MIRAGE Operators Manual

1-1-1997

Scott H. Smith
Ronald C. Hofer
Guru Prasad
D. Russell

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

https://stars.library.ucf.edu/istlibrary/140

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
OPERATOR'S MANUAL

April 15, 1997

S. Smith
D. Russell
G. Prasad
R. Hofer, PhD.

Institute for Simulation and Training
University of Central Florida
3280 Progress Drive
Orlando FL 32826

IST-TR-97-06
Table of Contents

1. INTRODUCTION .. 5
 1.1 ORIGIN AND PURPOSE OF THIS DOCUMENT ... 5
 1.2 DESCRIPTION ... 5
 1.2.1 APPEARANCE .. 5
 1.2.2 HARDWARE COMPONENTS .. 6
 1.2.3 SOFTWARE COMPONENTS .. 7
 1.3 ORGANIZATION OF THIS MANUAL ... 8
2. ACRONYMS AND ABBREVIATIONS ... 8
3. QUICK START .. 8
 3.1 STARTUP ... 9
 3.2 SHUT DOWN ... 9
4. MIRAGE HARDWARE ORGANIZATION ... 9
 4.1 COMPONENTS ... 9
 4.1.1 TABLE ... 10
 4.1.2 PROJECTION SCREEN .. 10
 4.1.3 ARMATURE .. 12
 4.1.4 MIRROR MOUNT ... 12
 4.1.5 MIRROR .. 15
 4.1.6 PROJECTOR .. 17
 4.1.7 PROJECTOR MOUNT ... 17
 4.1.8 STEREOGRAPHICS CRYSTAL-EYES EYEWEAR 19
 4.1.9 STEREOGRAPHICS CRYSTAL-EYES INFRA-RED EMITTER 19
 4.1.10 TRACKER ... 21
 4.1.11 IMAGE GENERATOR .. 21
 4.1.12 OPERATOR CONTROLS ... 21
 4.1.13 FOOTPRINT .. 22
 4.2 CONNECTIVITY ... 22
 4.2.1 CABLEING ... 22
 4.2.2 NETWORK CONFIGURATION .. 24
 4.2.3 POWER .. 24
5. DESCRIPTION OF MIRAGE SOFTWARE SETUP ... 24
 5.1 OS ... 24
 5.2 COMPILER ... 24
 5.3 PERFORMER .. 24
 5.4 MIRAGE APPLICATION ... 25
 5.4.1 EXECUTABLES .. 25
 5.4.2 SCRIPT FILES .. 25
 5.4.3 DATABASES ... 25
 5.4.4 DIS INFORMATION .. 25
 5.5 SOURCE CODE ... 26
 5.6 MISCELLANEOUS UTILITIES ... 26
6. HARDWARE ADJUSTMENT ... 26
 6.1 TABLE... 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 POSITIONING</td>
<td>26</td>
</tr>
<tr>
<td>6.1.2 LEVELING</td>
<td>27</td>
</tr>
<tr>
<td>6.2 MIRROR</td>
<td>27</td>
</tr>
<tr>
<td>6.2.1 ADJUSTMENT</td>
<td>27</td>
</tr>
<tr>
<td>6.3 PROJECTOR</td>
<td>27</td>
</tr>
<tr>
<td>6.3.1 POSITIONING</td>
<td>27</td>
</tr>
<tr>
<td>6.3.2 ADJUSTMENT</td>
<td>27</td>
</tr>
<tr>
<td>6.3.2.1 ALIGNMENT</td>
<td>27</td>
</tr>
<tr>
<td>6.3.2.2 FOCUSING</td>
<td>27</td>
</tr>
<tr>
<td>6.3.2.3 CONVERGENCE</td>
<td>27</td>
</tr>
<tr>
<td>6.4 HEAD TRACKER</td>
<td>28</td>
</tr>
<tr>
<td>6.4.1 POSITIONING</td>
<td>28</td>
</tr>
<tr>
<td>6.4.2 CALIBRATION</td>
<td>28</td>
</tr>
<tr>
<td>6.5 STEREO EYEWEAR</td>
<td>28</td>
</tr>
<tr>
<td>6.5.1 Emitter Location</td>
<td>28</td>
</tr>
<tr>
<td>6.5.2 Battery Replacement</td>
<td>28</td>
</tr>
<tr>
<td>7. NORMAL OPERATION</td>
<td>28</td>
</tr>
<tr>
<td>7.1 STARTUP</td>
<td>29</td>
</tr>
<tr>
<td>7.1.1 Powering on the Hardware</td>
<td>29</td>
</tr>
<tr>
<td>7.1.2 Logging on</td>
<td>29</td>
</tr>
<tr>
<td>7.1.3 Starting the Mirage Application</td>
<td>30</td>
</tr>
<tr>
<td>7.2 BASIC FEATURES</td>
<td>30</td>
</tr>
<tr>
<td>7.2.1 Windowing</td>
<td>30</td>
</tr>
<tr>
<td>7.2.2 Database Selection</td>
<td>31</td>
</tr>
<tr>
<td>7.2.3 GUI Operations</td>
<td>32</td>
</tr>
<tr>
<td>7.2.4 Changing Scale</td>
<td>32</td>
</tr>
<tr>
<td>7.2.5 Traversing a Database</td>
<td>33</td>
</tr>
<tr>
<td>7.2.6 Exiting</td>
<td>33</td>
</tr>
<tr>
<td>7.3 EXTENDED FEATURES</td>
<td>33</td>
</tr>
<tr>
<td>7.3.1 Entity Services</td>
<td>33</td>
</tr>
<tr>
<td>7.3.1.1 Entity Services Configuration</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.1 eservHz n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.2 port n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.3 maxClients n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.4 smoothing t</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.5 controlShmkey n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.6 nextShmkey n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.7 deltaShmkey n</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.1.8 Sample Entity Services Configuration File</td>
<td>34</td>
</tr>
<tr>
<td>7.3.1.2 Coordinate Conversion Configuration</td>
<td>35</td>
</tr>
<tr>
<td>7.3.2 Mirage Configuration Files</td>
<td>35</td>
</tr>
<tr>
<td>7.3.2.1 modifying Start Locations in Scripts</td>
<td>35</td>
</tr>
<tr>
<td>7.3.2.2 Adding/Modifying Databases in Scripts</td>
<td>36</td>
</tr>
<tr>
<td>7.3.2.3 Associating Models with DIS Entity Types via Scripts</td>
<td>36</td>
</tr>
<tr>
<td>7.4 Summary of Control Inputs</td>
<td>37</td>
</tr>
</tbody>
</table>
7.4.1 KEYBOARD FUNCTION KEYS .. 37
 7.4.1.1 TOGGLE POLYGON/WIREFRAME .. 37
 7.4.1.2 TOGGLE TERRAIN FOLLOWING .. 37
 7.4.1.3 TOGGLE GUI PANEL .. 37
 7.4.1.4 TOGGLE DIS ENTITY SERVICES ... 38
 7.4.1.5 CALIBRATE HEAD TRACKER .. 38
7.4.2 SPACEBALL™ COMMANDS ... 38
 7.4.2.1 “SELECT” BUTTON .. 39
 7.4.2.2 SPACEBALL™ FUNCTION BUTTONS .. 39
7.4.3 MOUSE COMMANDS .. 40
7.4.4 MIRAGE CONFIGURATION FILE COMMANDS 40
8. TROUBLESHOOTING ... 42
 8.1 HARDWARE PROBLEMS ... 42
 8.2 SOFTWARE PROBLEMS ... 43
9. SOFTWARE AND DATABASES DELIVERED .. 44
 9.1 EXECUTABLES .. 44
 9.2 CONFIGURATION FILES .. 44
 9.3 TERRAIN DATABASES ... 44
 9.4 MODELS ... 44
 9.5 SGI SYSTEM SOFTWARE ... 45
10. BIBLIOGRAPHY ... 45
1. INTRODUCTION
This document is a description of the hardware and software components of the Mirage Virtual Sandtable System and an operation and troubleshooting manual for users. This manual was written by researchers at IST to describe the configuration and operation of the system which was delivered to the U.S. Army's Strategic Space Defense Command's Warfighting Analysis and Integration Center at Arlington Virginia in April, 1997.

1.1 ORIGIN AND PURPOSE OF THIS DOCUMENT
This document is a deliverable item, CDRL AB02, "Demonstration Analysis Report" required under the terms of TASC contract J-08200-S96085, D.O. 19, entitled "Virtual Sandtable Capabilities Demonstration at the Warfighter Analysis and Integration Center."

1.2 DESCRIPTION
This section describes the Mirage system and provides an overview of its hardware and software components.

1.2.1 APPEARANCE
Mirage is a 3D, stereoscopic, pseudo-holographic display system which generates an image that appears as a scale model resting on a horizontal tabletop in front of the viewer. The viewer may walk around the display, examining the image from various azimuths and altitudes or he may pan and zoom through the virtual space. The display is not immersive in the way that a head mounted stereoscopic display can be. Instead, Mirage creates an inset of a piece of the virtual world and places it into the viewer's frame of reference. The rest of the viewer's environment around the display table remains visible.

Mirage is a three dimensional display device. It produces real images which depict the spatial relationships of objects in the virtual world. Only the objects or portions of objects within the field of view are drawn. Foreground objects occult those farther away. Movement of the viewpoint results in differential shifting of the images of objects that are at different distances from the viewpoint.

Traditional displays are normally drawn on a vertical surface or on a head mounted pair of displays. In both cases the image is rendered assuming the viewer's line of sight will be perpendicular to the display surface. In Mirage the image is drawn on a horizontal tabletop display screen and the viewer's aspect angle is always oblique, usually between 30 and 80 degrees away from perpendicular.

As the user faces the table the image always shows what is in front of him. To change the view the user changes position with respect to the tabletop, walking around the display, examining the scene from various azimuths and altitudes. Moving closer or farther away does not change the apparent size of the objects in the scene, although it does change the angular field of view. The side of a building or tree that is hidden from one point of view becomes visible when the user walks to the opposite side of the table.
Being stereoscopic, Mirage presents each of the viewer’s eyes with a different image, accounting for the different aspect angles, distances, and other characteristics of the image that is visible from those two locations. The viewer derives an understanding of the spatial relationships of objects within the scene from this additional cue when his brain fuses the two images.

Normal stereoscopic views of virtual worlds are usually attempts to generate realistic views so movement and separation of the right and left eye viewpoints are computed in the same scale that is used to define the virtual world. Objects one meter away from the viewer in the virtual world appear to be one meter away. Objects and features hundreds of meters away appear to be hundreds of meters away. Mirage uses stereo in a different way.

Mirage provides a view of the virtual world which appears to be that of a scale model placed on the table. A true scale model, such as an H.O. gauge train set, is small and very close to its operator (the viewer.) The distance between the viewer’s eyes (typically 6 cm.) is a large enough fraction of the eyes’ distance from the scene (typically 1.5 - 2.0 m.) that the parallax angle allows significant stereo separation and the objects “look” three-dimensional. Beyond five or six meters, however, stereoscopic vision is negligible and other cues (size, haze, etc.) are more useful indicators of distance. A “realistic” stereo view of a piece of terrain from a viewpoint hundreds or thousands of meters away appears “flat” with no more apparent relief than one sees when looking at the ground through the window of a high flying aircraft. An out-the-window view is not what was desired for Mirage.

The solution is to maintain the same ratio of virtual interocular spacing to virtual distance as is found in the “real” world. That “real” world consists of the viewer’s eyes and the tabletop. Mirage provides a capability to “zoom” in and out, changing the size of the portion of the virtual world that fits on the tabletop. As the viewer moves out, his virtual interocular spacing is increased. The result is that the viewer is scaled up to be a sort of Brobdingnagian individual who is very large with respect to the hills, buildings, roads, and rivers (if those are being drawn.) In addition, as the viewer moves, the viewpoint is moved in this same scale so that a small apparent movement on the part of the viewer becomes a large movement in the virtual world. The effect of this is that the entire scene appears to be close to the viewer and objects in it appear to be small and located on the tabletop.

The Mirage image appears to float in space around the plane of the horizontal display screen. Objects at higher elevations in the virtual world appear to float above the table. Objects at lower elevations appear to be depressed beneath the table surface.

1.2.2 HARDWARE COMPONENTS
The Mirage system comprises seven major hardware components which are illustrated in Figure 1.
1. Computer Image Generator
2. Projector
3. Head Tracker
4. Stereo Eyewear and Emitter
5. Control Inputs (Joystick, Keyboard, and Mouse)
6. Mirror
7. Projection table and screen

![Diagram](image_url)

Figure 1. *Mirage* Hardware Components

1.2.3 SOFTWARE COMPONENTS
The software implementing the graphics, networking, and operator control and feedback functions forms the second component of the *Mirage* system.

Infrastructure - The *Mirage* software is based on portions of an object-oriented library of interface and facilitating functions called the Virtual Environment Library (VEL) which was written at IST. It contains drivers for the Flock of Birdstm (FOB) magnetic head tracker, the SpaceBalltm 6DOF joystick, and Crystal Eyestm. VEL and *Mirage* specific functions are written in C++. A loader for Multigen Flighttm databases is included.
Projection - For Mirage, an oblique projection is made onto a viewing surface that is horizontal and fixed with reference to the virtual world rather than with respect to the viewer. Because this was done using Silicon Graphics' Performer library it is accomplished by specifying asymmetrical viewing cones (or "off-axis viewing frustra") in which the line connecting the center of projection with the eyepoint is not perpendicular to the projection plane.

Communications - Mirage communicates with simulators and other data sources via a network interface, using the version 2.0.4 of the DIS protocol.

1.3 ORGANIZATION OF THIS MANUAL
The remainder of this document is organized as follows:

- Section 2 lists acronyms and abbreviations used throughout this document
- Section 3 is a summary of actions necessary to start up and operate the system.
- Section 4 describes the hardware components that make up the operational system that was delivered.
- Section 5 describes the software components that make up the operational system and the software source code from which the system is built.
- Section 6 describes adjustment and calibration of hardware
- Section 7 describes normal operational use of the system
- Section 8 is a troubleshooting guide
- Section 9 lists the files containing executable modules, configuration data, visual and other databases, and source code delivered under the contract.
- Section 0 is a bibliography of related publications.

2. ACRONYMS AND ABBREVIATIONS
The following Acronyms and abbreviations are used throughout this manual.

AVI Audio Visual Innovations, Inc.
CDRL Contract Deliverable Requirements List
DIS Distributed Interactive Simulation
DOF Degrees of Freedom
FOB Flock of Birds™
SSDC Strategic Space Defense Command
VEL Virtual Environment Library
WAIC Warfighting Analysis and Integration Center

3. QUICK START
This section contains a brief summary of the steps required to turn on and start up Mirage and to shut down the system. More detailed explanations will be found in section 7, "Normal Operation".
3.1 STARTUP
It is assumed the Image Generator is already running.

1. Apply power (order is unimportant) to:
 - Projector
 - Distribution amplifier
 - FOB
 - Infra-red emitter
 - SpaceBall

2. Log onto image generator

3. Change directory to /usr/people/mirage/mirage/bin

4. Start the Mirage application via the keyboard by typing the command
demo

5. When the application begins and the main Mirage window appears, select a database
type in order to view the available models.

6. Select the desired database and press the “Run Demo” button to begin viewing the
database.

7. The SpaceBall may be used to move the viewpoint. Pressing the select button
located on the front of the ball allows the user to zoom in and out.

3.2 SHUT DOWN
1. Exit the demo application. The visualization software may be stopped by either
pressing the escape key or the quit button on the graphical user interface. The
demonstration software requires that the window containing the database list be
closed in order for the Quit button on the main window to function.

2. Log out of the Image Generator

3. Turn off power to the equipment mentioned above in section 3.1.

4. MIRAGE HARDWARE ORGANIZATION
This section describes the physical components of the Mirage system as delivered to
WAIC.

4.1 COMPONENTS
This section lists the specifications of the major hardware components of the Mirage
system
4.1.1 TABLE
The table supports the viewing screen and the transmitter for the head tracker. The table (IST serial no. 000001) which was delivered to WAIC is 75 inches wide, 99 inches long, and 36 inches high with a 2 inch by 2 inch rail around the top to position the projection screen. A cradle to support the magnetic head tracker’s transmitter is suspended from the framing under the table (see figure 2.) The table is constructed almost entirely of wood and glue to avoid distortion of the head tracker’s magnetic fields by metal fasteners.

![Figure 2. Projection Table](image)

The table is heavily constructed of ¾ inch plywood and 2 inch by 6 inch fir framing to provide a rigid, flat surface for the screen and to be strong enough to support, without noticeable deflection, the weight of equipment and laborers who need to stand on it to assemble and adjust the other components. All joints are glued and the legs and transmitter cradle are attached using stainless steel bolts to minimize interference with the head tracker’s magnetic field. The complete table weighs approximately 200 kg.

4.1.2 PROJECTION SCREEN
The projection screen is a 120” diagonal measurement low gain “DaMat Perm Wall Screen” in a “Perm Wall” frame (see figure 3). The manufacture is the DaLite Screen Company. The screen has a gain of approximately 1.1 and is attached to the back of the 1” square aluminum tubing frame using snap fasteners. The frame rests on the tabletop inside the wooden edge rail and is attached to the table with two stainless steel 6-32x3” machine screws.
PERM WALL FRAME

COLOR CODED BANDS TO SIMPLIFY ASSEMBLY

PRECISELY PLACED STUDS FOR SNAP BUTTONS

WELDED CORNERS

ANODIZED ALUMINUM FRAME

PICTURE SURFACE

DETAIL VIEW OF FRAME JOINT

ALUMINUM TUBE

WING NUT CONCEALED BY BINDING

BINDING WITH SNAP BUTTONS

FRAME TUBING

Figure 3. Projection Screen Frame
4.1.3 ARMATURE
A support framework was built for IST by Audio Visual Innovations, Inc. (AVI), the subcontractor that provided the projector, mirror, and screen. This structure holds the projector and mirror in proper relationship and provides attachment points for overhead mounting. It is constructed of steel rails made of UNISTRUT™. It is 120 inches in length and 16 inches in width and provides attachment points for the projector mount and mirror mount. It is painted black. Figure 4 shows a top view and Figure 4a is a side view of this armature with the attached mounting brackets for the projector and mirror.

4.1.4 MIRROR MOUNT
The mylar mirror is suspended from the armature by a framework modified by AVI from a Hudson Photographic Company Vertical Projection Stand, (model 183-282), shown in Figure 5 below.

Figure 4. Support Framework - Top View
Figure 4a. Support Framework - Side View
Figure 5. Hudson Mirror mount

When one of the stands has to be placed close to a wall and the long floor leg interferes, it can be moved forward or back by using the center hole for the diagonal brace and the end hole for the vertical post.

MIRRORITE mirror stands for vertical projections come in two models, STANDS-MMAAS-V-96 consists of two (2) stands 9" high (183-263-1) One (1) vertical mirror frame (183-281) with two rails. STANDS-MMAAS-V-120 consists of two (2) stands 12" high (183-263-3) One (1) vertical mirror frame (183-281) with two rails.

MIRRORITE Projection grade mirror and MMAAS Adjustable Mounting System (183-221) are not included. They can be ordered separately for use with the MIRRORITE MIRROR STAND. For horizontal or vertical projection, or for use with your own mirror stand.

MIRRORITE is a registered trademark of Miroopa Products, Inc.

TELESERIES is a registered trademark of Hudson Photographic Industries, Inc.

Hudson Photographic Industries, Inc.

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Issued</td>
<td>EM 1-16-84</td>
</tr>
<tr>
<td>B</td>
<td>Added</td>
<td>EM 3-8-95</td>
</tr>
<tr>
<td>C</td>
<td>Added 183-325</td>
<td>EM 3-8-95</td>
</tr>
</tbody>
</table>

183-282

MIRRORITE Mirror Stand - Vertical Projection

Telecine

Vertical projection from above showing position of mirror on 183-282 STANDS-MMAAS-V and the projector installed on TELESCREEN® VPS-VP stand, which has been fastened to the ceiling.

Vertical projection from below showing position of mirror on 183-282 STANDS-MMAAS-V and the projector on the TELESCREEN® VPS-VP stand.
4.1.5 MIRROR
The mirror is a MirrormiteTM Glassless Thin Film Mirror, type PGX with a reflectivity of 94\%, made by Hudson Photographic Industries, Inc. (see figure 6) It measures 48" by 72". The mirror's reflective surface is a sheet of aluminized mylar stretched over an internal frame made of aluminum and polyurethane foam.

![Figure 6. Mirror Construction](image)

The mirror is suspended in front of the horizontally mounted projector to bend the optical path from horizontal to vertical. This reduced overall height while maintaining a large image size.
The mirror is attached to the mirror mount using the Mirror Mounting Adjustable Angle System, model 183-221. (Figure 7 below) which provides three adjustable support points for the mirror.

Adjustable Angle System

The mirror is attached to the mirror mount using the Mirror Mounting Adjustable Angle System, model 183-221. (Figure 7 below) which provides three adjustable support points for the mirror.

Figure 7: Adjustable Angle System

- MIRRORLITE® MIRROR MOUNTING ADJUSTABLE ANGLE SYSTEM
- MIRRORLITE® Mirror Mounting System raises the mirror to the desired angle, making the projected image bright and clear. The system also ensures the mirror is tilted properly, maintaining a safe and effective angle of adjustment. The system provides three adjustable support points for the mirror.
4.1.6 PROJECTOR
The projector is an Electrohome Marquee Series model 8111 with Automatic Convergence Unit (ACON) and a short-persistence P43 green phosphor tube which can handle the 96 Hz. refresh rate required for stereo. It has a horizontal scan rate ranging from 15 kHz to 130 kHz. Technical Details are listed in the owner’s manual [ELEC1996] which was provided to WAIC at the time of initial hardware delivery in January 1997.

4.1.7 PROJECTOR MOUNT
The projector is attached to the armature using a commercially available mount designed for the Electrohome Marquee series of projectors. AVI used a Chief Manufacturing Inc. VCM-41E Projector Ceiling Mount (Figure 8) which allows roll, pitch, and yaw adjustment as well as slight horizontal adjustment.

![Chief Projector Mount](image)

Figure 8. Chief Projector Mount
The mount bolts to the armature and the projector hangs from the mount by a Chief HB-41E video projector hanging bracket (Figure 9).

Unpack and check contents:

1. Mounting Rail
2. (8) 3/8-16 x 1" Bolt
3. (16) 3/8" Flat Washer
4. (8) 3/8-16 Hex Lock Nut
5. (4) 5/16-18 Flange Nut (VCM-41E and VCM-2C/3C only)

INSTALLATION INSTRUCTIONS

1. Turn your projector upside down.
2. With the "L" slots facing the rear of the projector, install the mounting rail to the projector using the hardware supplied. Tighten securely.
3. See EVCM-100, VCM-41E or VCM-2C/3C instruction for installing to mount.

Figure 9. Projector Hanging Bracket
4.1.8 STEREOGRAPHICS CRYSTAL-EYES EYEWEAR

To allow the user to see the stereoscopic projection, StereoGraphics Corporation CrystalEyes2™ eyewear is used to alternately occult each eye in synchrony with the image generator's output of left and right eye images. These are field sequential electro-stereoscopic liquid crystal shutter devices which are synchronized using an extended range infrared transmitter driven by a serial port on the image generator. The image generator provides 48 pairs of left and right eye images per second from its output buffer, synchronized with the transmitter. When a right eye image is being drawn the eyewear occults the viewer's left eye and vice versa.

Four pairs of StereoGraphics Crystal Eyes Eyewear, model CE-2, were provided to WAIC. A pair is illustrated in Figure 10 below.

![Figure 10. StereoGraphics Eyewear](image)

4.1.9 STEREOGRAPHICS CRYSTAL-EYES INFRA-RED EMITTER

The StereoGraphics extended range infrared transmitter (model ELR) is positioned at the center of the bottom edge of the mirror and is aimed downward to bounce its signal off the screen to the viewer where it is detected by the sensor between the lenses on the front of the eyewear. The emitter receives a synchronization signal via RG-59 coaxial cable. The output signal from the image generator's stereo port is converted from twisted pair to a coaxial connector (BNC) using a special adapter (Part #82252) provided by StereoGraphics. The emitter also receives power on a separate connector from a 120VAC to 12VDC power supply (part #82011). The adapter is illustrated in figure 11.
FROM SGI COMPUTER

PART # 69942

PART # 69929

PART # 69977

PART # 82011
120 VAC PWR SPLY
INPUT 120 VAC
OUTPUT 12 VDC @ 200mA

PART # 82252
FLAG TIE LABELLED "SGI"

AND

OR

PRO EMITTER
PART # 82310
OR
LONG RANGE EMITTER
PART # 82320

NOTES:
82252 AND # 82011 MUST BE USED TOGETHER
BEST USED WITH THE LONG RANGE EMITTER
82250 IS USED ALONE

NOTE: DRAWING MAY VARY FROM ACTUAL HARDWARE
4.1.10 TRACKER
The position of the viewer is determined using an Ascension Technology Corporation Flock of Birds™ magnetic position sensor with extended range transmitter and one receiver which is attached to the side of the eyewear worn by the primary user. The receiver cable is suspended from the overhead frame to allow the user to walk around the table. The transmitter is suspended just below the center of the table. It is housed in a black cube measuring 12 inches on a side. Detailed technical information may be found in [ASCE1996].

4.1.11 IMAGE GENERATOR
The image generator is a Silicon Graphics Onyx-2 Reality Engine Deskside computer with two 200 MHz R10000 processors, 256 MB main memory, 16 MB texture memory, and Reality Engine graphics pipe. The image generator provides stereo output in the form of 48 right and 48 left eye images per second to avoid flicker.

4.1.12 OPERATOR CONTROLS
Operator control is performed through a combination of the Onyx keyboard and mouse and a SpaceBall™ joystick.

The SpaceBall™ is used for:
- Moving the viewpoint horizontally or vertically
- Changing the scale (or magnification) of the image

The keyboard is used for:
- Initialization and configuration before starting the application
- Selection of certain modes during normal Mirage operation (via the numbered function keys)

The mouse is used for selection of options in:
- IRIX windows
- Mirage menu panels
4.1.13 FOOTPRINT
The floor space required by the entire system is shown in figure 12 below.

![Floorplan](image)

Figure 12. Floorplan

4.2 CONNECTIVITY
4.2.1 CABLEING
The Mirage system requires four basic cable connections between the operating station and the image generator (not including the keyboard and mouse). These connections include:

- Video connection to the projector (RGB Cable - sync on green)
- Serial connection to SpaceBall™ (DB9 to 8 pin DIN) provided by SpaceTec
- Serial connection to Flock of Birds (DB9 to DB9) standard PC modem cable.
- Stereo sync (DB9 to coaxial BNC connector) provided by StereoGraphics.

Cable end connections and types are illustrated in figures 13 and 13a below.
Figure 13. Mirage - Onyx RE-2 Connections

Figure 13a. MIRAGE Internal Cable Connections
4.2.2 NETWORK CONFIGURATION
The Onyx communicates with other systems via a 4 100Base-TX/6ASYNC XIO network
interface board. As with all DIS software, communications of entity data is made
through network broadcast traffic on a particular port. The port may be changed in the
Entity Services configuration file described in Section 7.3.1.1.

4.2.3 POWER
For the entire Mirage configuration including image generator, seven standard 120 Volt
outlets are required. The total current load of the system requires at least two 20 Amp
circuits.

5. DESCRIPTION OF MIRAGE SOFTWARE SETUP
The Mirage execution environment and source code consist of a number of important
pieces. The execution environment contains all of the components necessary to run the
Mirage software and possibly view DIS entities. The source code provides all of the
pieces necessary to compile the Mirage executable given that the appropriate libraries and
compilers are available on the machine.

The software components required by the Mirage system are described in the following
sections. The components required for execution versus compilation will be noted.

5.1 OS
The software delivered in conjunction with this report was developed under IRIX 6.4 to
be run on an IRIX 6.4 machine. The operating system can be considered important for
both execution and compilation. In its current state, the software should be capable of
being recompiled for any IRIX version 5.3 or greater; however, changes in the makefiles
will be required to complete the compilation.

5.2 COMPILER
The Mirage software was compiled with the SGI C++ Compiler version 6. The C++
execution environment that it has been tested on is version 7.1. In order to compile the
software again, the C++ Compiler must be installed along with the IRIX n32 system and
Performer libraries.

5.3 PERFORMER
Performer version 2.1 was used to develop the delivered version of the Mirage software.
It should be noted that SGI only guarantees proper operation of Performer 2.1 on Infinite
Reality machines. No problems have been encountered so far; however, it may be
necessary to recompile the code with Performer version 2.0.1 if problems do arise.
Components of Performer 2.1 are required to be installed on a machine for it to be
capable of running the Mirage software. This Performer execution environment should
be available on any IRIX OS CD-ROM.
5.4 **MIRAGE APPLICATION**

The *Mirage* application consists of a number of component parts. All of the required components will be extracted and placed within the proper directory structure by the tape archive provided in conjunction with this report. The tape labeled *Mirage* Execution Environment version 1.0 and dated March 28, 1997, will produce a directory structure consuming 97.8 MB (95.6 MB of which are sample databases and DIS geometry models). The files extracted comprise the execution environment for the *Mirage* software.

5.4.1 **EXECUTABLES**

Three executable files are extracted into the bin directory:

- Mirage
- entityServ
- MirageDemo

5.4.2 **SCRIPT FILES**

For each of the sample databases provided, a configuration/script file exists in the scripts directory. These files provide the *Mirage* software with the starting values for the system which are specific to the particular databases to be loaded. The file *Mirage.cfg*, which provides default values for the system, can be found with these files.

5.4.3 **DATABASES**

The sample databases provided with the software are all in Multigen OpenFlight format. They are located in the models directory in the *Mirage* execution environment. The software is capable of loading any of the model formats supported by the Performer library (this list can be found either in the Performer manuals or in the online books). Models can be loaded from any directory provided that appropriate path entries are made in the configuration files prior to attempting to load the model (see section 7.3.2.2). The provided sample databases are:

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Location</th>
<th>Model Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Hunter Liggett</td>
<td>mirage/models/HunterLt</td>
<td>hiflight.flt</td>
</tr>
<tr>
<td>Quantico Training Village</td>
<td>mirage/models/quantico/models</td>
<td>demo.flt</td>
</tr>
<tr>
<td>Range 400 Live Fire Range</td>
<td>mirage/models/range400/models</td>
<td>r400_tex.flt</td>
</tr>
<tr>
<td>ARI Building Walkthrough (Research Pavilion)</td>
<td>mirage/models/walkthrough/models</td>
<td>pav_third.flt</td>
</tr>
</tbody>
</table>

5.4.4 **DIS INFORMATION**

In the *Mirage* bin directory, the file named CC.performer.cfg contains information needed for DIS coordinate conversions. The UTM origin of the database to be loaded and used for DIS exercises should be entered in this file following the format of the information in the default file. DIS exercises also require that a port number be chosen for broadcast traffic to be received. This port may be set in the eserv.cfg file located in the same directory.
The *Mirage* system uses a separate program called Entity Services to access DIS information on the network. In order for DIS to be available to the system, a copy of Entity Services must be running on the host computer. This procedure is outlined in section 7.3.1.

5.5 SOURCE CODE
From a separate tape, named *Mirage* Source version 1.0, a complete set of source code may be extracted. The tape will extract a number of files into a directory called src. Below the src directory are a number of sub-directories which contain the actual code written to implement the *Mirage* software. For more information consult the README file in the src directory after extracting the tape archive.

5.6 MISCELLANEOUS UTILITIES
The demonstration interface provided with the *Mirage* software provides a simple mechanism for displaying available models and running the system. The demonstration interface uses a number of configuration files to define models available and indicate the appropriate *Mirage* configuration file associated with the databases. Adding new databases to the lists is simply a matter of modifying the configuration files. The names of the demonstration program configuration files match the buttons on the main panel:

```
military.list and nonmilitary.list
```

The file *military.list* currently has the following entries:

```
<config file>   <database description>

r400.cfg       Range 400
hunter.cfg     Fort Hunter Liggett
quantico.cfg   Quantico Village
```

In order to add a new database to the list displayed when the military databases button is pressed, simply add a new line to the file following this format. The same procedure may be applied to add new non-military databases as well.

6. HARDWARE ADJUSTMENT
6.1 TABLE
The table legs and FOB cradle may be unbolted for transport.

6.1.1 POSITIONING
The table should be positioned under the mirror to provide even spacing around the illuminated portion. If it is to be moved often it may be convenient to mark the locations of the feet on the floor using tape.
6.1.2 LEVELING
The bottom of each of the table legs contains a leveling screw which rests on the floor. These are 1/2" stainless steel hex head bolts which may be turned with a wrench if the table needs to be leveled.

6.2 MIRROR
The mylar surface of the mirror should be protected during movement or adjustment as oils and dirt from fingers will leave noticeable smudges and even gentle removal may stretch and distort the surface. The mirror may be wrapped in polyethylene sheeting or clean new cotton gloves may be worn.

6.2.1 ADJUSTMENT
The mirror should not require adjustment but if it does, use the three spring loaded bolts described in section 4.1.5 and illustrated in figure 7. The purpose of adjustment is to position the mirror so its horizontal axis is perpendicular to the axis of the projector and so that it deflects the beam exactly 90 degrees downward.

6.3 PROJECTOR
6.3.1 POSITIONING
The projector should not require repositioning. Its mount is fixed to the armature. The projector and hanging plate may be lowered using the hoisting tray and tackles provided when the equipment was delivered.

6.3.2 ADJUSTMENT
Whenever the relative positions of any of the projector, mirror, or table are changed the projector may need to be adjusted. This requires three operations which are described in detail in the projector manual [ELEC1996]. The operations are alignment, focus, and convergence. They are too complicated to describe here but the online help menus in the projector step the user through these.

6.3.2.1 ALIGNMENT
Alignment is the process of mechanically moving the three guns in the projector to converge their central axes at the center of the tabletop projection screen. This involves electrically centering the image on each CRT and mechanically positioning the CRT/lens assemblies.

6.3.2.2 FOCUSING
Focusing is the process of mechanically adjusting the lenses in each of the three guns to focus at both the center and the edges of the tabletop.

6.3.2.3 CONVERGENCE
Convergence is the process of electrically adjusting the guns for the best registration of different colored pixels on the screen.
6.4 HEAD TRACKER
The FOB has few hardware adjustments beyond insuring that all cables are attached properly. The position of the transmitter can be critical, however.

6.4.1 POSITIONING
The transmitter is the black cube mounted under the *Mirage* table. This transmitter weighs nearly 50 pounds and should be handled carefully. When properly positioned, the transmitter will be under the table with the cable towards the back of the table and the bottom of the transmitter. If the transmitter is oriented in any other manner, the software will be unable to determine the appropriate location of the viewer.

6.4.2 CALIBRATION
Calibration of the FOB is performed in software. The calibration procedure consists of entering calibration mode, placing the tracker on the target, and pressing the calibration button (F12). The calibration procedure is covered in section 7.4.1.5.

6.5 STEREO EYEWEAR
The StereoGraphics eyewear is designed to turn on when the left temple piece is opened. They should, therefore, be kept closed when not in use to avoid draining the batteries. The eyewear must receive the synchronization signal from the emitter in order to function properly. If the image appears to flicker, the batteries are probably worn out and should be replaced. If the stereo aspect of the image disappears then the eyewear is probably not being illuminated by the emitter. The user should be sure to face the emitter if this happens.

6.5.1 EMITTER LOCATION
The infra-red emitter for the StereoGraphics Crystal Eyes is located on an aluminum bracket bolted to the lower edge of the mirror support frame. The emitter is attached to the bracket with Velcro tape. The bracket was designed to aim the emitter to bounce its beam off the table surface to the operator and other viewers. Two emitters were supplied when the system was delivered. The second unit can be daisy-chained with the first using RG-58 coaxial cable if it is later found necessary to increase the coverage of the signal.

6.5.2 BATTERY REPLACEMENT
The Stereographics CrystalEyes Eyewear is battery powered. Each set of eyewear requires two CR-2032 type batteries. These are replaced by swinging open a hinged battery compartment on the inside of the left side of the equipment. Batteries should be replaced when the eyewear begins to show a flickering effect.

7. NORMAL OPERATION
Normal operation of *Mirage* includes:

1. Powering up the Projection and tracking systems
2. Logging onto the system
3. Starting the *Mirage* application
4. Calibrating the head tracker
5. Loading and displaying databases and models
6. Changing the viewpoint
7. Viewing DIS entities
8. Stopping the Mirage application
9. Logging off of the system
10. Shutting down the Projection and tracking systems

Operations which are covered in other sections of this manual, but which are not considered part of normal operation are:

1. Powering on/off the Image generator
2. Initializing/Shutting down the operating system on the Image generator
3. Aligning, Focusing, and converging the projector
4. Modifying application menus

7.1 STARTUP
Starting the system requires application of power, logging onto the system as a user, and starting the Mirage application

7.1.1 POWERING ON THE HARDWARE
1. Power up the Extron Distribution Amplifier
2. Power up the projector. First, check to see if the projector is already turned on or in stand-by mode.
 • If the projector is already turned on the green light on the back should be glowing. If there is no image on the tabletop try moving the mouse to disable the screen saver.
 • If the projector is turned off, only the amber light should be glowing on the back. Turn on the projector with the remote control by pointing it at the mirror and holding the power button down for at least two seconds. You should hear two clicks, about a second apart. The projector will take about 5-10 seconds to come on. If you do not then see the login prompt, the screen saver might be running, so try moving the mouse to disable it.
 • If the projector is in standby mode, both the amber and green lights should be glowing. Turn on the projector by pressing the standby button on the remote.
3. Turn on power to all three tracker control boxes. You should see the red LEDs flash on the front panels of all three boxes.
4.

7.1.2 LOGGING ON
When the IRIX control window appears on the table, log onto the operating system with the ID and PASSWORD provided by the facility systems administrator
7.1.3 STARTING THE MIRAGE APPLICATION
The *Mirage* application may be started in a number of ways. The easiest method involves first running the demonstration panel which will then start the *Mirage* application with the desired database loaded. This may be accomplished by entering the *Mirage* bin directory and typing the command demo. This script will then change the display settings, run the DIS handling software (Entity Services), and start the demonstration software.

The CrystalEyes2™ eyewear turns on when the left temple piece is extended. The lenses may flicker momentarily when turned on. To maintain stereo vision, the path between the eyewear and the IR transmitter located at the bottom of the mirror should not be obstructed. The signal may be received directly or by bouncing off the tabletop surface.

7.2 BASIC FEATURES
7.2.1 WINDOWING
Window manipulation will allow the user to observe various simultaneously executing processes. Basic operations allowed by IRIX require selection of a window by placing the mouse pointer somewhere within the window to be affected. Depending on the user's personal preferences, the methods of moving windows and changing their precedence may change; however, these are default operations allowed by the 4Dwm window manager:

- **ALT-F3** pushes the selected window to the back
- **ALT-F7** grabs the pane and allows the user to move it with the mouse until a button is clicked
- An edge of a window may be moved, reshaping the window, by placing the cursor on the edge, holding down the left mouse button, then moving the mouse
- A window may be moved by placing the cursor in the top bar, holding down the left button, then moving the mouse

Please note that in order for several of the SpaceBall™ and function keys to operate as specified later in this document, the cursor must be located somewhere in the main graphics window of the *Mirage* application (see figure 14 below). If the cursor is over the *Mirage* graphical user interface (GUI) or outside the graphics window, neither the SpaceBall™ nor keyboard commands will be acknowledged.
7.2.2 DATABASE SELECTION

If the *Mirage* software has been started using the demo script, selecting a database is simply a matter of traversing windows in the GUI and selecting the desired database to view. When the demonstration software starts, the main Mirage window shows selection buttons for two database categories: military and non-military. Pressing either of these buttons causes a new window to appear with a list of available databases in that category. Figure 15 shows the list of military databases. Once the user has chosen from the list of available databases, pressing the Run Demo button will start the *Mirage* application with the desired database.

When running the software directly from the command line, the database is chosen by specifying the configuration file to be loaded. Basically, a different configuration file should be associated with each database to be viewed using the *Mirage* application. The contents of these configuration files will be discussed under section 7.3.2.
7.2.3 GUI OPERATIONS
When the *Mirage* software starts, a small window appears which displays the word *Mirage* across the top. When the graphical window appears, this GUI is covered. In order to display the *Mirage* GUI, simply press function key 9 (F9) twice. Once the GUI appears, there are a number of options available. The buttons indicate the current state of the *Mirage* system. In order to hide this panel, simply move the cursor into the graphical window and press (F9). Once you have hidden the GUI, pressing the (F9) key will toggle between displaying and hiding the GUI.

7.2.4 CHANGING SCALE
The *Mirage* software allows the user to select a scale for the models which is appropriate for the viewer. This gives the effect of the model becoming either smaller or larger with respect to the viewer. This scale represents a factor relating the actual distance from the center of the table to the virtual distance from the objects in the virtual world. The scale factor may be (and probably should be) specified in the configuration file associated with a particular database. This allows the user to set the starting scale factor, but it is advantageous to change this scale factor interactively to improve viewing.

The scale factor may be modified interactively by using the SpaceBall™. By pulling up on the SpaceBall™ in ZOOM mode, the scale factor is increased, while pressing down causes the scale factor to decrease. This causes the viewpoint to appear to move either closer to or farther away from object displayed on the table.
7.2.5 TRAVERSING A DATABASE
An initial viewpoint may be set in the configuration file for a particular database but
during operation this may be altered interactively using the SpaceBalltm. If the
SpaceBalltm is oriented correctly with respect to the table, then in PAN and Z modes
(described in section 7.4.2) the viewpoint will move in the direction indicated by the
movement of the SpaceBalltm.

7.2.6 EXITING
There are two methods for exiting the \textit{Mirage} software. The quickest method involves
simply pressing the escape key (ESC) while the cursor is located in the graphical window.
The second method involves pressing the Quit button on the GUI panel (this usually will
require the user to first press F9 in order to display the panel).

7.3 EXTENDED FEATURES
7.3.1 ENTITY SERVICES
Entity Services provides the Mirage software with a link to the DIS world. While the
actual Entity Services application runs separately from the Mirage software, a link
between the two exists to allow the interchange of information. Basically, Entity Services
handles all of the networking and dead reckoning associated with a DIS exercise, the
Mirage software then obtains a list of active entities which must be interpreted in order to
display appropriate models for the entities involved in a simulation. If DIS is never
selected as active in the Mirage software, Entity Services is not required to be running;
however, if the DIS active button is pressed and Entity Services is not running, the
software will crash.

If the \textit{demo} script is used to start the software, Entity Services will be started and stopped
automatically. If the \textit{Mirage} software is started from the command line, Entity Services
must be started in a separate shell before DIS may be made active. In order to achieve
this, the command

```
entityServ eserv.cfg
```

must be entered at the command line. This will start Entity Services with the options
specified by the configuration file (eserv.cfg).

Entity Services was originally designed to provide DIS information for several
applications running on the same physical host. Due to limitations in the operating
system, only one application may receive information from a particular UDP broadcast
port. In some cases, several applications may desire a connection to DIS traffic. In order
to provide this capability, Entity Services was written to provide DIS information to a
number of clients running on the host machine. When a client application logs on to
Entity Services to receive DIS information, a new shared memory communications
channel is opened and prepared for use by this new client. Entity Services uses a set of
configurable shared memory keys to track these different client channels.
7.3.1.1 ENTITY SERVICES CONFIGURATION

The Entity Service requires a configuration file in order to operate. In most cases, the three shared memory key entries should be left as the defaults shown in the sample file. The configuration file has six variables that can be set:

7.3.1.1.1 `eservHz n`
where n is the number of times per second that the Service should process entities and miscellaneous information.

7.3.1.1.2 `port n`
where n is the UDP port number to use for broadcast network communication.

7.3.1.1.3 `maxClients n`
where n is the maximum number of clients that this service should provide for. In the case of the `Mirage` system, n may be set to 1. It is unlikely that more than one client application will be running on the `Mirage` host computer at any one time.

7.3.1.1.4 `smoothing t`
where t is either snapping, linear to indicate which smoothing method to use.

7.3.1.1.5 `controlShmkey n`
where n is the shared memory key for the control channel.

7.3.1.1.6 `nextShmkey n`
where n is the first shared memory key to use for client channels (state and miscellaneous)

7.3.1.1.7 `deltaShmkey n`
where n is the value to add to `nextShmkey` for each channel after each client logs on (i.e. the difference between successive channel shared memory keys).

7.3.1.1.8 SAMPLE ENTITY SERVICES CONFIGURATION FILE

```
ESERV_CONFIG_FILE
eservHz  40.0
port     3000
maxClients 10
smoothing linear
controlShmkey 0x00004000
nextShmkey   0x00008000
deltaShmkey  0x00000010
```

Note that the first line (`ESERV_CONFIG_FILE`) is required. Once a configuration file has been created, the Entity Service is run by using the name of the configuration file as a command-line argument. For example, the command:

```
```
entityServ eserv.cfg

will run the Entity Service using a configuration file named eserv.cfg.

7.3.1.2 COORDINATE CONVERSION CONFIGURATION

The coordinate conversions into and out of the DIS standard are conducted within the client application (in this case, Mirage.) However, the idea is for the client interface to perform any necessary conversion prior to the client application receiving the data. This meets the strategic goal of placing conversion responsibility within the client application, and at the same time insulating the client programmer from explicitly performing the conversions.

In order to facilitate the conversions, there must be a configuration file present that contains the necessary information. In the case of Mirage, a file of the name CC.performer.cfg is required with the following entry:

\[\text{utmOffset } \text{<Easting in meters> <Northing in meters> <zone>} \]

The utmOffset represents the UTM origin of the database.

7.3.2 MIRAGE CONFIGURATION FILES

In general, there are three directories in the Mirage execution environment which will contain scripts important to the operation of the software. The script directory contains scripts associated with different databases to be loaded by the software, the DIS directory will contain several configuration files which link DIS entity type codes to models, and the bin directory will contain other files which are primarily created by the software. There is one configuration file which is loaded every time the software is run. This global configuration file is named Mirage.cfg and may be modified to alter the default state of the Mirage system. Any modifications in this file will be apparent during any execution of the software regardless of the model specific configuration file chosen. The format of this file is exactly the same as the model specific configuration files; the commands which are understood in these files are listed in Section 7.4.4.

7.3.2.1 MODIFYING START LOCATIONS IN SCRIPTS

The starting viewpoint for a particular database may be set in the script associated with that database. This viewpoint is set in a line similar to the following:

\[\text{view } <x> <y> <z> <h> <p> <r> \]

In this command, x, y, and z specify the Performer coordinate location of the starting viewpoint. H, p, and r should be set to zero.
Note: H, p, and r would represent heading, pitch, and roll of the viewer. Mirage computes this information based on the tracker position, so these values are only included in the command for completeness.

If a new starting location is desired for an existing database, modifying the view line in the appropriate configuration file will change that databases starting viewpoint. Other accepted commands are listed in Section 7.4.4.

7.3.2.2 ADDING/MODIFYING DATABASES IN SCRIPTS

The database to be loaded by a particular script is specified by the loadmodel command. This command has the following format:

```
loadmodel <x> <y> <z> <h> <p> <r>
```

In this case, all six of the arguments are used. X, y, and z specify the coordinate position in meters where the model should be placed while h, p, and r specify the desired heading, pitch, and roll of the model respectively. Multiple loadmodel lines may exist in a single configuration file.

Before a database will load properly, the Mirage software must know where the model and all of its textures are located. Another configuration file command is provided for this functionality. All directories which contain either model files or textures should be specified using the addpath command with the following syntax:

```
addpath <dir1>[:<dir2>]{:<dir3}
```

While multiple directories may be specified as indicated, multiple addpath entries are allowed and will simply put additional entries in the search path list. In the configuration file, the addpath lines must appear before the loadmodel line. Other accepted commands for this file are found in Section 7.4.4.

7.3.2.3 ASSOCIATING MODELS WITH DIS ENTITY TYPES VIA SCRIPTS

In order to associate a particular model with a DIS enumeration, an information file must be created. The file's name should be relatively descriptive of the type of entity defined by the model and should end with a "info" extension. This information file (<model>.info) will contain at least one line with the following entry:

```
Model <filename>
```

where filename specifies the Multigen "Flight" format model to be loaded.

Once the information file has been created, a reference to it should be entered in the dismap.cfg file. This file contains an enumeration list of entity types from the DIS standard. The format of each line is described in the header information for the file. It should be noted that once again, the software must be told where this model and all of its textures are located. Currently the software is configured to search for DIS models in the models/disModels/models directory of the Mirage execution environment. If their are models which the user would like to reference from other directories, simply put addpath lines directory which specify the appropriate directories in the Mirage.cfg file in the script directory.
7.4 SUMMARY OF CONTROL INPUTS
Mirage is controlled through a combination of keyboard, SpaceBalltm, and mouse commands.

7.4.1 KEYBOARD FUNCTION KEYS
In order for keyboard function keys to be recognized, the cursor must be placed somewhere within the *Mirage* graphical window.

7.4.1.1 TOGGLE POLYGON/WIREFRAME
The F2 key will toggle between wireframe and shaded modes.

7.4.1.2 TOGGLE TERRAIN FOLLOWING
The F3 key will toggle *terrain following* on and off. Terrain following insures that the viewpoint will be centered exactly on the top of any object at the center of the table.

7.4.1.3 TOGGLE GUI PANEL
The F9 key toggles the GUI panel (figure 16) on and off. If the GUI panel is not visible, pressing the F9 key should bring the panel back into view. If multiple presses of the F9 key do not succeed in displaying the panel, either the cursor is not in the graphical window, or another problem exists.

![Figure 16. GUI Panel](image)
7.4.1.4 TOGGLE DIS ENTITY SERVICES
The F10 key toggles DIS entities on and off.

7.4.1.5 CALIBRATE HEAD TRACKER
The F12 key calibrates the head tracker. When the F12 key is first pressed, a target (see figure 17) appears at the center of the table. Once this appears, the head tracking receiver located on the left temple of the eyewear should be placed at the center of the target. With the tracker receiver held in place on the target, the F12 key should be pressed again. Once the tracker has been calibrated, it should not be necessary to perform this procedure again unless the table or the source for the tracking equipment is moved.

![Figure 17. FOB Calibration reticle](image)

7.4.2 SPACEBALL™ COMMANDS
The SpaceBall™ device provides the user with a six degree of freedom input system. The ball may be moved left, right, forward, backward, up, or down and may be twisted about any of these axes. In the Mirage software, the linear motions of the SpaceBall™ are used to control the viewpoint position and the twisting motions are ignored.

When operating normally the SpaceBall™ beeps the International Morse code signal for the letter 'R' which is "* - *" or "di-dah-dit" when it is initialized. This occurs part of the way through loading of the database for a Mirage application. Problems with the
SpaceBall™s Onyx interface may be signalled by other coded signals. Those familiar with Morse code may be able to read indications such as “CTS” indicating a problem with the “Clear To Send” connection.

The SpaceBall™ is used to manipulate the display in three ways, corresponding to three modes.

1. In PAN mode the viewpoint is moved horizontally, in the X and Y dimensions, by applying corresponding horizontal forces to the ball.

2. In Z mode the viewpoint is moved vertically, in the Z dimension, by lifting or depressing the ball.

3. In ZOOM mode the scale of the image is increased or decreased by lifting or depressing the ball.

7.4.2.1 “SELECT” BUTTON
The select button is located on the back side of the ball itself. This button is operated like a trigger to enter the two most commonly used modes of the SpaceBall™ which are PAN and ZOOM.

7.4.2.2 SPACEBALL™ FUNCTION BUTTONS
Currently, only one other function button on the SpaceBall™ provides any functionality. The “5” button on the SpaceBall™ puts the device in Z mode. Z mode allows the user to lift or lower the point of view by pulling up or pushing down on the SpaceBall™.

Changing the Z component of the viewpoint location is not the same as ZOOMING, in which the scale of the image is changed.

Z mode may not be entered while terrain following is enabled. If Z mode has been used to lift or lower the viewpoint it may be found later that the range of the ZOOM mode is limited. If this happens, the situation may be cured by toggling the terrain following mode on using keyboard function key F3. This will reset the Z component of the viewpoint so the portion of the database mapped to the center of the image will appear to be at the level of the table top.

Figure 18 shows the state transitions allowed through use of the “5” button and the “SELECT” button.
7.4.3 MOUSE COMMANDS
In the configuration files, there is a command which allows the Mirage software to operate without the SpaceBall™. In this case, the mouse may be used to move around the database. The greatest loss of functionality in this case is that the mouse does not allow zooming. By pressing the left mouse button in the graphical window, the viewpoint will move in the direction of the cursor with respect to the center of the screen. This mode is only useful when a SpaceBall™ is unavailable for use.

7.4.4 MIRAGE CONFIGURATION FILE COMMANDS
The formats of the global Mirage configuration file and the model specific files are exactly the same. In most cases, entries in model specific files will override the options indicated in the global file; however, in some cases, a conflict may occur. Not all of these conflicts are documented. These are the available script options and a brief description of their function.

loadmodel <x> <y> <z> <h> <p> <r>
This command loads a model with the specified position and orientation. In general, this command is used to load the terrain to be visualized, but it may be used to load any model for viewing on the table.

addpath <dir1>[:dir2][:dir3]
The addpath command is used to add new directories to the search path used to find models and their associated texture files.

trackers <number of trackers>
The trackers command specifies the number of trackers associated with a tracking device. This should usually be set to 1.
tabletracker <head tracker number>
The tabletracker command specifies which of the trackers should be used to follow the position of the user. If an FOB with six trackers were used and the fifth tracker was located on the users head, this entry would be five. Again, this should usually be set to 1.

texture <texture state 0|1>
This represents the initial state of the graphics on the table. If this is set to zero object will be untextured.

wireframe <wireframe state 0|1>
The initial display state may be set to wireframe using this command.

dis <DIS active 0|1>
Activates or deactivates DIS entities in the Mirage environment. This should NOT be set to one in the global configuration file.

terrainfollow <terrainfollow active 0|1> [follow height]
If terrain following is set active by this command, the Mirage software will start with terrainfollowing active, the second argument to this command is a floating point value specifying a height above the terrain for the viewpoint to follow.

view <x> <y> <z> <h> <p> <r>
The view command is used to set the initial viewpoint for a particular database.

fob <port number>
The fob command specifies that an Ascension FOB is attached to the host computer via a serial cable connected to the serial port indicated by port number.

scalefactor <desired scale>
This indicates the starting scale factor for a particular model. This should be a real number between 0.1 and 100.0.

SpaceBall <SpaceBall active 0|1>
The SpaceBall™ may be set inactive causing the viewpoint to be moved by the mouse. This is only useful in the case where a SpaceBall™ is not connected to the host computer. Active is indicated by 1. Inactive is indicated by 0.
8. TROUBLESHOOTING

8.1 HARDWARE PROBLEMS

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>"No Sync" message on Table</td>
<td>Distribution Amp Off</td>
<td>Turn on the Distribution Amplifier</td>
</tr>
<tr>
<td></td>
<td>Onyx Booting</td>
<td>Wait for Onyx to finish booting</td>
</tr>
<tr>
<td></td>
<td>Onyx Off</td>
<td>Turn Power on (see previous entry)</td>
</tr>
<tr>
<td>Image does not respond to tracker movement</td>
<td>FOB Off</td>
<td>Stop Mirage application, turn power on for the FOB, restart Mirage application.</td>
</tr>
<tr>
<td></td>
<td>FOB Saturated</td>
<td>Stop Mirage application, turn off FOB, wait 15 seconds, turn power back on for FOB, restart Mirage application</td>
</tr>
<tr>
<td>Two images appear on table when Eyewear is worn</td>
<td>Emitter power is off</td>
<td>Check for red light on emitter box, if it is off, check cable connections and power</td>
</tr>
<tr>
<td></td>
<td>Eyewear Off</td>
<td>Check that the left temple of the eyewear is fully extended</td>
</tr>
<tr>
<td></td>
<td>Eyewear Battery Low</td>
<td>Replace batteries in eyewear</td>
</tr>
<tr>
<td>Projector does not display an image</td>
<td>Projector in Standby Mode</td>
<td>Press standby button on remote control</td>
</tr>
<tr>
<td></td>
<td>Projector Off</td>
<td>Press power button on remote control</td>
</tr>
<tr>
<td>Projector Image fuzzy</td>
<td>Calibration is off</td>
<td>Follow calibration instructions for the projector</td>
</tr>
<tr>
<td>SpaceBalltm does not respond</td>
<td>Cursor out of window</td>
<td>Move the cursor into the graphics window (not on top of the GUI)</td>
</tr>
<tr>
<td></td>
<td>SpaceBalltm power off</td>
<td>Be sure that the SpaceBalltm is plugged in and that power is supplied.</td>
</tr>
<tr>
<td></td>
<td>SpaceBalltm not plugged in to computer</td>
<td>Check cable connections to the host computer</td>
</tr>
</tbody>
</table>
8.2 SOFTWARE PROBLEMS

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image does not respond to tracker movement</td>
<td>FOB Off</td>
<td>Stop Mirage application, turn power on for the FOB, restart Mirage application.</td>
</tr>
<tr>
<td></td>
<td>FOB Saturated</td>
<td>Stop Mirage application, turn off FOB, wait 15 seconds, turn power back on for FOB, restart Mirage application.</td>
</tr>
<tr>
<td>Pressing Quit on the Mirage demonstration software does not work</td>
<td>Database list is still displayed</td>
<td>First press quit on the open database list</td>
</tr>
<tr>
<td>Keyboard does not respond</td>
<td>Cursor outside of window</td>
<td>Move cursor into the graphics window</td>
</tr>
<tr>
<td></td>
<td>Cursor over GUI</td>
<td>Move cursor off of the GUI and into the graphics window</td>
</tr>
<tr>
<td></td>
<td>Keyboard unplugged</td>
<td>Check keyboard cables</td>
</tr>
<tr>
<td>SpaceBall™ does not respond</td>
<td>Cursor out of window</td>
<td>Move cursor into the graphics window (not on top of the GUI)</td>
</tr>
<tr>
<td></td>
<td>SpaceBall™ power off</td>
<td>Be sure that the SpaceBall™ is plugged in and that power is supplied.</td>
</tr>
<tr>
<td></td>
<td>SpaceBall™ not plugged into computer</td>
<td>Check cable connections to the host computer</td>
</tr>
<tr>
<td>Delayed response</td>
<td>System overloaded by other processes</td>
<td>Check that no one else is using the machine for background processes</td>
</tr>
<tr>
<td></td>
<td>Old processes still running</td>
<td>Check that the software is not running twice on the machine</td>
</tr>
<tr>
<td></td>
<td>Lack of temporary disk space</td>
<td>Delete any files of the name ptDataPool* in /usr/tmp</td>
</tr>
<tr>
<td></td>
<td>Too many shared memory segments</td>
<td>Exit Mirage application and type <code>ipcs</code> to check shared memory segments, if there are many entries listed, use <code>iprm</code> to remove them.</td>
</tr>
<tr>
<td>No Stereo</td>
<td>Monitor not in proper mode</td>
<td>If the demo script was not used, the <code>/usr/gfx/setmon</code> commands from the script must be executed to put the display in the proper mode</td>
</tr>
<tr>
<td>Scene leans left or right</td>
<td>Tracking System may be miscalibrated</td>
<td>Follow calibration procedure to recalibrate tracking system</td>
</tr>
<tr>
<td></td>
<td>Magnetic field distorted</td>
<td>Still under investigation</td>
</tr>
</tbody>
</table>
9. SOFTWARE AND DATABASES DELIVERED
This section lists all files delivered under the contract.

9.1 EXECUTABLES
Mirage
MirageDemo
entityServ

9.2 CONFIGURATION FILES
Mirage.cfg
quantico.cfg
hunter.cfg
range400.cfg
walkthrough.cfg
eserv.cfg
table.cfg

9.3 TERRAIN DATABASES
Fort Hunter Liggett
Range 400
Quantico Training Village
ARI Building Walkthrough

Used in I/ITSEC DIS Demonstrations 1993-95
Derived from NAWCTSD/USMC TTES Project
Central Florida Research Park Research Pavilion
(former home of IST)

9.4 MODELS
a10.flt	f117.flt	m3.flt
ah1.flt	f14.flt	m35.flt
ah64.flt	f15.flt	m577.flt
ah64rotor.flt	f16.flt	m9tx.flt
alfa.flt	f18.flt	mig21.flt
atf.flt	f22.flt	mig27.flt
av8b.flt	f23.flt	mig29.flt
avlbtx.flt	f5.flt	missile.flt
b52.flt	frigate.flt	oh58d.flt
bmp.flt	frigate2.flt	rah66.flt
bomb.flt	hellfire.flt	sa6.flt
breachtx.flt	hemtt.flt	sa9.flt
btr60.flt	hind.flt	stealth_box.flt
carrier2.flt	hindan.flt	su25.flt
ch47.flt	howitzer.flt	t62.flt
chinook.flt	hummv.flt	t72.flt
cobrahit.flt	m1.flt	typhoon.flt
dallas.flt	m113.flt	uh60.flt
e2cM.flt	m1tx.flt	v22_new.flt
efa.flt	m2.flt	zsu23.flt
9.5 SGI SYSTEM SOFTWARE

IRIX Version 6.4
Performer Version 2.1
Developer’s Environment Version 7.1

10. BIBLIOGRAPHY

- END -