is reached, the driver circuit will cause the transistor \((Q)\) to switch to the off state and stop the flow of the current from the source into the circuit. At this stage, the inductor \((L)\) will not allow a sudden interruption in current and it continues to flow through the diode \((D)\) which is now forward biased. The energy storage elements, inductor \((L)\) and capacitor \((C)\) will continue to feed the load current during this period. As the capacitor discharges, the output voltage \(v_0\) will start falling, until it reaches a predetermined value such that

\[
(v_0 - V_R) = -\Delta_2,
\]

where \(-\Delta_2\) is the lower switching voltage for the driver circuit.

At this point, the driver circuit will cause the transistor \((Q)\) to be driven into the on state and start up the initial cycle of rising voltage output, once again. This cycle of rising and falling voltages is repeated continuously.
The Approach

The voltage ripple appearing in the output voltage of the dc to dc power supply, has a certain magnitude and a certain frequency of oscillation. These characteristics depend on circuit parameters and the input voltage. In the first chapter, the author presents a basic problem in this area. An analytical method of solution, utilizing nonlinear control systems theory is discussed. It is supported with a comparison of test data on a laboratory model and the calculations using the analytical method. In the following chapters, additional information regarding various details of procedures, tests and calculations is provided.
CHAPTER 1

STEADY STATE OSCILLATIONS IN SWITCHING REGULATED
DC TO DC POWER SUPPLIES

Introductory

A switching regulated dc to dc power supply is characterized by periodic switching on and off of the input power into a filter circuit. The output from the filter circuit contains an ac ripple having the same fundamental frequency as that of the periodic switching. This frequency of oscillation is a function of the various circuit parameters, the input voltage, and the load current. When a complete range of the input voltages and the load currents is specified, it is desirable to know the frequencies of oscillation over the entire spectrum.

The author presents here a method of determining the oscillatory frequency, based on the technique of dual-input describing function discussed by Hsu and Meyer (1968). The approach allows division of the circuit into linear and nonlinear sections which can be represented separately. The transfer functions of the various sections are then combined into a control systems model which is solved to determine the oscillatory frequency.
The method of analysis presented here is graphical and provides insight into the circuit operation. The theoretical approach is supported by a comparison between the analytical results and the test results on a laboratory model. Various other implications of the graphical analysis are also discussed. Finally, the author compares the approach here with the techniques adopted by others working in the same field and shows several advantages.

The Basic Assumption

The dual-input describing function technique is an extension of the describing function procedure. In the describing function approach, there is one fundamental assumption made. That is, although the output from a nonlinear circuit may contain a fundamental ac component together with several higher order harmonics, the fundamental component alone is considered for analysis. All the components of higher order are neglected. This assumption simplifies the calculations greatly. It is valid when a nonlinear circuit is connected to a low-pass filter at its output. As will be shown later, such a situation does exist in the type of circuits we are considering. Of course, how effective a filter is in attenuating the harmonic components will depend on the design of the filter, and will vary from one circuit to
another. In general, for most circuits the assumption is valid and will provide fairly accurate results. This is particularly true with the calculation of frequency of oscillation as will be shown later.

The describing function approach requires that the nonlinearity should produce a symmetrical output and allow no dc component in its output. This is not true for the circuits that we shall consider. In fact, the basic output of interest from a dc power supply, is its dc output. In the dual-input describing function approach, this difficulty is resolved by taking two outputs, namely, the dc output and the fundamental ac output into consideration.

Circuit Model

Figure 1 represents the basic elements of a step down switching regulated dc to dc power supply. \(V_i \) is the available dc voltage from which the load resistor (\(R \)) receives a regulated output voltage (\(v_0 \)). The output voltage (\(v_0 \)) is compared with a reference voltage (\(V_R \)) and the driver circuit provides a switching signal to the transistor (\(Q \)), depending on the value of (\(V_R - v_0 \)). Inductor (\(L \)) and capacitor (\(C \)) act as the low-pass filter discussed earlier. The diode (\(D \)) provides an alternate path for the load current when the transistor (\(Q \)) is turned off. It should be noted that when the transistor is turned on, it is driven into saturation and has only a small voltage drop across it.
Figure 1
The Basic Circuit

Driver & Comparator

Diagram with labels:
- V_R
- Q
- L
- R_L
- C
- D
- R_C
- R
- V_i
- V_0
The circuit shown in figure 1 can be divided into the following sections:

i) The nonlinear section comprising the switching transistor (Q) and the diode (D)

ii) The linear section comprising the inductor (L), the capacitor (C), and the load resistor (R)

iii) The linear time delay function associated with the driver circuit, the comparator, and the switching transistor.

If each section is modeled as a transfer function, the entire circuit can be represented as a control system in terms of the transfer functions for each of the sections.

The nonlinear circuit can be looked upon as a block shown in figure 2, with an input of \((V_{R}-v_0)\). When this input voltage is rising and reaches the value equal to the upper switching voltage \(+\Delta_1\), the transistor (Q) is driven into the on state and the output voltage \(A\) is given by:

\[
A = V_i - V_Q
\]

where \(V_i = \text{input source voltage}\) and \(V_Q = \text{transistor voltage drop}\).

On the other hand, when the input to the block is falling and reaches the lower switching voltage \(-\Delta_2\), the transistor is driven into the off state. The output of the nonlinear block equals the diode forward drop because the diode is now conducting. This is shown as the voltage of \(-B\). The block
Figure 2
Nonlinear Section

Figure 3
Hysteresis Loop
can now be seen as the hysteresis loop shown in figure 3. It is not symmetrical with respect to the horizontal axis, showing that a dc output as discussed earlier, does exist.

The linear section is comprised of the inductor \((L)\) and associated resistance \((R_L)\), the capacitor \((C)\) and associated series resistance \((R_C)\), and the load resistance \((R)\). This can be represented as a voltage transfer function \(G(s)\) given by the following expression:

\[
(1-1) \quad G(s) = \frac{R+s(C R_C)}{LC(R+R_C)s^2 + \{ L+CR_C+CR_L(R+R_C)\}s + R+R_L}
\]

Complete derivation of this expression is given in chapter 2.

There is a certain amount of time delay that occurs when the driver circuit responds to a signal. Also, the switching operation of the transistor \((Q)\) has a time delay associated with it. The two time delay elements are considered as lumped into one circuit section having a total time delay equal to \(\delta\).

All the circuit elements are now defined and the entire circuit can be represented as a control system shown in figure 4.

Application of the Dual-Input Describing Function Technique

The basic principle of dual-input describing function (DIDF) technique is discussed here in brief. In the DIDF
Figure 4

Control System Representation

1 The nonlinear section.
2 The linear section.
3 The driver and comparator.
4 The time delay function.

Note: $p = \frac{d}{dt}; v_0(t) = G(p)u(t)$ is the differential equation of the linear section.
approach, we define $e(t) = \alpha + \beta \sin \omega t$ because we are interested in the dc and the fundamental ac components. Figure 5 shows the control system model in terms of the transfer functions related to the dc and fundamental ac components of the output. $G(j\omega)$ and $D(j\omega)$ are the transfer functions of the linear circuit and the time delay function expressed in frequency domain. $G(0)$ and $D(0)$ are the corresponding transfer functions for the dc model and $G_1(j\omega)$, $D_1(j\omega)$ are corresponding transfer functions for the ac model. We define $N_0(\alpha, \beta)$ as the dc describing function and $N_1(\alpha, \beta)$ as the first harmonic describing function for the nonlinearity. Both $N_0(\alpha, \beta)$ and $N_1(\alpha, \beta)$ can be determined by Fourier series analysis, using figure 6. The value of $N_0(\alpha, \beta)$ varies considerably depending on whether α is positive or negative and whether its magnitude is greater or smaller than the switching voltages Δ_1 and Δ_2. In chapter 2, page 47, it is shown that the upper and lower input switching voltages for the hysteresis nonlinearity can be made symmetrical by defining V_R' in the center of the switching band. With this choice for reference, the switching limits can be written as $+\Delta$ and $-\Delta$ as shown in figure 6. Values of $N_0(\alpha, \beta)$ under various conditions are shown in table 1. $N_1(\alpha, \beta)$ is given by

$$N_1(\alpha, \beta) = (A+B)(\cos \omega t_1 + \cos \omega t_2 - j 2\Delta/\beta)/\pi \beta$$

where

$$\cos \omega t_1 = \{1 - \frac{(\Delta - \alpha)^2}{\beta^2}\}^{1/2}$$

and

$$\cos \omega t_2 = \{1 - \frac{(\Delta + \alpha)^2}{\beta^2}\}^{1/2}$$
Figure 5

Control System Model

I. For the dc component of the model.

\[G(0) \approx 1 \]

Note: \(v_0 \) is the dc component of the output voltage.

II. For the fundamental ac component of the model.

Note: \(V_1(j\omega) \) is the fundamental ac component phasor of the output voltage.
Figure 6
Output From Nonlinear Section

Hysteresis Loop

Output volts

Volts

\((V'_R - v_0) \)

Time

Volts \((V'_R - v_0) \)

Input \(\alpha + \beta \sin \omega t \)

\(\omega t_1 \)

\(\omega t_2 \)

-\(B \)

-\(\Delta \)

+\(\Delta \)
TABLE 1

$N_0(\alpha, \beta)$ under Different Values of α

| α | $|\alpha| : |\Delta|$ | $N_0(\alpha, \beta)$ |
|---------|------------------|------------------|
| - | <1 | $(A-B)/2\alpha + (A+B)(X-Y)/2\pi\alpha$ |
| - | >1 | $(A-B)/2\alpha - (A+B)(X+Y)/2\pi\alpha$ |
| + | <1 | $(A-B)/2\alpha + (A+B)(X-Y)/2\pi\alpha$ |
| + | >1 | $(A-B)/2\alpha + (A+B)(X+Y)/2\pi\alpha$ |

Note: $X = \sin^{-1}|(\Delta+\alpha)/\beta|$
$Y = \sin^{-1}|(\Delta-\alpha)/\beta|$
The complete Fourier series analysis for determining \(N_0(\alpha, \beta) \) and \(N_1(\alpha, \beta) \) is given in chapter 2.

Returning to the system loops shown in figure 5, we express the input to the nonlinear block as
\[
e(t) = \alpha + \beta \sin \omega t
\]
where
\[
\alpha = \text{dc component in volts,}
\]
\[
\beta = \text{peak value of the first harmonic in volts,}
\]
and
\[
\omega/2\pi = \text{oscillation frequency in Hz.}
\]

Considering the system loops of figure 5, the balance condition for both the dc component and the fundamental component will be given by the following two simultaneous equations:
\[
(1-4) \quad N_0(\alpha, \beta)G(0)D(0) - \frac{V_R}{\alpha} = -1
\]
\[
(1-5) \quad N_1(\alpha, \beta)G_1(j\omega)D_1(j\omega) = -1
\]
Here \(G(0) \) and \(D(0) \) are values of transfer functions \(G(j\omega) \) and \(D(j\omega) \) for the dc value where \(\omega \) equals zero, and both \(G(0) \) and \(D(0) \) equal unity. Equations (1-4) and (1-5) can now be rewritten as
\[
(1-6) \quad N_0(\alpha, \beta) - \frac{V_R}{\alpha} = -1
\]
\[
(1-7) \quad G_1(j\omega)D_1(j\omega) = -1/N_1(\alpha, \beta)
\]
Equation (1-6) is a scalar equation and (1-7) is a complex equation. The two are then actually three equations from which the three unknowns, namely, \(\alpha, \beta, \) and \(\omega \) can be determined.
It is difficult to solve the three simultaneous equations directly because of the arc-sine functions involved. Hence, the graphical approach suggested by Hsu and Meyer is utilized here with certain modifications. First the value of β is determined as a function of α from the equation (1-6). Then utilizing pairs of α and β, the function $-1/N_1(\alpha,\beta)$ is calculated and plotted in the complex plane. Also a Nyquist plot $G_1(j\omega)D_1(j\omega)$ is plotted in the same plane, with varying values of ω corresponding to different frequencies. Wherever the two curves intersect in the complex plane, the equation (1-7) is satisfied and hence it represents the operating point. The value of frequency corresponding to the intersection, is the frequency of oscillation.

The reason for lumping the delay function $D_1(j\omega)$ and the transfer function $G_1(j\omega)$, is obvious. Both are linear and dependent on frequency, and hence can be handled together as a function of ω.

An Example

As an example of applying the theory developed so far, consider the circuit shown in figure 7. This circuit is capable of providing a regulated dc output voltage of 10 volts, with an input voltage variation between 20 volts and 30 volts and a load variation from no load to 3.5 amps. The transistor (Q$_2$) is a fast switching device
which is driven by the voltage regulator (VR). Transistor
(Q₁) forms an intermediate stage that provides the addi­
tional gain. The diode (D₁) is a fast switching device
that provides an alternate path to the load current when
transistor-(Q₂) is turned off. Thus the transistor (Q₂)
and the diode (D₁) together form the nonlinear circuit
with an output changing from
\[A = (V₁-V₂) \text{ volts} \]
to \[-B, \text{ the diode voltage drop}. \]
Here \(V₂ \) = Saturation drop across Q₂. In the circuit
under consideration
\[V₂ = 0.8 \text{ V} \]
and \[B = 1 \text{ V} \]

The hysteresis is provided by the resistor (R₃) and
the switching voltage (Δ) is calculated as

0.07 volt for an input of 25 volts.

Complete details of this calculation are shown in chapter
3.

The output filtering is provided by the inductor
(L₁) and the capacitor (C₃). In the circuit model built
for verification, inductor (L₁) has a series resistance
of 0.096 ohms and the capacitor (C₃) has an effective
series resistance of 0.379 ohms. The resistors R₄ and R₅
provide the necessary voltage division required for opera­
tion of the voltage regulator. The capacitor (C₁) is added
Figure 7

The Laboratory Model

\[\begin{align*}
L_1 &: 530\mu\text{H}, \quad R_L: 0.096\text{ohm} \\
C_3 &: 98\mu\text{F}, \quad R_C: 0.379\text{ohm} \\
R_3 &: 1\ \text{megohm} \\
VR &: \text{LM 300 voltage regulator}
\end{align*} \]
to minimize the effect of surges in the input voltage. Being on the input side the capacitor C_1 has no effect on the calculations and is not considered in the following analysis.

The time delay comprises of switching delays in transistors Q_1 and Q_2 and the delay in voltage regulator VR. The total time delay for the control system under consideration is estimated at 2.5 μseconds. This is further discussed in chapter 3, where the various elements of the time delay are indicated.

Following the procedure suggested in the earlier section, values of β are first calculated as a function of α, using equation (1-6). To evaluate this, a set of values was assigned to β for a given value of α. Then for each value of α and β, the left hand side of the equation (1-6) was calculated and then the value of β was varied until the expression equalled -1. Knowing the value of α and $\beta(\alpha)$, the real and imaginary parts of function $-1/N_1(\alpha, \beta)$ are calculated using the equation (1-2).

Table 2 shows a set of values of α, $\beta(\alpha)$ and $-1/N_1(\alpha, \beta)$ for an input voltage of 25 volts. The expression $-1/N_1(\alpha, \beta)$ is shown in real and imaginary parts and is then plotted in the fourth quadrant of the complex plane as shown in figure 8.

Also shown in figure 8 is the Nyquist plot with the
TABLE 2

Values of $\beta(\alpha)$ and $-1/N_1(\alpha, \beta)$ for Varying α

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$-1/N_1(\alpha, \beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Real Part</td>
</tr>
<tr>
<td>-0.010</td>
<td>0.08854</td>
<td>-0.0333</td>
</tr>
<tr>
<td>-0.008</td>
<td>0.08273</td>
<td>-0.0266</td>
</tr>
<tr>
<td>-0.006</td>
<td>0.07793</td>
<td>-0.0200</td>
</tr>
<tr>
<td>-0.004</td>
<td>0.07442</td>
<td>-0.0137</td>
</tr>
</tbody>
</table>

Note:

\[\Delta = 0.07 \text{ V} \]

Input = 25 V = V_i

$V_{Q2} = 0.8$ V

$B = 1$ V

$V'_R = 10.053$ V

$A = 24.2$ V
Figure 8

The Graphical Solution

Real Axis

Frequency of oscillation 20.2 kHz.

Load Resistance = 3 ohms.

\[\alpha = -0.01 \text{ V} \]

Nyquist Plot

Frequency Increasing

Nyquist Plot

\[G_1(j\omega)D_1(j\omega) \]

12 kHz.
value of load resistance as 3 ohms. The two curves intersect at the frequency value of 20.2 kHz. Test results on the laboratory model showed a frequency of 21.7 kHz. Thus the test result agrees with the analytical result within close limits.

Figures 9 and 10 are graphs showing the variation of oscillatory frequency with changes in load and changes in input voltage respectively. The calculated values are shown by the heavy continuous lines while the test results are shown by the dotted lines. The calculations agree with the test values under all conditions of load and input voltage variations.

The Time Delay Function

The inclusion of a time delay function in the model improves the accuracy of calculations by bringing the model close to real life where such delays invariably exist. If the Nyquist plot is made with varying magnitudes of the time delay as shown in figure 11, the resulting changes in the oscillatory frequency are shown in table 3. As can be seen from the table, the time delay function has some effect on the calculated value of the frequency. However, this effect is of a small magnitude for the laboratory model under consideration.

In the system model presented here, all the time delay elements are lumped together and the Nyquist plot is
Figure 9

Oscillatory Frequency versus Load Current

Note: Input Voltage 25 Volts.
Figure 10

Oscillatory Frequency versus Input Voltage

Note: Load Current 3.3 Amps.
Figure 11

Effect of Varying Time Delay

- Real Axis
- Imaginary Axis

\[a = \frac{-1}{N_1(\alpha, \beta)} \]

- Frequency increasing
- Time delay decreasing

\(\delta = 3 \mu \text{sec.} \)

Nyquist Plot

- Frequency increasing

\(\alpha \) increasing

-1/N_1(\alpha, \beta)
TABLE 3

Change of Calculated Frequency with Varying Time Delay

<table>
<thead>
<tr>
<th>Time Delay (microseconds)</th>
<th>Calculated Frequency (kHz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>19.7</td>
</tr>
<tr>
<td>2.5</td>
<td>20.2</td>
</tr>
<tr>
<td>2.0</td>
<td>20.9</td>
</tr>
<tr>
<td>1.0</td>
<td>21.8</td>
</tr>
</tbody>
</table>

Note:

- Input Voltage 25 Volts.
- Load Current 3.3 Amps.
- Test Frequency 21.7 kHz.
modified to include the effect of various time delays occurring in the different sections of the circuit.

Other Implications

It was mentioned earlier that the analysis presented here provides a method of calculating oscillatory frequency. Various other performance characteristics are also involved in this analysis. These include α and β which represent the error in the dc output voltage and the magnitude of ripple voltage in the model respectively. The calculation of α and β at the intersection of the two curves does provide an idea as to how these important performance characteristics are related to the circuit parameters.

For example, in the graphical solution shown in figure 8, the values of α and β at the point of intersection are -0.0072 volt and 0.0772 volt respectively. This implies a peak to peak ripple of 0.154 volt as against the test value of 0.275 volt.

Considering the graphical solution in figure 8, a reduction in the switching voltage (Δ) will shift the curve for $-1/N_1(\alpha,\beta)$ closer to the real axis and shift the point of intersection with the Nyquist plot in such a way as to increase the oscillatory frequency. If the oscillatory frequency can not be increased beyond certain limits and this is the case most of the time, then some other cir-
cuit parameters must be changed to compensate the effect of reduced switching voltage (A). This can be accomplished by reducing the effective series resistance (R_C). The Nyquist plot will then shift in such a manner as to counter the effect of reduced switching voltage (A). Figure 12 shows how this is effected graphically. Of course, the same result could be obtained by increasing the magnitudes of inductance (L) or capacitance (C), which would result in a larger unit.

Remarks

In the past, Schweitzer and Rosenstein (1964), presented an approach using the describing function technique to determine the frequency of oscillation. The method presented by them had the basic limitation that it could apply only in one special case, that is when the value of α equals zero. This occurs when the switching on and off periods are equal. Clearly, such an approach is completely inadequate. Also no consideration was given to the time delay function.

More recently Judd and Chen (1972) presented an analytical approach termed "exact analysis". The term "exact analysis" was employed because the analysis considered all the harmonics of the ac ripple. However, when getting practical results, all the terms related to the harmonics were completely dropped out with the conten-
Figure 12

Effect of Reducing R_c and Δ

Real Axis

Shifted $-1/N_1(\alpha, \beta)$

$\Delta = 0.035$

Shifted $G_1(j\omega)D_1(j\omega)$

$R_c = 0.18$ ohm.

Reduce Δ

$R_c = 0.379$ ohm.

Imaginary Axis

Frequency of oscillation- original curves: 20.2 kHz.

shifted curves: 18.8 kHz.
tion that it was adequate to use only the fundamental ac value. Here too, no consideration was given to the time delays involved.

Apart from the inclusion of time delay factor, this author also includes the voltage drop across switching transistor and the forward voltage drop across the diode, in his analysis. These are important factors particularly when dealing with outputs in low voltage range where the voltage drops become significant.

The procedure suggested by this author should be useful when designing switching regulated dc power supplies. When a preliminary design based on nominal input and output requirements is completed, this procedure can be applied to calculate the oscillatory frequencies over the entire range of input voltage and load current. The designer can then verify if the circuit components such as the switching transistor, driver circuit, the filter inductor, and the capacitor are suitable for operation over the entire range of frequency.

If some of the components are not suitable, selecting appropriate components may be necessary. On the other hand, it may be possible to alter some of the characteristics of the circuit so that the operating frequency is shifted to a more desirable range. For example, increasing the switching voltage (Δ) will reduce the operating frequency. If a filter capacitor
with a lower series resistance can be substituted, it will be possible to increase the operating frequency. The same result could be obtained by selecting the switching transistor or the driver circuit with shorter time delay.

Thus the method suggested here provides a tool for the designer in selecting circuit components and predicting steady state performance of the switching regulated dc power supply.
In the last chapter, certain functions were used for representing various sections of the control system. The author presents below a complete derivation of these functions.

The Nonlinear Section

The hysteresis loop shown in figure 6 produces a rectangular output having dc and ac components. To calculate the dc describing function and the first harmonic describing function, the amount of dc output voltage \(V_D \) and the peak value of the first harmonic \(V_F \) must be determined. Then

\[
(2-1) \quad N_0(\alpha, \beta) = \frac{V_D}{\alpha} \quad \text{and} \quad N_1(\alpha, \beta) = \frac{V_F}{\beta}
\]

\(V_D \) and \(V_F \) are calculated by Fourier series analysis, using figure 6, as follows:

\[
(2-3) \quad V_D = \frac{1}{2\pi} \left\{ \int_{\omega t_1}^{\omega t_2} A \, d\omega t - \int_0^{\omega t_1} B \, d\omega t - \int_{\omega t_1}^{\omega t_2} B \, d\omega t \right\}, \quad \text{where}
\]

\[
(2-4) \quad \sin \omega t_1 = \frac{(\Delta - \alpha)}{\beta}, \quad \omega t_1 = \sin^{-1}\left(\frac{\Delta - \alpha}{\beta}\right)
\]

\[
(2-5) \quad \sin \omega t_2 = -(\Delta + \alpha)/\beta, \quad \omega t_2 = \pi + \sin^{-1}\left(\frac{\Delta + \alpha}{\beta}\right)
\]
From these equations:

\[(2-6) \quad V_D = \frac{A(\omega t_2 - \omega t_1) + B(\omega t_2 - \omega t_1) - 2\pi B}{2\pi}, \text{ or} \]

\[(2-7) \quad V_D = \frac{(A-B)}{2+}

\[\frac{(A+B)(\sin^{-1}|(\Delta+\alpha)/\beta| - \sin^{-1}|(\Delta-\alpha)/\beta|)}{2\pi}\]

The ac fundamental component \((V_F)\) can be expressed as

\[(2-8) \quad P+jQ = \left\{ \int_0^{3\pi} u \sin \omega t \, dt + j \int_0^{2\pi} u \cos \omega t \, dt \right\}/\pi,

where \(P\) is the in-phase component and \(Q\) is the quadrature component. The term \(u\) equals \(A\) or \(-B\).

Now,

\[P = \left\{ \int_0^{\omega t_1} B \sin \omega t \, dt + \int_0^{\omega t_2} A \sin \omega t \, dt - \int_{\omega t_1}^{2\pi} B \sin \omega t \, dt \right\}/\pi

= \left\{ B \cos \omega t_1 - A \cos \omega t_2 + B \cos \omega t_1 \right\}/\pi

= \left\{ A \cos \omega t_1 - A \cos \omega t_2 + B \cos \omega t_1 - B \cos \omega t_2 \right\}/\pi

Therefore,

\[(2-9) \quad P = \frac{(A+B)(\cos \omega t_1 - \cos \omega t_2)}{\pi}\]

From equations (2-4) and (2-5),

\[(2-10) \quad \cos \omega t_1 = \{1-(\Delta-\alpha)^2/\beta^2\}^{1/2}, \text{ and} \]

\[(2-11) \quad \cos \omega t_2 = -\{1-(\Delta+\alpha)^2/\beta^2\}^{1/2}\]

Using equations (2-9), (2-10) and (2-11), we get
\[(2-12) \quad P = \frac{(A+B)}{\pi} \left[\{1-\frac{(\Delta-\alpha)^2}{\beta^2}\}^{\frac{3}{2}} + \{1-\frac{(\Delta+\alpha)^2}{\beta^2}\}^{\frac{3}{2}} \right] \]

Now,

\[Q = \{ -\int_0^{\omega t_1} B \cos\omega t d\omega t + \int_{\omega t_1}^{\omega t_2} A \cos\omega t d\omega t - \int_{\omega t_2}^{2\pi} B \cos\omega t d\omega t \}/\pi \]

\[= \{ -B \sin \omega t_1 + A \sin \omega t_2 - B \sin \omega t_2 \}/\pi \]

Therefore,

\[(2-13) \quad Q = (A+B)(\sin \omega t_2 - \sin \omega t_1)/\pi \]

From equations (2-4) and (2-5)

\[\sin \omega t_2 = \sin \{ \pi + \sin^{-1}\left\{ (\Delta+\alpha)/\beta \right\} \} \]

\[= -\left\{ (\Delta+\alpha)/\beta \right\}, \]

and \[\sin \omega t_1 = \left\{ (\Delta-\alpha)/\beta \right\}, \]

Because \(\Delta, \alpha \) and \(\beta \) are all positive,

\[(2-14) \quad \sin \omega t_2 = -(\Delta+\alpha)/\beta, \quad \text{and} \]

\[(2-15) \quad \sin \omega t_1 = (\Delta-\alpha)/\beta. \]

From equations (2-13), (2-14) and (2-15), we get

\[(2-16) \quad Q = -2\Delta(A+B)/\pi \beta \]

Therefore, the ac fundamental component is given by

\[(2-17) \quad V_F = P + jQ \]

\[= \frac{A+B}{\pi} \left[\{1-\frac{(\Delta-\alpha)^2}{\beta^2}\}^{\frac{3}{2}} + \{1-\frac{(\Delta+\alpha)^2}{\beta^2}\}^{\frac{3}{2}} - j2\Delta/\beta \right] \]

From equations (2-1), (2-2), (2-7) and (2-17), we get the following results:
(2-18) \[N_0(\alpha, \beta) = \frac{(A-B)}{2\alpha} \]

\[(A+B)\{\sin^{-1}|(\Delta+\alpha)/\beta| - \sin^{-1}|(\Delta-\alpha)/\beta|\}/2\pi \alpha \]

(2-19) \[N_1(\alpha, \beta) = \frac{(A+B)}{\pi \beta} \left[\{1-(\Delta-\alpha)^2/\beta^2\}^{1/2} + \{1-(\Delta+\alpha)^2/\beta^2\}^{1/2} - j2\Delta/\beta \right] \]

So far we have considered \(\alpha \) to be positive and less than \(\Delta \). This is not always true. Four distinct cases arise as \(\alpha \) is allowed to vary. The switching angles shift from one quadrant to another as \(\alpha \) changes from positive to negative and also as the magnitude of \(\alpha \) exceeds the value of \(\Delta \). Values of \(N_0(\alpha, \beta) \) under various conditions have already been shown in table 1 of chapter 1. The transfer function \(N_1(\alpha, \beta) \) does not change and remains at the value given by the equation (2-19).

The Linear Section

The transfer function of the linear portion of the circuit is calculated in the following manner. Figure 13 shows all the elements of this circuit. These are:

L = The value of inductance in henrys

\(R_L \) = Effective resistance of the inductor in ohms

C = The value of capacitance in farads

\(R_C \) = Effective series resistance of the capacitor in ohms

R = Load resistance in ohms
Figure 13
The Linear Section

Figure 14
The Normal Tree for Linear Section
Figure 14 shows the normal tree for the circuit. We are interested in the voltage transfer function $G(s)$, such that
\begin{equation}
\text{(2-20) } v_0(s) = G(s)V_i(s),
\end{equation}
where $v_0(s) = \text{Laplace transform of the output voltage}$, and $V_i(s) = \text{Laplace transform of the input voltage}$.

Using the standard form state equations, the state of the circuit can be expressed as
\begin{equation}
\text{(2-21) } \dot{x} = Ax + Bu
\end{equation}
and
\begin{equation}
\text{(2-22) } y = Cx + Du
\end{equation}
where $x = \begin{bmatrix} i \\ v \end{bmatrix}$,
\begin{itemize}
\item i and v being the inductor current and capacitor voltage respectively, as shown in figure 13.
\end{itemize}

The input $u = V_i$, and the output $y = v_0$.

From the normal tree of figure 14, we get
\begin{equation}
\text{(2-23) } V_i = L_i + R_i i + v + C v R_C
\end{equation}
\begin{equation}
\text{(2-24) } i = C v + V_o / R \text{ and}
\end{equation}
\begin{equation}
\text{(2-25) } v_0 = v + C v R_C
\end{equation}

Rearranging the above, we get
\[(2-26)\] \[i = -\frac{(RR_L+RR_C+R_CR_L)i}{L(R+R_C)} - \frac{Rv}{L(R+R_C)} + \frac{V_i}{L},\]

\[(2-27)\] \[v = \frac{Ri}{C(R+R_C)} - \frac{v}{C(R+R_C)}, \text{ and}\]

\[(2-28)\] \[v_0 = \frac{RR_Ci}{R+R_C} + \frac{Rv}{R+R_C} \]

Comparing equations (2-21), (2-22) with (2-26), (2-27) and (2-28), we get the following:

\[
A = \begin{bmatrix}
\frac{RR_L+RR_C+R_CR_L}{L(R+R_C)} & -\frac{R}{L(R+R_C)} \\
-\frac{R}{C(R+R_C)} & -\frac{1}{C(R+R_C)}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1/L \\
0
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
\frac{RR_C}{R+R_C} & \frac{R}{R+R_C}
\end{bmatrix}
\]

\[
D = 0
\]

The voltage transfer function is given by

\[(2-29)\] \[G(s) = C [sI-A]^{-1}B\]

Solution of the above yields

\[(2-30)\] \[G(s) = \frac{sCRR_C+R}{s^2LC(R+R_C)+s\{L+CRR_C+CR_L(R+R_C)+(R+R_L)\}}\]
The Nyquist Plot

In chapter 1, the Nyquist plot was drawn in the complex plane from the product \(G_1(j\omega)D_1(j\omega) \). \(G_1(j\omega) \) can be determined from equation (2-30) by substituting \(j\omega \) for \(s \). \(D_1(j\omega) \) is the time delay function expressed as \(e^{-j\omega\delta} \). This can also be written as a complex number:

\[
D_1(j\omega) = \cos(\omega\delta) - j\sin(\omega\delta)
\]

Using equations (2-30) and (2-31), the function \(G_1(j\omega)D_1(j\omega) \) can be evaluated for a given value of frequency.
CHAPTER 3

THE LABORATORY MODEL AND ITS CHARACTERISTICS

The circuit shown in figure 7 was briefly discussed by the author. Figure 15 show the components used in this circuit. The voltage regulator is a type LM 300 of National Semiconductor Corporation. The complete working of the regulator and the circuit is explained in the application note written by Widlar (1969). Only a brief description related to the present analysis is given below.

The LM 300 is an integrated circuit, linear voltage regulator. Figure 16 shows its circuit arrangement in a block diagram. When an unregulated dc voltage is applied to the terminal 3, a temperature compensated reference output of 1.8 volts is produced at the terminal 5. This output is fed to a differential amplifier that compares the feedback voltage connected to terminal 6, with the voltage at terminal 5. It provides an amplified output that drives another amplifier which in turn provides the output that appears between terminals 2 and 3.

In the power supply circuit as shown in figure 15 (and also figure 7), the output voltage at the terminals
Figure 15

The Laboratory Model and Its Components

(Q2) - 2N3447
(Q1) - 2N2905A
(D1) - 1N3880
(VR) - LM300
(C1) - 22 μF,
(C3) - 100 μF, 0.379 Ω
(L1) - 530 μH, 0.96 Ω
(R1) - 22 Ω
(R2) - 68 Ω
(R3) - 1 MΩ
(R4) - 11.1 kΩ
(R5) - 2.44 kΩ
Figure 16

LM 300 Voltage Regulator

I Reference voltage generator
II Differential amplifier
III Amplifier
2 and 3 is connected to the emitter and base of the transistor \((Q_1)\). This transistor is driven into saturation as soon as the required voltage is provided between the terminals 2 and 3. This occurs when the feedback voltage at the terminal 6 is lower than the reference voltage.

When the transistor \((Q_1)\) is switched on, a current flows through resistor \(R_2\) which in turn causes the transistor \((Q_2)\) to be driven into saturation. The transistor \((Q_1)\) is used only because the voltage regulator is incapable of providing the necessary current to drive the larger transistor \((Q_2)\). Both \(Q_1\) and \(Q_2\) are fast switching transistors. The diode \((D_1)\) that provides the alternate path to the load current, is also a fast switching device.

The resistors \(R_4\) and \(R_5\) act as a voltage divider so that only a portion of the output voltage is sensed at the feedback terminal 6.

The Hysteresis

The hysteresis is obtained by connecting the terminal 5 of the voltage regulator to the output of the transistor \((Q_2)\) via resistor \(R_3\) as shown in figure 15. Referring to figure 16, \(R_6\) is the internal resistance seen at terminal 5. This resistance causes the voltage at terminal 5 to change from its nominal value of 1.8 volts by an amount given by

\[
(3-1) \quad h_1 = \frac{R_6 A}{(R_3 + R_6)}
\]
when the transistor \((Q_2)\) is in the on state. When the tran­
sistor \((Q_2)\) is in the off state, the change is given by

\[
-\nu_2 = -\frac{R_6 B}{(R_3 + R_6)}
\]

In the equations (3-1) and (3-2), \(A\) and \(B\) are equal to
\((V_i - V_{Q2})\) and the diode drop \((B)\) respectively. For the
laboratory model under consideration \(V_{Q2}\) is 0.8 volt,
\(B\) is 1 volt and \(R_3\) is 1 megohm.

From the manufacturer's information \(R_6\) equals
1000 ohms.

Now, the voltage deviations \(\nu_1\) and \(-\nu_2\) are referred
to a fraction of the output voltage. To calculate the
switching voltage \((\Delta)\), we take the average value of the
deviation and multiply the amount by the ratio \((R_4 + R_5)/R_5\),
where \(R_4\) and \(R_5\) form the voltage divider shown in figure
15. Then

\[
\Delta = (\nu_1 + \nu_2)(13.54/2.44)/2
\]

For an input voltage \((V_i)\) equal to 25 volts, \(A\)
equals 24.2 volts.

Then from equations (3-1), (3-2), and (3-3)

\[
\begin{align*}
\nu_1 &= 0.0242 \text{ volt} \\
\nu_2 &= 0.001 \text{ volt} \\
\Delta &= 0.07 \text{ volt}
\end{align*}
\]

It may be noted that the nominal output from the vol­
tage regulator is shifted from 1.8 volt to \(1.8 + (\nu_1 - \nu_2)/2\)
and the nominal regulated output voltage is given by

\[
V'_R = \left(\frac{13.54}{2.44}\right)(1.8 + (\nu_1 - \nu_2)/2) = 10.053.
\]

The magnitude of switching voltage \((\Delta)\) changes as the input
voltage is changed for the laboratory model under consideration. It can be calculated for other operating input voltages, in a manner similar to the above.

The Time Delay

The laboratory model has three elements in which the time delays occur. These elements are: the transistor (Q₁), the transistor (Q₂), and the voltage regulator (VR) as shown in figure 16.

The transistor (Q₁) is a 2N2905A, pnp silicon transistor. The switching characteristics of this transistor are specified as follows:

Turn-On Time

- Delay time : 0.006 microsec.
- Rise time : 0.020 microsec.
- Total turn-on time : 0.026 microsec.

Turn-Off Time

- Storage time : 0.050 microsec.
- Fall time : 0.020 microsec.
- Total turn-off time : 0.070 microsec.

The delay time (δ₁) for the above transistor is taken as an average of the turn-on time and the turn-off time. Thus

\[\delta_{Q_1} = 0.048 \text{ microseconds.} \]

The transistor (Q₂) is a 2N3447, npn silicon power
transistor. The switching characteristics are given in a graphical form, from which the following average values are estimated:

Turn-On Time

- Delay time: 0.13 microsec.
- Rise time: 0.37 microsec.
- Total turn-on time: 0.50 microsec.

Turn-Off Time

- Storage time: 1.50 microsec.
- Fall time: 0.37 microsec.
- Total turn-off time: 1.87 microsec.

The delay time (δ_{Q2}) for the transistor (Q_2) is taken as an average of the turn-on time and the turn-off time. Thus

$$\delta_{Q2} = 1.19 \text{ microseconds.}$$

The voltage regulator (VR) is an integrated circuit device. The manufacturer's data for this device shows a total transient load response duration of 2.5 microseconds. The time delay (δ_{VR}) is estimated at half the transient load duration. Thus

$$\delta_{VR} = 1.25 \text{ microseconds.}$$

From the three individual elements of time delay, the total lumped delay (δ) is calculated as the sum of these three elements. Thus

$$\delta = \delta_{Q1} + \delta_{Q2} + \delta_{VR}$$

$$= 2.488 \text{ microseconds}$$
2.5 microseconds.

This value of 2.5 microseconds has been used for the analysis of the laboratory model.
CHAPTER 4

COMPARISON AND CONCLUSIONS

The test values and the calculated values of oscillatory frequency for the laboratory model of figure 15 are shown in tables 4 and 5. The graphs shown in figure 9 and 10 were constructed from these tables. A comparison of the test values and calculations shows consistency over a wide range of operating conditions.

The author believes that the technique presented here will be of use when designing switching regulated, dc to dc power supplies. This has already been explained in the concluding part of chapter 1. The technique of the dual-input describing function can be extended to other power supplies where different types of filter circuits are employed. Another interesting field for application is the ac to dc power supply where a transformer operates at the high switching frequency, thereby reducing the overall size of the power supply. The technique developed here, can be extended to the analysis of these systems, by developing system model in a manner similar to the one adopted by the author.

When the laboratory model was tested at a low input...
TABLE 4

Comparison of Calculations and Test Results

Varying Input Voltage

<table>
<thead>
<tr>
<th>Input Voltage (V)</th>
<th>Frequency Test (kHz.)</th>
<th>Frequency Calculation (kHz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>21.8</td>
<td>20.4</td>
</tr>
<tr>
<td>25</td>
<td>21.7</td>
<td>20.2</td>
</tr>
<tr>
<td>30</td>
<td>20.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Note:

Load Current 3.3 Amps.
TABLE 5

Comparison of Calculations and Test Results

Varying Load Current

<table>
<thead>
<tr>
<th>Load Current (A)</th>
<th>Frequency Test (kHz.)</th>
<th>Frequency Calculation (kHz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>22.7</td>
<td>22.0</td>
</tr>
<tr>
<td>1.67</td>
<td>19.6</td>
<td>21.0</td>
</tr>
<tr>
<td>2.50</td>
<td>20.0</td>
<td>21.0</td>
</tr>
<tr>
<td>3.33</td>
<td>21.7</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Note:

Input Voltage 25 Volts.
voltage of 15 volts, the circuit operated satisfactorily. However, the corresponding analysis of the model showed that the two curves $G_1(j\omega)D_1(j\omega)$ and $-1/N_1(\alpha,\beta)$ do not intersect. Similar results were also observed at a high input voltage of 35 volts. The low and high voltage operation of the circuit cannot be analysed by the present model. The author believes this to be an area where further analytical work will be fruitful.
LIST OF REFERENCES

Hsu, J. C. and Meyer, A. U.
Modern Control Principles and Applications.

Judd, F. F. and Chen, C. T.
"On the Performance and Design of Self Oscillating DC to DC Converters".

Schweitzer, B. P. and Rosestein, A. B.
"Free Running Switching Mode Power Regulator: Analysis and Design".

Widlar, R. J.
Designing Switching Regulators.