1987

Factor Dimensions of the Leadership Opinion Questionnaire for Nursing Students

Norma J. Walters R.N., Ph.D.
Auburn University

James N. Wilmoth Ph.D.
Auburn University

Charlotte A. Pitts R.N., Ed.D.
Auburn University

Find similar works at: http://stars.library.ucf.edu/jhoe
University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

This Article is brought to you for free and open access by STARS. It has been accepted for inclusion in Journal of Health Occupations Education by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
Abstract: The purpose of this study was to develop factor dimensions and scale the Fleishman Leadership Opinion Questionnaire according to responses of nursing students enrolled in Associate Degree Nursing and Bachelor of Science Nursing Programs. Validity of the Fleishman scales, consideration and structure, for student nurses was tested using factor analytic techniques. Best results were based on clarity of factor pattern loadings for 2 factor VARIMAX rotated solutions from bounded raw data and covariance matrices. Both methods showed 13 of 20 items recommended by Fleishman loaded as Fleishman structure items and 12 of 20 loaded as Fleishman consideration items. Kaiser’s measure of overall sampling adequacy for these nursing student data varied between .72 and .97 at the item level. Reliability analysis produced satisfactory reliabilities for composite estimates based

1Norma J. Walters, R.N., Ph.D., is Assistant Professor and Coordinator of Health Occupations, Auburn University; James N. Wilmoth, Ph.D., is Professor, Research Consultant, and Statistician, Auburn University; and Charlotte A. Pitts, R.N., Ed.D., is Assistant Professor, School of Nursing, Auburn University.
Factor Dimensions of LOQ

on non-Fleishman algorithms. Generalized results suggest that nursing students exhibit specific patterns of leadership attributes somewhat different from the attributes suggested by Fleishman’s algorithms. Further research is recommended.

Background for the Study

Reports on the use of the Leadership Opinion Questionnaire (LOQ) for study of leadership styles of student nurses have been shown to be limited (Walters, Wilmoth, Pitts, 1987). Nevertheless, there was an attempt to use the LOQ in a previous study in an attempt to measure “structure” and “consideration” dimensions of leadership style of student nurses in Bachelor of Science in Nursing (BSN) and Associate Degree in Nursing (ADN) Programs. That previous study was based on reports of successful use of the instrument in a variety of different organizational contexts: business, industrial, educational (leadership), hospital, nursing, research and developmental, military, and governmental. Further, there were also reports of successful use with female groups at the college level (Adams & Hicks, 1978; DeJulio, Larson, Dever, & Paulman, 1984).

The literature left open the possibility that there were problems with its application in some studies even though the LOQ had been applied to a number of research situations. Researchers in some instances either modified the items (Duxbury, Armstrong, Drew, & Henly, 1984) or used only a sample of the items on the two scales (Tucker, 1983). Such adjustments to the LOQ were undertaken without explanation. Other researchers (Baker, 1975; DeJulio, et al., 1984) did not report internal consistency reliabilities for the LOQ determined for the samples, perhaps they assume
that the Fleishman reliabilities generalized to the populations studied, or because the reliabilities determined for the focal groups were very different from those reported by Fleishman. On the other hand, many researchers reported assumed appropriateness of the LOQ because of its purported self-report format, its ability to discriminate between two leadership dimensions (consideration and structure), its acceptable Fleishman standardized reliabilities and validities, and its extensive application for the LOQ determined for their samples, perhaps because they assumed that the Fleishman reliabilities to normative data (Stun, Homer, & Boal, 1981). Analyses of student nurse data in the Walters, et al. (1987), study did not support application of the LOQ to their population of nursing students. Although Fleishman's algorithms for scaling and aggregating item data were followed precisely, singularity of the correlation matrix prevented meaningful validation of the LOQ for measuring leadership attitudes of nursing students. Reliability analyses produced negative values for every computed reliability suggesting the LOQ to be an unsuitable measure of opinions about leadership for the nursing student sample.

Some reports of previous research claimed the LOQ to have potential for broad application in assessment and description of college student leaders but failed to substantiate its application with reliability and validity analyses for the populations studied. Some reports demonstrated absence of sex bias with the LOQ; others demonstrated it to discriminate between leaders and non-leaders; and still others provided some evidence of its potential use in leader selection, and placement or training of students. Walters, et al. (1987), recommended that future investigations be continued with consideration for the need thoroughly to examine
Factor Dimensions of LOQ

reliability and validity properties of the instrument for the groups measured. In the present study, the authors began at the beginning with a complete reevaluation of factor structure and scale properties of the LOQ for nursing students.

Many nursing programs, the greatest majority at the baccalaureate level, offer a management course during the last quarter prior to the preceptorship. The purpose of including principles of management in undergraduate nursing programs is two fold: (a) to foster the development of leadership styles, and (b) to develop perception of self as a leader. This rationale served as the basis for investigating leadership attributes of student nurses in this study. For defining leadership attributes in nursing students, the instrument of choice is the LOQ because of its variety of applications in the literature.

Purpose

The specific objectives for the study, formulated as research questions were:

1. Do nursing students in Associate Degree Nursing (ADN) and Bachelor of Science in Nursing (BSN) programs exhibit specific patterns of leadership attributes?

2. How does the factor structure of leadership attributes in nursing students differ from the population on which the factor structure was defined by Fleishman?

3. What are the reliabilities of the principal items forming the factor scales for nursing students?
Factor Dimensions of LOQ

Method

Subjects

Students in two nursing programs in demographically similar (adjacent) communities volunteered as subjects. There were 40 university BSN students, 13 junior college ADN students, and 46 (1986) and 31 (1987) junior BSN students. All 130 questionnaires were usable. All students signed consent forms under policy established by the educational institutions involved. Anonymity was protected through use of a numbering scheme. Demographic characteristics of the sample included: (a) both male and female, (b) both married and single, (c) previously and not previously employed with job titles of nursing assistant and registered nurse, (d) age ranging between 21 and 31 years, and (e) grade point averages between 2.30 and 3.90. Only four students had a previous college course in either nursing management or leadership.

Instrument

The LOQ was utilized as a method for modeling leadership perceptions in nursing students. It is purported to be a valid measurement scale used for analyzing leadership style and dimensioned on structure and consideration (Fleishman and Harris, 1962, cited in Duxbury). Both dimensions are relevant to managerial effectiveness.

Consideration was defined as the ability to maintain mutual trust, respect, warmth, and introspect into the feelings of subordinates. An individual with a high score on the consideration scale was presumed able to establish communication and rapport with subordinates. On the other hand, a low score was believed to indicate an impersonal manager within group settings. Structure was defined by Fleishman (1969) as the extent
Factor Dimensions of LOQ by which individuals design and define their roles and the roles of those around them. The primary drive in the structure mode was proposed to be goal attainment for organizational purposes.

DeJulio, et al. (1984) suggested use of "... the LOQ ... where feedback concerning personal attitudes toward leadership may be of particular benefit to persons entering into occupations requiring managerial and leadership role functions." The LOQ was claimed to measure general leadership capacity in contexts other than business and industry. Prospective nurses would seem to require managerial and leadership skills; therefore, it was natural to select the LOQ as an appropriate instrument for this situation. But, reliability data were not reported for use of the LOQ with the student groups.

In an earlier study (Walters, et al., 1987), student responses on selected items as recommended by Fleishman were recoded for scaling into the two Fleishman scales: structure and consideration. The validity of those scales for many of the same nursing students at that time was tested with factor analytic techniques. Inter-item consistency and split-half (odd-even) reliabilities were computed for all 40 items and for the consideration and structure subscales. Had the tests materialized as expected, additional descriptive data would have been calculated for characterizing leadership attributes of nursing students. However, measurement problems with the LOQ interfered with pursuing that goal.

The first problem at that time occurred in defining constructs to establish construct validity of the LOQ subscales for nursing students. Scaled according to Fleishman's algorithm, the 40 items generated an ill-conditioned matrix for factor extraction using the SPSSX Factor Analysis
Sub-Program. To determine the source(s) of singularity in the correlation matrix, 40 Regression analyses (by LOQ items) were performed producing R^2's ranging between .66 and .98, with 17 higher than .90. The regressions involved, in turn, each LOQ item as a dependent variable regressed on the remaining 39 LOQ items.

Factor analysis was repeated deleting the variable with the largest R^2, and again produced an ill-conditioned matrix due to a determinant of zero. In a second factor analysis a second LOQ item (with the second largest R^2) was deleted with similar results. This process was continued until 12 LOQ items with the largest R^2's were deleted from the factor analytic models. Each of the 12 reduced matrices was ill-conditioned. It was obvious after 12 attempts (still with R^2's greater than .93) that the LOQ was not functioning as expected with that sample of nursing students and would not produce results comparable with other studies.

The inquiry shifted to an examination of reliabilities. Fleishman's LOQ, test-retest, and split-half (odd-even), reliability estimates for the standardizing sample of first line supervisors and Air Force NCO's ranged between .70 and .89 for the Consideration Scale and .67 and .88 for the Structure Scale (Fleishman, 1969). Every reliability coefficient, uncorrected for anchor points (Wirier, 1971, p. 289) or corrected for anchor points, was a negative coefficient--a condition indicating that noise in the nursing student’s data exceeded information.

Even though the LOQ has been empirically validated with managerial and supervisory personnel in a variety of environments such as industrial, business, and hospital (Fleishman, 1973; Kerr, Schriesheim, Murphy, & Stogdill, 1974; Korman, 1966; Schriesheim & Kerr, 1974, Schriesheim & Kerr,
Factor Dimensions of LOQ
1977), few published reports exist concerning its validation for student-leader populations. Nevertheless, Fleishman's LOQ manual presents college norms.

Two studies (Capelle, 1967; Florestano, 1970) cited in Duxbury, et al. were concerned with performance on the LOQ of student leaders and non-readers from “who’s Who Among Students in American Colleges” and Omicron Delta Kappa (an honorary male leadership fraternity). Capelle (1967) found significant differences between male college leaders and non-leaders on both the consideration and structure scales. On the other hand, Florestano (1970) reported the structure scale differentiated former college leaders from non-leaders, but the consideration scale did not differentiate. Although both studies suggested that the LOQ showed promise for possible use with male college students, the LOQ in a prior application with nursing students (Walters, et al., 1987), by first reaction, was an unsuitable measure of their opinions about leadership. Measurement and statistical methodologies were adjusted for this report to clarify variations of responses of nursing students to the LOQ.

Measurement and Statistical Methodologies

Inherent properties of raw data have implications for methodological design, statistical analysis, and policy interpretations in any research study. In the present study it is assumed that all raw data reflect observed interval values or interval values resulting from coding: (a) dummy, (b) effect, or (c) criterion (scaling) coding. As such, inherent information contained as variability within the properties of the raw data distribution may be cataloged. Variables may vary among themselves in their units of measurement, central tendencies, frequencies of observed
values, cumulative frequencies, symmetries, clusterings of observed values, and in their relative minima and maxima with respect to frequency versus values graphs. Furthermore each of the foregoing properties inherently affect covariances and correlations that typically are fed to factor analytic algorithms in statistical packages. One should recall that whatever affects covariances will affect off-diagonal elements of a correlation matrix, and that in a true correlation matrix the principal diagonal elements will always equal 1.00.

All interested observers upon intuitive analysis of a raw data matrix will observe the variations described in the foregoing. The interested observer may not unite those variations with mathematical properties of their corresponding raw data distributions. Because mathematical properties are essential for unraveling potential problems in statistical analysis, they will be defined informally in the following list:

1. **Mean**: The typical or representative value around which deviations of all observed values sum to zero.

2. **Range of observed values**: upper and lower limits of variation.

3. **Variance and standard deviation**: values reflecting tendency to cluster around mean.

4. **Skewness**: value reflecting tendency to cluster at an extreme of the distribution.

5. **Kurtosis**: value reflecting too little or too much spiking with respect to the general frequency pattern along the range of the distribution.

Based on the foregoing fundamental properties of data, a set of specific objectives was developed to guide study of the problems related
Factor Dimensions of LOQ to measuring nursing students with the LOQ. Those specific objectives may be stated as follows:

1. To define relevant *artifactual* sources of variance in raw data matrices.

2. To describe transformations that selectively eliminate *artifactual* sources of variance from further statistical analyses.

3. To develop a general context for transforming raw data matrices to reflect policy adjustments.

4. To describe transformations that selectively adjust for specific sources of variance to reflect policy adjustments prior to subsequent statistical analyses.

5. To discuss interpretational implications for health occupations educators within the statistical context of factor analysis.

Artifactual Sources of Variance

As data are ordinarily available for statistical analyses by computer programs, they are laid out in rows and columns of a raw data matrix. When a computer program is opened the data are an abbreviation of the schematic presented as Figure 1. That abbreviation may be represented as the upper left rectangular portion continuing to the "nth" row and the "nth" column. An early task in analysis is to produce data for the additional rows and columns shown in the schematic. Every variation between numbers in the schematic represents a source of interest to the statistician. Some of the variation is a property of the unit and scale of measurement used for each variable, some is a property of the statistical manipulations applied to the data. All variation due to unit and scale of measurement may be considered as *artifactual*. The question is, should
Most professional educators have been taught routinely to remove by standardizing the *artifactual* variation. Perhaps some or all *artifactual* variation should remain in the data, particularly if the raw data are based on "meaningful units and scales" (Rummel, 1970, p. 289).

When *artifactual* sources of variance are to be excised (removed or adjusted out), a statistician may employ one or more of the methods presented in Table 1. (Each matrix element, for comparison, could be weighted by the reciprocal of the number of cases.) All methods in Table 1 were employed at some stage in analyses of LOQ data collected from the 130 student nurses in this study. Usually all vectors (variables) in a raw data matrix are transformed using the same algorithm. A vector has

Figure 1. Schematic Context for Sources of Variance in Raw Data Matrices.

<table>
<thead>
<tr>
<th>CASE ID</th>
<th>VARIABLE</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e</td>
<td>Sum</td>
</tr>
<tr>
<td>2</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COL</th>
<th>ELEMENT</th>
<th>A MEANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>E SUM</td>
<td>A ROW</td>
</tr>
<tr>
<td>Mean</td>
<td>E MEAN</td>
<td>A A</td>
</tr>
<tr>
<td>Var</td>
<td>T VARIANCE</td>
<td>E E</td>
</tr>
</tbody>
</table>
Factor Dimensions of LOQ

Table 1

Methods for Removing (Adjusting Out) **Artifactual** Sources of Variance From Either Row or Column Vectors of Raw Data Matrices

<table>
<thead>
<tr>
<th>Source with Result of Adjustment</th>
<th>Correcting Adjustment before Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unequal Vector Lengths Adjusted for Comparison with Length of an Arbitrary Vector.</td>
<td>Divide each element in the matrix by the length of arbitrary vector. Find inner products (moments). Divide each element in the matrix of inner products by the maximum inner product.</td>
</tr>
<tr>
<td>Unequal Vector Lengths Normalized to Length of 1.00</td>
<td>Divide each element in the matrix by its respective vector length. Find inner products (moments). Divide each element in the matrix of inner products by the maximum inner product.</td>
</tr>
<tr>
<td>Unequal Vector Means Adjusted to Mean of 0.00</td>
<td>Subtract from each element the mean of all its vector elements.</td>
</tr>
<tr>
<td>Unequal Vector Std Deviations Adjusted to Std Deviation of 1.00</td>
<td>Divide each element by the standard deviation of all its vector elements.</td>
</tr>
<tr>
<td>Unequal Vector Means and Unequal Std Deviations Standardized to Mean of 0.00 and Std Deviation of 1.00</td>
<td>From each element first subtract the mean, then divide by the standard deviation, of all its vector elements.</td>
</tr>
</tbody>
</table>
both magnitude and direction. The magnitudes of vectors are known by computing vector lengths. Ordinarily vector directions are determined for vector pairs through computing cosines of angles between them (which, for standardized vectors, are correlation coefficients).

From the raw data matrix itself may be calculated (a) Moments about (with respect to) their origin; that is, moments with respect to zero; (b) Moments about their mean (covariances); (c) Moments about the mean (of zero) of standardized data; that is, moments about zero having a standard deviation of one (correlations). Moments computed with respect to their origin make no adjustment to the data and should be used if the computerized statistical program of choice does not require a range between -1 and +1 such as in a correlation program. The theory of factor analysis requires only a symmetric matrix. However, if there are computerized statistical program requirements, they may be addressed through dividing every value in the raw data matrix by the maximum value of the symmetric matrix in a process known as bounding.

An alternative is to adjust each symmetric matrix element with the mean of all symmetric raw data matrix elements before proceeding with bounding, that is, dividing by that mean. Other adjustments made to the raw data matrix are designed to remove from the data, before factor analysis, whatever source of artifactual variance would be considered as confounding to the factor analytic results: if differences in length are considered as a confounding source rather than a source that promotes understanding of the factor analytic results, then those differences in vector length should be excised.
Factor Dimensions of LOQ

The same criterion should apply to each of the other adjustments: (a) for differences in means, (b) for differences in standard deviations, and (c) for differences in both means and standard deviations. Nothing in the mathematics prevents coupling adjustments for combinations of artifactual sources such as coupling adjustments for differences in unit of measurement or of length with differences in means. Such adjustments are also referred to under concepts in the literature presented as:

1. Scales of measurement considering distances between minima and maxima, and actual values used with their between value properties (nominal, ordinal, interval).

2. Scaling of variables (vectors) with a “scaling factor” to lengthen or contract their corresponding vector lengths in the vector space of the data matrix.

3. Precision of measurement dealing with arbitrariness of units of measurement and meaningfulness of units of measurement chosen for a study.

4. Factor analysis of covariance or correlation matrices applying the technique to one of two stages of adjustment correcting raw data matrices (a) for differences among variable means, and (b) for differences among both variable means and standard deviations.

It should be emphasized that direct factor analysis of unadjusted raw data preserves both mathematical magnitudes and patterns of values in the raw data distribution. Uncorrected variances and covariances are based on unadjusted raw data, before removing influence of length, central tendency, variability, symmetry, and peakedness. In short, uncorrected variability and covariability are essentially raw data sums of squares and cross products. But, raw data matrices may need resealing (for analysis
by a statistical package) to a range of values bounded to simulate a
correlation matrix: -1 to +1; or to values within this range such as 0
to +1. Moreover, deficiencies in psychometric properties of an instrument
may require that adjustments be made to measurements generated by the
instrument. If so, considerations in the foregoing may guide those
adjustments. It was the intent of the authors for this study to define
objectively and precisely appropriate adjustments that could be made to
LOQ data matrices for nursing students such that research reports generated
in that segment of the health occupations professions may better be compared
with findings in other fields.

Eliminating Artifactual Sources of Variance

Background for the principle that a research should remain in full
charge of all data adjustments has been presented. It was noted throughout
the foregoing sub-sections under Methodology that a variety of artifactual
sources of variance can affect statistical procedures based on raw data
matrices. What has not been presented is the notion that the researcher
should take care not to excise more information than is appropriate. The
consequence of such carelessness may be matrices designated as “singular”
or “ill-conditioned.” This consequence may require a complete reorientation
to the data for analysis and to the data properties of the statistical
programs used for the analysis. When conditions are proper a researcher
may adjust raw data matrices at the level of single vectors or across all
vectors to achieve the following objectives: (a) a common unit of
measurement for all vectors (b) a common vector length, (c) a common mean,
(d) a common standard deviation, and (e) a common distribution.
Factor Dimensions of LOQ

For conceptual clarity the researcher should distinguish among two transformations for adjusting data: (a) normalization (to same length), versus (b) normalization (in direction of either columns or rows). These should be distinguished from standardization (to a [standard] mean and a standard deviation) versus distributional transformations to normal or standard normal distributions. Distributional transformations are based on areas under probability curves or are parametric based on means and standard deviations.

Each type of transformation may be normative or ipsative. For example: Vectors standardized along either rows or columns are said to be normative. But, when a data matrix has been iteratively standardized by both column and row vectors, every vector in both directions has a mean of zero and a standard deviation of 1. These doubly standardized vectors are said to be ipsative. However, the lengths of the doubly standardized vectors within either the column or row directions may not be constant.

In the present context it should be noted as a final principle that when column or row vectors are normalized to a length of 1, their orientations in vector space are such that their inner products are the same as the cosines between them. Normalization, however, does not equate means and standard deviations. When a data matrix (of column or row vectors) has been standardized, each vector has a mean of zero and a standard deviation of 1. However, the lengths of standardized vectors are not necessarily constant.

Statistical Procedures

In order to control the level of adjustment applied to the data for this project the PROC MATRIX in combination with the PROC FACTOR of SAS
was used. Validation of the statements supplied to PROC MATRIX was accomplished by supplying to it the coding needed to produce comparable (known and controlled) results when feeding unadjusted raw data to PROC FACTOR. OUTPUT files produced by PROC MATRIX were passed to PROC FACTOR as either covariance or correlation matrices depending on the nature of the adjustments applied in PROC MATRIX. If adjustments did not produce 1’s on the principal diagonal, the adjusted matrix was passed as a covariance matrix; if the adjustments produced 1’s and if all elements were cosines between vectors, the adjusted matrix was passed as a correlation matrix. PROC FACTOR in each case was invoked with an eigenvalue criterion equal to the mean eigenvalue for the matrix to be factored, and with the no intercept (NOINT) option active. Every matrix was rotated with both the VARIMAX (for orthogonal rotation) and the PROMAX (for relaxation of orthogonality) criteria.

Reliabilities of the factor scores were determined with SPSS. Definition of the items loading on each factor score was contingent on access to results of PROC FACTOR in SAS. Item components of each factor score were weighted with the coefficient 1.0 to preserve comparability with Fleishman’s reports for the norm-generating sample. Using a subset of LOQ items, each item weighted with the coefficient 1.0 is conformable to Rummel’s description of producing composite estimates of factor scores.

Results and Discussion

In the interest of brevity not all factor analytic results are reported. An arbitrary decision was made to report only those results most related to other studies based on the LOQ. That decision was justified in every case by being in conformity with sound factor analytic criteria: either
Factor Dimensions of LOQ

(a) retaining only factors having eigenvalues larger than the average for the methods used and data factored (the eigenvalue criterion), or (b) applying appropriate professional judgment in evaluating differences between eigenvalues of factors retained and factors eliminated from rotation (the scree criterion). When the eigenvalue criterion alone was applied, analyses of the more highly adjusted data tended to produce more factors, to a maximum of 7 for standardized data (correlation matrices). Upon addition of the scree criterion one could justify retaining at most 3 factors for further rotation. Therefore, Table 2 presents only results of 2 and 3 factor rotations.

Out of those results it was determined that, on the basis of variance explained in the initial extraction, a number of adjustments provided essentially equivalent results. Comparison of the rotations also suggested no adjustment to be clearly superior. However, for comparison with earlier studies, two methods were of choice: the bounded, unadjusted raw scores at the top of Table 2 and the covariance adjustments near the bottom. Adjustments to correlation coefficients were rejected because Fleishman's reports did not suggest standardizing raw data before computing consideration or structure scores by linear combinations of values composing their respective scales; that is, before computing composite estimates. Since no method was clearly superior, it was thought best to proceed with the method that best fit current theory and practice for measuring leadership attributes of nursing students with the LOQ.

After exploring the variance accounted for criterion, one should explore criteria of sampling adequacy, then of simple structure. Sampling adequacy indexes sufficiency of sample size for the factor analytic
Table 2

Variance Explained (Rounded) with Principal Component Analyses of Raw LOQ Data Moments and Moments from Four Stages of Artifactual Adjustment under Initial Factor, Varimax Rotated, and Promax Rotated Methods (n = 130 Nursing Students)

<table>
<thead>
<tr>
<th>Stage of Adjustment</th>
<th>A R I A N</th>
<th>E X P L A I N E D</th>
<th>Promax with</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Varimax</td>
<td>Ignored</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3</td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>Unadjusted Raw Scores--Bounded (Moments About Origin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 6</td>
<td>18 17</td>
<td>11 11</td>
<td>24 23</td>
</tr>
<tr>
<td>Unadjusted Raw Scores--Bounded (Moments About Mean)</td>
<td>20 3 1</td>
<td>16 3 2</td>
<td>10 3 2</td>
<td>19 12 2</td>
</tr>
<tr>
<td></td>
<td>20 3</td>
<td>15 8</td>
<td>9 4</td>
<td>19 14</td>
</tr>
<tr>
<td>Unadjusted Raw Scores--Bounded (Absolute Moments About Mean)</td>
<td>20 2 2</td>
<td>16 6 3</td>
<td>10 3 2</td>
<td>20 11 2</td>
</tr>
<tr>
<td></td>
<td>20 2</td>
<td>11 11</td>
<td>5 5</td>
<td>18 18</td>
</tr>
<tr>
<td>Unit Lengths (Cosines Between Vectors)</td>
<td>34 1 1</td>
<td>16 12 9</td>
<td>5 3 2</td>
<td>30 27 20</td>
</tr>
<tr>
<td></td>
<td>34 1</td>
<td>22 14</td>
<td>9 3</td>
<td>32 26</td>
</tr>
<tr>
<td>Unit Lengths (Moments About Centered Data)</td>
<td>29 6</td>
<td>18 17</td>
<td>12 11</td>
<td>24 23</td>
</tr>
<tr>
<td>Centered on Means--Covariances (Moments About Means)</td>
<td>29 6</td>
<td>18 17</td>
<td>12 11</td>
<td>24 23</td>
</tr>
<tr>
<td>Centered on Means and Homoskedastic--PPMCCs, Corrs (Standardized Data z Scores)</td>
<td>29 6</td>
<td>18 17</td>
<td>12 11</td>
<td>24 23</td>
</tr>
</tbody>
</table>
Factor Dimensions of LOQ procedures used and varies between 0 and 1 with measures closer to 1 being the better measures. Simple structure refers to clarity of the rotation delineating which LOQ items clearly load on which rotated factors. There is no numeric criterion against which simple structure may be evaluated. Standard references (for example: Rummel, pps. 376-381), for factor analysis may be consulted to clarify the simple structure criterion.

Sampling Adequacies

Kaiser’s measure of overall sampling adequacy (MSA) as calculated by SAS for these nursing student data varied between .72 and .97 with larger values being associated with TYPE=CORR matrices fed to SAS. The higher values may have resulted from the absence of number of cases criteria as parameters of the input TYPE=CORR data. The matrix of cosines between vectors of non-reflected item raw data produced the lowest overall MSA and had the smallest mean for item level sampling adequacies. The range of the latter varied between .51 and .92.

VARIMAX Rotated Factor Loadings

The reader should observe similarity in loading patterns and magnitudes for nursing students measured with the LQQ. Factor 1 by either analytic method agrees somewhat with Fleishman's composite estimate of structure with 13 of 20 items loading in accord with published scoring recommendations. Factor 2 by both methods is in best agreement with consideration with 12 of 20 items loading similarly with Fleishman. Exact loadings are presented in Table 3.

In an effort to find a function for the 15 LOQ items not represented in the 12 Item and 12 Item Fleishman related factors, the covariance matrix was refactored retaining 3 factors in VARIMAX rotation. The first two
Table 3

Factor Pattern Loadings for 2 Factor **VARIMAX** Rotated Solutions from Bounded Raw Data and **Covariances**

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM 1 2</td>
<td>ITEM 1 2</td>
<td>ITEM 1 2</td>
<td>ITEM 1 2</td>
</tr>
<tr>
<td>01s 50 72*</td>
<td>21s 91* 25</td>
<td>01s 50 25</td>
<td>21s 92* 24</td>
</tr>
<tr>
<td>02c 49 78*</td>
<td>22s 94* 20</td>
<td>02c 49 79*</td>
<td>22s 95* 20</td>
</tr>
<tr>
<td>03s 37 82*</td>
<td>23c 93* 18</td>
<td>03s 36 83*</td>
<td>23c 94* 18</td>
</tr>
<tr>
<td>04s 75* 50</td>
<td>24c 94* 19</td>
<td>04s 76* 50</td>
<td>24c 95* 18</td>
</tr>
<tr>
<td>05c 90* 33</td>
<td>25s 81* 45</td>
<td>05c 91* 32</td>
<td>25s 82* 45</td>
</tr>
<tr>
<td>06s 67* 59</td>
<td>26s 47 80*</td>
<td>06s 67* 60</td>
<td>26s 47 82*</td>
</tr>
<tr>
<td>07c 14 96*</td>
<td>27s 30 88*</td>
<td>07c 14 96*</td>
<td>27s* 30 89*</td>
</tr>
<tr>
<td>08c 32 87*</td>
<td>28c 21 93*</td>
<td>08c 31 89*</td>
<td>28c 21 94*</td>
</tr>
<tr>
<td>09s 75* 52</td>
<td>29c 9 98*</td>
<td>09s 75* 52</td>
<td>29c 9 97*</td>
</tr>
<tr>
<td>10c 72* 49</td>
<td>30s 73* 49</td>
<td>10c 72* 50</td>
<td>30s 74* 49</td>
</tr>
<tr>
<td>11c 37 86*</td>
<td>31s 95* 18</td>
<td>11c 36 87*</td>
<td>31s 96* 18</td>
</tr>
<tr>
<td>12c 73* 53</td>
<td>32c 90* 29</td>
<td>12c 73* 53</td>
<td>32c 91* 29</td>
</tr>
<tr>
<td>13c 36 87*</td>
<td>33c 90* 31</td>
<td>13c 35 88*</td>
<td>33c 91* 31</td>
</tr>
<tr>
<td>14s 89* 33</td>
<td>34c 9 98*</td>
<td>14s 90* 33</td>
<td>34c 9 97*</td>
</tr>
<tr>
<td>15c 60 67*</td>
<td>3.5s 49 76*</td>
<td>15c 60 68*</td>
<td>35s 49 77*</td>
</tr>
<tr>
<td>16s 50 77*</td>
<td>36c 25 88*</td>
<td>16s 50 78*</td>
<td>36c 25 89*</td>
</tr>
<tr>
<td>17c 87* 28</td>
<td>37s 35 87*</td>
<td>17c 88* 27</td>
<td>37s 35 88*</td>
</tr>
<tr>
<td>18s 76* 53</td>
<td>38c 21 93*</td>
<td>18s 77* 53</td>
<td>38c 20 95*</td>
</tr>
<tr>
<td>19c 57 69*</td>
<td>39s 70* 53</td>
<td>19c 57 69*</td>
<td>39s 71* 54</td>
</tr>
<tr>
<td>20s 94* 17</td>
<td>40s 95* 16</td>
<td>20s 95* 17</td>
<td>40s 96* 16</td>
</tr>
</tbody>
</table>

NOTES:
- **VALUES ARE MULTIPLIED BY 100 AND ROUNDED TO THE NEAREST INTEGER.**
- Values greater than .65 are flagged with an "*".
- **Fleishman structure** items are tagged s, and **consideration** items are tagged c.
Factors loaded similarly to the 2 factor rotation, the third was a trivial factor in not loading significantly on any item.

Scale Reliabilities

For additional understanding of the measurement properties of the LOQ when applied to nursing students, it was determined to compute all reliabilities relevant to the scales suggested by Fleishman's scoring algorithms and to the scales uncovered through the factor analyses described in the foregoing. Those reliabilities are presented in Table 4.

Also presented in Table 4 are Kolmogorov-Smirnov z scores for goodness of fit of the respective composite estimates of all factor scores relevant to Fleishman scaling and other possible scaling algorithms for LOQ data from nursing students. The reader should note that scales derived from factor analysis of the covariance matrix yield very acceptable reliabilities. (No item score was reflected in those scaled scores as recommended by Fleishman).

The smallest reliabilities (.23) are related to the vector of 20 item composites recommended by Fleishman as consideration scores. The largest reliabilities (.95) are related to the vector of 21 item composites determined by SAS as FACTOR 1. Of items in Fleishman's algorithms, structure items represent 13 of the 21 items of FACTOR 1. The point should be emphasized that the lowest reliabilities of the 3 scaling algorithms investigated were for the Fleishman algorithm. The best reliabilities were for the 21 items of FACTOR 1 and the 19 items of FACTOR 2 arising from factor analyzing the covariance matrix. However, if a researcher chooses to measure leadership attributes of nursing students with the LOQ because of its historical relationship to other studies, it would be best...
Table 4

Reliability and Goodness of Fit (to Normal) Data for Nursing Students on the Leadership Opinion Questionnaire

<table>
<thead>
<tr>
<th>Measures</th>
<th>Bet Peo MS</th>
<th>Within MS</th>
<th>Bet Meas MS</th>
<th>Resid MS</th>
<th>Reliability Uncorr</th>
<th>Reliability Corr</th>
<th>K-S z</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Items</td>
<td>2.9493</td>
<td>1.6558</td>
<td>1.0869</td>
<td>1.6602</td>
<td>.4386</td>
<td>.4371</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Items</td>
<td>10.0975</td>
<td>0.9084</td>
<td>0.3979</td>
<td>0.9123</td>
<td>.9100</td>
<td>.9096</td>
<td>1.832*</td>
</tr>
<tr>
<td>Fl-Struct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Items</td>
<td>12.6294</td>
<td>0.9828</td>
<td>0.7357</td>
<td>0.9847</td>
<td>.9220</td>
<td>.9220</td>
<td>2.460*</td>
</tr>
<tr>
<td>Fl-Consider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Items</td>
<td>4.2679</td>
<td>1.3695</td>
<td>0.8082</td>
<td>1.3738</td>
<td>.6791</td>
<td>.6781</td>
<td>0.710</td>
</tr>
<tr>
<td>Fl-Struct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Items</td>
<td>2.3988</td>
<td>1.8340</td>
<td>1.2671</td>
<td>1.8384</td>
<td>.2354</td>
<td>.2336</td>
<td>0.592</td>
</tr>
<tr>
<td>Fl-Consider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Items</td>
<td>17.4986</td>
<td>0.8676</td>
<td>0.4602</td>
<td>0.8707</td>
<td>.9504</td>
<td>.9502</td>
<td>2.038*</td>
</tr>
<tr>
<td>Factor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Items</td>
<td>15.0443</td>
<td>.9858</td>
<td>1.0062</td>
<td>0.9856</td>
<td>.9345</td>
<td>.9345</td>
<td>2.038*</td>
</tr>
<tr>
<td>Factor 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Reliabilities are both uncorrected and corrected for anchor points.

Abbreviated scale names are expanded as follows: **Struct--13** Items that both load on Factor 1 and were claimed by Fleishman to be components of the structure scale; **Consider--12** Items that both load on Factor 2 and were claimed by Fleishman to be components of the consideration scale; **Fl-struct--20** Items found by Fleishman to load on the structure scale; **Fl-Consider--20** Items found by Fleishman to load on the consideration scale; **Factor 1--21** Items that loaded empirically from the nursing student sample on the factor designated by SAS as "Factor 1"; Factor 2--19 Items that loaded empirically from the nursing student sample on the factor designated by SAS as "Factor 2."

K-S z scores were computed by SPSSX under the hypothesis that the population distribution function is normal.
Factor Dimensions of LOQ
to scale using the 13 items of FACTOR 1 that load in Fleishman's Structure algorithm, and that the 12 items of FACTOR 2 that load in Fleishman's Consideration algorithm. Noting that the sum of 13 and 12 is 25, the reader understands that 15 of the original 40 items on the LOQ would not contribute to scaling under the recommendation of scaling for historical linkage of results.

Conclusions and Recommendations

Some nursing programs offer a course in management prior to preceptorship to foster leadership styles and to develop perception of self as a leader. Thus, the rationale for selecting Fleishman's LOQ as the instrument of choice in this study to investigate: (a) whether nursing students exhibit specific patterns of leadership attributes, (b) whether the factor structure of leadership attributes in nursing students differ from the population on which the factor structure was defined by Fleishman, and (c) to determine the reliabilities of the principal items forming factor scales for nursing students.

The LOQ has been applied to a number of research situations, however, the literature leaves open the possibility that there were some problems with its application in some of those situations. In this study factor analytic techniques revealed the best results were based on clarity of factor pattern loadings for 2 factor VARIMAX rotated solutions from (a) bounded raw data and (b) covariances. Both of the foregoing methods supported scaling of 13 of 20 items loaded on structure and 12 of 20 items loaded on consideration. No scaling technique required reflecting of items as recommended in Fleishman's scaling algorithms.
Thus, the results revealed that nursing students exhibit specific patterns of leadership attributes different from the population on which Fleishman's scaling algorithms were normed. Results further revealed that the factor structure of the leadership scales used to measure leadership attributes of nursing students varies in number of items and in how the items subset themselves for computing LOQ composite estimates of factor scores. All of these differences are distinct with respect to recommendations available for scaling in the current literature of leadership.

It is recommended that research be continued on measurement properties of the LOQ applied to health occupations personnel and students. It is certainly recommended, if the LOQ is to be used for measuring nursing students, that options in selecting scaling algorithms be carefully considered. Otherwise such unfortunate outcomes as negative reliabilities could render the LOQ data to be highly questionable.

Because leadership is a dimension of personality that forms early in life it is recommended that the LOQ be further investigated with even younger students, perhaps at high school or junior high school ages. Perhaps opportunities may present themselves for such studies through pre- and post experimental designs incorporated into leadership development workshops provided in curricula for health occupations programs.

References

Factor Dimensions of LOQ

