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Abstract 

 Desulfovibrio alaskensis G20 and other sulfate-reducing bacteria cause significant 

damage to metal pipelines and other infrastructure through a metabolic pathway that releases 

toxic hydrogen sulfide into their surroundings.  The biocorrosion that results from the release of 

hydrogen sulfide creates significant economic burden, and can pose health risks for those 

exposed to this chemical.  They are commonly present in the form of biofilms, an extracellular 

matrix composed of bacterial cells, polysaccharides, proteins, nucleic acids, and other materials.  

These biofilms are difficult to remove, and they provide protection to the bacteria within from 

anti-bacterial treatments.  Desulfovibrio alaskensis G20 is a strain derived from a wild-type 

bacterium collected from an oil well corrosion site and is a model organism for understanding 

biofilm formation of sulfate-reducing bacteria and how these biofilms can be prevented or 

inhibited by techniques such as cerium oxide nanoparticle coating.  To this end, samples of 

Desulfovibrio alaskensis G20 were grown anaerobically in 24-well and 96-well plates, and the 

resultant biofilm growth was measured through spectrophotometry.  Several different 

environmental parameters were tested, including temperature, electron donor molecules, basal 

and enriched growth media, and oxidative stress, revealing several affinities for production of 

biofilm growth. 
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Introduction 

Biofilms 

A biofilm is a population of cells growing on a surface and is a type of sessile cell community. 

Biofilms can be found on a variety of abiotic and biotic surfaces, such as metal surfaces, river 

stones, and human teeth. Microbial cells within biofilm structures are surrounded by extracellular 

polysaccharides (EPS), nucleic acids, proteins, and other materials, and are resistant to a variety 

of antimicrobial treatments.  For this reason, it is difficult to kill microbial cells within a biofilm 

and remove biofilm structures. [1] 

Sulfate-Reducing Bacteria and Corrosion 

Approximately 10% of all corrosion to metals and non-metals are thought to be the result of 

microbial activities. One significant example of microbial-caused corrosion is the anaerobic 

corrosion of iron and steel. [2]  This corrosion is largely due to sulfate-reducing bacteria, which 

are anaerobic microbes commonly found in nature. Sulfate-reducing bacteria generate energy in 

the form of ATP through electron transfer–coupled phosphorylation. To accomplish this, sulfate-

reducing bacteria generally use sulfate as the terminal electron acceptor for anaerobic respiration, 

and they can use hydrogen, various organic acids, and sugars as electron donors.  This sulfate 

reduction pathway results in the production of hydrogen sulfide as an end-product, which is very 

toxic and reactive.  These bacteria are especially active in sulfate-rich environments, such as 

marine environments.  Sulfate-reducing bacteria also have a significant economic impact due to 

their involvement in biocorrosion of ferrous metals in anaerobic environments. [3] 
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This corrosion by sulfate-reducing bacteria is a particular concern for the petroleum industry, as 

it can intensify the spoilage of pipelines, pumping and drilling machinery, and metal tanks, 

causing significant economic consequences.  One study has estimated that 34% of the corrosion 

damage experienced by an oil company was caused by microbial biocorrosion. [4]  The 

hydrogen sulfide product of sulfate-reducing bacteria is highly corrosive to iron, steel and other 

alloys, causing the observed corrosion.  In addition, hydrogen sulfide causes souring of 

petroleum, plugging of machinery and rockpores, and is a potential health hazard. [3, 5]  Sulfate-

reducing bacteria are abundant in oil fields, with Desulfovibrio species being the primary 

microorganisms involved in this corrosion process.  With increasing industry demands, it is 

necessary that the materials used in these structures be better able to deal with corrosion from 

microorganisms such as Desulfovibrio. [5, 6] 

Desulfovibrio alaskensis G20 

Desulfovibrio alaskensis G20, like other Desulfovibrio species, is a sulfate-reducing bacterium 

that can form biofilms. It is a derivative of a wild-type strain, G100A, which was isolated from 

an oil well corrosion site, and it is capable of rapidly corroding mild steel. [6]   These properties 

therefore make this strain a model organism for studying corrosion of steel from biofilms of 

sulfate-reducing bacteria. [5, 6] 

Cerium Oxide 

Cerium is a rare-earth metal that can form cerium oxide (CeO2) nanoparticles, which have been 

used in a variety of biomedical purposes.  These nanoparticles have high surface area-to-volume 

ratios and have, in some studies, been shown to have antibacterial properties, affecting multiple 
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structures and metabolic pathways of microorganisms. [7, 8]  Not all studies, though, show 

inhibition of microbial growth by cerium oxide. [7]  Cerium oxide coating has also shown some 

ability to combat corrosion in steel. [9] 

We hypothesize that cerium oxide-coated steel will restrict the formation of Desulfovibrio 

alaskensis G20 biofilm and corrosion of steel compared to uncoated steel by restricting the 

metabolic pathway that produces hydrogen sulfide.  This hypothesized restriction of corrosion of 

steel pipes caused by Desulfovibrio species would be of significant value to multiple industries, 

especially to the petroleum industry. 
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Materials and Methods 

Growth Media and Culture Cultivation 

Samples of wild-type Desulfovibrio alaskensis G20 were obtained from the library collection at 

the University of Missouri – Columbia.  These stocks were stored in a freezer at -80 degrees 

Celsius. 

Cultivation of D. alaskensis G20 was accomplished using a MO basal salt media. [10]  This 

media contains the following components: magnesium chloride (8mM), ammonia chloride 

(20mM), calcium chloride (0.6mM), ferric chloride (125mM)/EDTA (250mM) 

(0.06mM/0.12mM final concentration), Tris-HCl pH 7.4 (30mM), Thauers Vitamins 10X, [11] a 

sodium phosphate-potassium phosphate buffer (2mM), and a solution of trace elements.  These 

trace elements include the following: manganese, cobalt, zinc, molybdenum, boron, nickel, 

copper, selenium, and tungsten.  After the addition of all reagents, the solution was autoclaved. 

The cultures were grown through the addition of 250 μL of stock D. alaskensis G20 into 5 mL of 

MO basal salt media.  Incubation of the cultures occurred in an anaerobic chamber at 37 degrees 

Celsius for 48 hours. 

Establishment of Biofilm 

Six 24-well plates were inoculated using 100 μL of D. alaskensis G20 culture in 2 mL of fresh 

growth media.  A Fisher Scientific 12 mm borosilicate glass slide coverslip was also added to 

each well.  Four different growth media were used, one of which was the same MO basal salt 

media described above.  The second growth media used was an enriched MOY media including 

1g/L yeast extract.  The third growth media was a variation of the MO basal salt media, using 8.5 
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mM dextrose in place of pyruvate as an alternative electron donor and carbon source, [12] and 

the fourth media was the enriched MOY media with 8.5 mM dextrose.   

Additional variables in the growth of biofilm included oxidative stress and temperature.  

Hydrogen peroxide is commonly used as an antimicrobial, [13] yet it is also known that 

oxidative stress from low-concentration hydrogen peroxide can enhance biofilm formation. [14]  

To test the reaction of D. alaskensis G20 to various levels of oxidative stress, hydrogen peroxide 

was added to samples of the MO basal salt media and MOY media in concentrations of 0.1 mM, 

0.5 mM, and 1.0 mM, in addition to controls containing no hydrogen peroxide.  Half of the plates 

were incubated at 37 degrees Celsius, while the other half were incubated at 25 degrees Celsius.  

Two 96-well plates were also inoculated with each of the four types of growth media.  Each type 

of growth media contained hydrogen peroxide at concentrations of 0 mM, 0.1 mM, 0.5 mM, and 

1.0 mM.  One plate was incubated at 37 degrees Celsius, while the other plate was incubated at 

25 degrees Celsius.  Wells with growth media only served as negative controls for the 

experiment. 

Measuring Biofilm Density 

For the 24-well plates, the media was pipetted out of each well with micropipette set at 1 mL.  

Each well was washed with 1 mL of dH2O three times using a micropipette.  400 μL of crystal 

violet was added to each well to stain the biofilm growth.  After ten minutes, each well was 

washed with dH2O an additional three times with a micropipette.  The plates were then left to dry 

for 24 hours. [15] 
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For the 96-well plates, the media is tapped out of the wells, and each plate is wholly submerged 

in water three times.  125 μL of 0.1% crystal violet was added to each well, and the plates were 

incubated for ten minutes.  The plates were then submerged in water an additional three times to 

wash away excess crystal violet and were then left to dry for 24 hours. 

Each coverslip from the 24-well plates was transferred to a new 24-well plate using sterile 

tweezers.  400 μL of 30% acetic acid was added to each well to solubilize the contents of each 

well.  After incubating for 15 minutes, a micropipette was used to mix the contents of each well.  

After mixing, 125 μL from each well was transferred to a new, 96-well plate.  The 96-well plate 

was then read at a wavelength of 550 nm in a plate reader spectrophotometer.  30% acetic acid 

was used as the comparison for data. [15] 

125 μL of 30% acetic acid was added to each well of the 96-well plates.  After a 15 minute 

incubation time, 125 μL was transferred from each well into a new 96-well plate.  These new 

plates were then also read at a wavelength of 550 nm in a plate reader spectrophotometer, with 

30% acetic acid as the comparison for data. [15] 
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Results 

Biofilm Experiments 

Our hypothesis is that cerium oxide-coated steel will restrict biofilm growth of Desulfovibrio 

alaskensis G20 and inhibit corrosion of steel by restricting the metabolic pathway of D. 

alaskensis G20 that produces hydrogen sulfide.  Our lab was unable to obtain cerium oxide-

coated glass cover slips to test this hypothesis; however, we were able to complete biofilm 

experiments to test the overall ability of this organism to form biofilms on glass under various 

conditions. 

In order to establish the baseline for dye binding to the glass coverslips, 16 wells were filled with 

30% acetic acid and read at 550 nm in the spectrophotometer as a control for presence of biofilm 

formation.  The results of the acetic acid wells are as follows: average=0.0363, standard 

deviation 0.0028, and 95% confidence interval=0.0056.  All experimental data points were above 

the acetic acid average, indicating some level of biofilm growth.  The average, standard 

deviation, and 95% confidence interval for each experimental parameter were calculated. 
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24-Well Biofilm Experiment 

 

Figure 1: The Effect of Varying Levels of H2O2 in MO Media on Biofilm Density 

Temperature is an important factor for understanding the conditions at which D. alaskensis G20 

produces maximum biofilm growth.  At all four concentrations of hydrogen peroxide, the 

average biofilm growth was greater when D. alaskensis G20 was grown at 25 degrees Celsius.  

The increased growth, moreover, was statistically significant with respect to a 95% confidence 

interval, indicated by the error bars in Figure 1 above, at concentrations of 0.1 mM, 0.5 mM, and 

1.0 mM.  Cultures grown with 0.5 mM hydrogen peroxide showed the greatest average biofilm 

density at both temperatures. 
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Figure 2: The Effect of Varying Levels of H2O2 in MOY Media on Biofilm Density 

Temperature was the variable in Figure 2, as well, with data for growth in MOY media showed 

varied results.  While greater biofilm density was present at 25 degrees Celsius in 0 mM H2O2 

and 1.0 mM H2O2, greater biofilm density was present at 37 degrees Celsius in 0.1 mM H2O2 and 

0.5 mM H2O2.  None of these results were statistically significant, though, indicating that there is 

not a substantial difference between the two incubation temperatures when using enriched yeast 

extract MOY media. 
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Figure 3: Biofilm Density with Varying Levels of H2O2 at 25 Degrees Celsius  

It is also important to understand the effects that an enriched media may have on biofilm growth 

compared to a minimal media, whether an enriched media would promote biofilm growth, or if 

the stress of growing in a minimal media would better encourage biofilm formation.  The 

samples grew with greater biofilm density in MOY media at all concentrations of hydrogen 

peroxide except 0.5 mM.  This was statistically significant in the 0 mM and 1.0 mM 

concentrations; however, MO media showed a statistically significant greater density of biofilm 

growth than MOY at 0.5 mM.  It is possible that very low concentration hydrogen peroxide may 

interact with D. alaskensis G20 in MO media to signal greater biofilm growth, while higher 

concentrations of hydrogen peroxide have the opposite effect. 
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Figure 4: Biofilm Density with Varying Levels of H2O2 at 37 Degrees Celsius 

The same variable was tested at an incubation temperature of 37 degrees Celsius.  The result of 

this was that D. alaskensis G20 grew better, on average, in MOY media compared to MO media 

across all tested concentrations of hydrogen peroxide.  At 0 mM H2O2 and 1.0 mM H2O2, the 

increased growth was significant on a 95% confidence interval, indicating a substantial 

preference for MOY media for biofilm production. 
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Figure 5: Biofilm Density with Glucose as an Electron Donor 

Glucose was tested as an alternative electron donor in place of pyruvate to test the ability of D. 

alaskensis G20 to utilize a different substrate in its hydrogen sulfide-producing metabolic 

pathway.  Biofilm growth using glucose as an alternative electron donor in place of pyruvate 

showed lower average biofilm density, as expounded upon in Figures 5 and 6, and no statistically 

significant features were present across media and temperature parameters for the glucose-grown 

samples.   



13 
 

 

Figure 6: Effect of Alternate Electron Donors on Biofilm Density at 25 Degrees Celsius  

Figure 6 shows greater average biofilm density in samples grown in media containing pyruvate 

as the electron donor than samples grown in media containing glucose at 25 degrees Celsius.  

This difference is statistically significant in MOY media based on a 95% confidence interval.  

This indicates that D. alaskensis G20 possibly has a reduced ability to utilize glucose as electron 

donor compared to pyruvate. 
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Figure 7: Effect of Alternate Electron Donors on Biofilm Density at 37 Degrees Celsius 

Greater biofilm growth was also seen in samples grown at 37 degrees Celsius with pyruvate than 

glucose.  However, these results are not statistically significant due to a large confidence interval 

for samples grown with glucose as the electron donator.  Based on the average results, though, it 

would appear that pyruvate is the preferred electron donor for biofilm formation regardless of 

incubation temperature. 
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96-Well Biofilm Experiment 

 

Figure 8: Biofilm Density Using MO Media with Pyruvate 

As noted in the section above, temperature is a critical variable for understanding the conditions 

at which D. alaskensis G20 produces maximum biofilm growth.  In contrast to the results 

obtained with the 24-well plates, there were statistically significant differences in biofilm density 

across hydrogen peroxide concentrations in MO media containing pyruvate, with the samples 

grown at 37 degrees Celsius having much greater biofilm density on average than samples grown 

at 25 degrees Celsius. 



16 
 

 

Figure 9: Biofilm Density Using MOY Media with Pyruvate 

While examining samples grown in MOY media with pyruvate, there were statistically 

significant differences across hydrogen peroxide concentrations, with the samples grown at 37 

degrees Celsius having much greater biofilm density on average than samples grown at 25 

degrees Celsius.  Having similar, statistically significant, results with regard to temperature 

between media types provides strong support for 37 degrees Celsius being a better temperature 

for producing biofilm growth and should be used in experiments testing inhibition of biofilm 

growth.  This pattern continues below even when utilizing a different electron donor. 
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Figure 10: Biofilm Density Using MO Media with Glucose 

When using glucose instead of pyruvate in MO media, the samples grown at 37 degrees had 

greater biofilm density on average than those grown at 25 degrees Celsius, consistent with the 

pattern observed above.  Nevertheless, at only one concentration of hydrogen peroxide, 0.5 mM, 

was this increased value statistically significant. 
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Figure 11: Biofilm Density Using MOY Media with Glucose 

Likewise, when using glucose instead of pyruvate in MOY media, the samples grown at 37 

degrees had greater biofilm density on average than those grown at 25 degrees Celsius.  At two 

concentrations of hydrogen peroxide, 0 mM and 0.1 mM, was this increased value statistically 

significant.  Combining the results from Figures 8 –11, it becomes apparent that incubation at 37 

degrees Celsius produces greater biofilm density across growth media, electron donors, and 

hydrogen peroxide concentration.  Conversely, incubation of samples at 25 degrees Celsius 

results in a lower degree of biofilm growth. 
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Figure 12: Effect of Media on Biofilm Density with Pyruvate at 25 Degrees Celsius 

As noted in the 24-well results section, it is important to understand the effects that an enriched 

and minimal media may have on biofilm growth.  Little difference was seen in the average 

biofilm density between MO and MOY media containing pyruvate at 25 degrees Celsius, with no 

statistically significant results.  This result indicates that D. alaskensis G20 has little preference 

between the two types of media for production of biofilm, either having no effect or similar 

effect on biofilm inhibition or enhancement. 
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Figure 13: Effect of Media on Biofilm Density with Pyruvate at 37 Degrees Celsius 

Similarly, Figure 13 shows that samples grown with pyruvate at 37 degrees Celsius are relatively 

uninfluenced in terms of biofilm density by choice of MO or MOY media.  Samples grown in 

MO media have a higher average biofilm density than those grown in MOY media containing 

pyruvate.  This difference, while consistent across hydrogen peroxide concentrations, is not 

statistically significant based on a 95% confidence interval. 
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Figure 14: Effect of Media on Biofilm Density with Glucose at 25 Degrees Celsius 

Using glucose instead of pyruvate, as in Figures 13 and 14, at 25 degrees Celsius resulted in a 

slightly higher average biofilm density for MO media-grown samples, compared to biofilm 

density for MOY media-grown samples.  These results were not statistically significant, 

however, indicating that a change in electron donor does not have a substantial impact on the 

effect of choice of growth media. 
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Figure 15: Effect of Media on Biofilm Density with Glucose at 37 Degrees Celsius 

Using glucose instead of pyruvate at 37 degrees Celsius resulted in a slightly higher average 

biofilm density for MO media-grown samples in relatively high concentrations of hydrogen 

peroxide (0.5 mM and 1.0 mM).  At lower concentrations, though, MOY media showed greater 

biofilm density.  Neither of these outcomes was statistically significant, though.  Synthesizing 

the data from Figures 12-15, it appears that the choice of media, whether a minimal MO media 

or a yeast extract-enriched MOY media, has relatively little impact on the density of biofilm 

growth. 
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Figure 16: Effect of Electron Donor on Biofilm Density in MO Media at 25 Degrees Celsius 

As indicated in the 24-well results, glucose was tested in this experiment as an alternative 

electron donor instead of pyruvate to test the ability of D. alaskensis G20 to utilize a different 

substrate in its hydrogen sulfide-producing metabolic pathway.  In Figure 16, pyruvate and 

glucose are compared as alternate electron donors in MO media incubated at 25 degrees Celsius.  

The samples grown with glucose have higher average biofilm density than samples grown in 

pyruvate, but this difference in density is not statistically significant. 
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Figure 17: Effect of Electron Donor on Biofilm Density in MO Media at 37 Degrees Celsius 

In contrast to samples incubated at 25 degrees Celsius in MO media, the samples that were 

incubated at 37 degrees Celsius in MO media with pyruvate showed much higher biofilm growth 

than samples grown with glucose.  This difference was statistically significant across hydrogen 

peroxide concentrations and indicates that D. alaskensis G20 prefers pyruvate for biofilm growth 

at 37 degrees Celsius but not at 25 degrees Celsius. 
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Figure 18: Effect of Electron Donor on Biofilm Density in MOY Media at 25 Degrees Celsius 

As with samples grown in MO media at 25 degrees Celsius, samples grown in MOY media and 

incubated at 25 degrees Celsius had similar biofilm density between pyruvate and glucose.  

Samples grown with glucose had slightly higher average biofilm density except at 0.1 mM 

hydrogen peroxide, in which pyruvate samples had a slightly higher average, but these 

differences in biofilm density were not statistically significant.  These results are again similar to 

those obtained from samples grown in MO media at 25 degrees Celsius, indicating little or no 

preference between the electron donors at this temperature. 



26 
 

 

Figure 19: Effect of Electron Donor on Biofilm Density in MOY Media at 37 Degrees Celsius 

However, samples grown in MOY media and incubated at 37 degrees Celsius showed a much 

greater difference in biofilm density between pyruvate and glucose, similar to the results 

obtained from samples grown in MO media and incubated at 37 degrees Celsius.  Samples grown 

with pyruvate had higher average biofilm density across hydrogen peroxide concentrations, and 

this difference in biofilm density was statistically significant.  Combining Figures 16–19 

together, it appears that the choice of electron donor between pyruvate and glucose is not 

significant for D. alaskensis G20 when grown at 25 degrees Celsius, but the choice of electron 

donor is significant for the organism when grown at 37 degrees Celsius.  This result is seen 

regardless of whether MO or MOY media is used. 
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Discussion 

All sets of data points that were statistically significant based on a 95% confidence interval have 

been brought together to form the table below. 

Figure # Independent Variable Other Growth Conditions Concentration(s) of H2O2 

1 25 > 37 degrees Celsius MO Media/Pyruvate 0.1 mM, 0.5 mM, and 1.0 mM 

3 MOY Media > MO Media Pyruvate/25 degrees Celsius 0 mM and 1.0 mM 

3 MO Media > MOY Media Pyruvate/25 degrees Celsius 0.5 mM 

4 MOY Media > MO Media Pyruvate/37 degrees Celsius 0 mM and 1.0 mM 

6 Pyruvate > Glucose 
MOY Media/25 degrees 

Celsius 
0 mM 

8 37 > 25 degrees Celsius MO Media/Pyruvate 0 mM, 0.1 mM, 0.5 mM, and 1.0 mM 

9 37 > 25 degrees Celsius MOY Media/Pyruvate 0 mM, 0.1 mM, 0.5 mM, and 1.0 mM 

10 37 > 25 degrees Celsius MO Media/Glucose 0.5 mM 

11 37 > 25 degrees Celsius MOY Media/Glucose 0 mM and 0.1 mM 

17 Pyruvate > Glucose 
MO Media/37 degrees 

Celsius 
0 mM, 0.1 mM, 0.5 mM, and 1.0 mM 

19 Pyruvate > Glucose 
MOY Media/37 degrees 

Celsius 
0 mM, 0.1 mM, 0.5 mM, and 1.0 mM 

Table 1: Statistically Significant Data Points 

Statistically significant data points collected from the 24-well plates (found in figures 1–7) 

suggest that D. alaskensis G20 grows better at an incubation temperature of 25 degrees Celsius 

than 37 degrees Celsius.  However, statistically significant data points collected from the 96-well 

plates (found in figures 8–19) overwhelming indicate that 37 degrees Celsius is the preferred 

incubation temperature.  Data from the 96-well plates further suggest that 37 degrees Celsius is 

the preferred incubation temperature over a wide range of hydrogen peroxide concentrations, at 

least when pyruvate is present as the electron donor. 

Statistically significant data from the 24-well plates indicates that different media are preferred 

based on other growth conditions.  Basal salt MO media is preferred when hydrogen peroxide is 
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present at a concentration of 0.5 mM, when the media contains pyruvate and the sample is 

incubated at 25 degrees Celsius.  However, a yeast extract-enriched MOY media is preferred at 0 

mM and 1.0 mM hydrogen peroxide concentrations, regardless of incubation temperature.  Also, 

one statistically significant data point from the 24-well plates indicated that pyruvate is preferred 

as an electron donor over glucose when grown in MOY media, a hydrogen peroxide 

concentration of 0mM, and an incubation temperature of 25 degrees Celsius.  This preference for 

pyruvate was further implied by data from the 96-well plates, in which biofilm production was 

significantly greater at an incubation temperature of 37 degrees Celsius, regardless of hydrogen 

peroxide concentration or growth media type. 

For the 24-well plates (with coverslips), the greatest biofilm density was seen in wells with MOY 

media containing pyruvate.  An average of 0.387 absorbance at 550 nm was seen for samples 

grown with 1.0 mM hydrogen peroxide at 25 degrees Celsius, while an average of 0.370 

absorbance at 550 nm was seen for samples grown with 0.1 mM hydrogen peroxide at 37 

degrees Celsius.  For the 96-well plates (without coverslips), the greatest biofilm density was 

seen in wells with MO media containing pyruvate.  An average of 0.677 absorbance at 550 nm 

was seen for samples grown with 0.5 mM hydrogen peroxide at 37 degrees Celsius, while an 

average of 0.673 absorbance at 550 nm was seen for samples grown with 0.1 mM hydrogen 

peroxide at 37 degrees Celsius. 

Due to circumstances beyond the control of our lab, this experiment could not be conducted at 

present time with cerium oxide-coated materials.  However, this experiment does lay the 

foundation for future experimentation in cerium oxide-induced prevention of biocorrosion 
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caused by sulfate-reducing bacteria such as D. alaskensis G20 by determining ideal growth 

conditions and examining potential stressors of this bacterial strain. 
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