11-11-2008

Multi-Film Compensation liquid crystal display with Initial Homogenous Alignment

Shin-Tson Wu
University of Central Florida

Xinyu Zhu
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents
University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
https://stars.library.ucf.edu/patents/397
MULTI-FILM COMPENSATED LIQUID CRYSTAL DISPLAY WITH INITIAL HOMOGENEOUS ALIGNMENT

Inventors: Xinyu Zhu, Orlando, FL (US); Shin-Tson Wu, Orlando, FL (US)

Assignees: University of Central Florida Research Foundation, Inc., Orlando, FL (US); Toppoly Optoelectronics Corp., Miao-Li County (TW)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 335 days.

Appl. No.: 10/979,482
Filed: Nov. 2, 2004

Int. Cl. G02F 11/335 (2006.01)
U.S. Cl. 349/117, 349/118, 349/119, 349/120, 349/121

Field of Classification Search 349/117-121, 349/141

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,570,214 A * 10/1996 Abileah et al. 349/117
5,583,679 A * 12/1996 Ito et al. 349/118
5,600,464 A 2/1997 Ohk 349/123
5,886,762 A 3/1999 Lee 349/145

ABSTRACT

A liquid crystal display having a positive A-film and a negative A-film between a top polarizer and a bottom polarizer to increase the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off state when viewed from an oblique angle. Method of increasing the viewing angle of the liquid crystal display by reducing or eliminating light leakage at voltage-off stage when viewed from an oblique angle. The compensation is applicable to use with liquid crystal displays having a liquid crystal layer that is homogenously aligned at off-state when no voltage is applied to the liquid crystal layer, such as IPS and FFS mode liquid crystal displays.
OTHER PUBLICATIONS

* cited by examiner
Fig. 3A
Fig. 5A

\[2\tan^{-1}(\cos\theta) \]
Fig. 5B

S3

POL(A)

S2

S1

POL(T)

ANA(A)
Fig. 6B

\[2\tan^{-1}(\cos \theta) \]
Fig. 6C

- S3
- POL(A)
- S2
- S1
- POL(T)
- ANA(A)
- B

Fig. 6C
Fig. 8C

POL(T)

POL(A)

ANA(A)

S1

S2

S3

B
Fig. 13
Fig. 17
Fig. 22

- Layer 210
- Layer 209
- Layer 206
- Layer 205
- Layer 204
- Layer 203
- Layer 201
- Layer 202
Fig. 23
FIELD OF THE INVENTION

This invention relates to wide viewing angle liquid crystal displays and methods of increasing the viewing angles of liquid crystal displays with multi-film compensation.

BACKGROUND AND PRIOR ART

Liquid crystal displays (LCDs) are widely used in information displays. Due to the intrinsic optical anisotropy of liquid crystal materials, the incident light "sees" different effective birefringence when viewed from different directions. For this reason, the viewing angle of conventional LCDs is not as wide as the viewing angle for self-luminescence displays, such as the cathode-ray tube (CRT), organic light-emitting diode and the plasma display panel. In an effort to widen the viewing angle, several display modes have been disclosed using a lateral electric field to activate the liquid crystal (LC) molecules. In-plane switching (IPS) mode is disclosed in M. Oh-e et al., "Principles and characteristics of electro-optical behavior with in-plane switching mode", Asia Display, 95, pp. 577-580 (1995) and U.S. Pat. No. 5,600,464, issued to Oh-e in 1997, and fringe field switching mode (FFS) is disclosed in S. H. Lee et al., "Electro-optic characteristics and switching principles of a nematic liquid crystal cell controlled by fringe-field switching", Appl. Phys. Lett., Vol. 73, pp 2881-2883 (1998) and U.S. Pat. No. 5,886,762, issued to Lee in 1999.

In both IPS and FFS modes, the LC molecules at voltage-off state are basically homogeneously aligned on glass or plastic substrates that are coated with a thin indium-tin-oxide (ITO) layer and then overcoated with a polyimide alignment layer. The surfaces of polyimide layers are rubbed in parallel or anti-parallel directions to create a homogeneous alignment. The display panel is sandwiched between two crossed polarizers, and the long axis of LC molecules is either parallel or perpendicular to the transmission direction of their adjacent polarizers at off-state. At on-state, the lateral electric field generated from the comb-shaped electrodes causes the molecules to twist within the plane parallel to the supporting substrates. Therefore, from the opposite direction of the display panel, the incident light experiences almost the same birefringence and a relatively wide and symmetric angle is achieved.

However, the two orthogonally crossed polarizers are no longer perpendicular to each other as viewed from the oblique off-axis direction, especially from the bisector of the crossed polarizers. FIGS. 1A and 1B are schematic diagrams of the crossed polarizers under normal view and under an oblique view from polar angle θ at the bisector of the crossed polarizers, respectively, where the solid line 11 represents the absorption direction of the top polarizer and the dashed line 12 represents the absorption direction of the bottom polarizer. As shown in FIG. 1B, the absorption axes of these two crossed polarizers make an angle of $2\tan^{-1}(\cos \theta)$, depending on the viewing polar angle. As the viewing polar angle θ increases, the angle between the two crossed polarizers deviates further from 90°. As a result, light leakage increases as the polar angle increases. For example, FIG. 2 illustrates the typical view of crossed polarizers, wherein the numbers in the contour polar plot represent the transmittance of the incident light and the wavelength is approximately 550 nm. At azimuthal angles of 45°, 135°, 225° and 315°, light leakage is prominent when the polar angle increases to approximately 70°. In FIGS. 3A through 3C, the viewing angle characteristics for a conventional IPS mode LCD are illustrated wherein the LC rubbing direction is along the horizontal (0°) axis and the pretilt angle is 1°. The figures illustrate that due to the light leakage at the voltage-off state, the 1:1 contrast ratio contour is limited to a 70° polar angle at azimuthal angles of 45°, 135°, 225° and 315°.

Compensation methods have been disclosed for solving the light leakage problem associated with crossed polarizers. In Chen et al., "Optimum film compensation modes for TN and VA LCDs", SID 1998 Digest, pp 315-318 (1998) and J. E. Anderson and P. J. Bos, "Methods and concerns of compensating in-plane switching liquid crystal displays", Jpn. J. Appl. Phys., Vol. 39, pp 6388-6392 (2000), a method is disclosed for using a positive birefringence C-film ($n_{c}-n_{y}$) plus a positive birefringence A-film ($n_{x}-n_{y}$), where the z-axis is along the film surface normal direction, i.e. the film thickness direction and x axis is parallel to the optical axis direction. An alternative method using a single biaxial film ($n_{x}-n_{y}-n_{z}$) to compensate for the light leakage of crossed polarizers is disclosed in Y. Saitoh et al., "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display", Jpn. J. Appl. Phys., Part 1, Vol. 37, pp 4822-4828 (1998). In addition, a design using two biaxial films to compensate light leakage in a large wavelength range is disclosed in T. Ishinable et al., "A wide viewing angle polarizer and a quarter-wave plate with a wide wavelength range for extremely high quality LCDs", IDW 01, pp 485-488 (2001) and T. Ishinable et al., "A wide viewing angle polarizer with a large wavelength range", Jpn. Appl. Phys. Part 1, Vol. 41, pp. 4553-4558 (2002). However, the cost associated with a C-film and a biaxial film is much higher than the cost of A-film. Additionally, use of a combination of a C-film and an A-film or a single biaxial film does not achieve the desired symmetric viewing angle.

The present invention advances the art by providing a method and apparatus using a positive uniaxial A-film and a negative uniaxial A-film to compensate the dark state light leakage of the liquid crystal display, in which the liquid crystal molecules are homogeneously aligned at inactive state when no voltage is applied to liquid crystal layer and are driven by a substantially lateral electric field. After compensation, the dark state light leakage is greatly decreased and the contrast ratio at oblique viewing polar angle is greatly enhanced, as a result, more than 100:1 contrast ratio is achieved in all viewing angles. During the analysis process of dark state light leakage, the Poincaré sphere presentation is used to illuminate the polarization state change in liquid crystal panel.

SUMMARY

A primary objective of the present invention is to provide a novel liquid crystal display with a wide viewing angle, for use as large screen high definition televisions (HDTV) and computer monitors.

A secondary objective of the present invention is to provide a novel method for decreasing light leakage of crossed polarizers at voltage-off state to obtain a wide viewing angle polarizer.

A third objective of the present invention is to provide a compensation method for liquid crystal displays having a liquid crystal layer that is homogeneously aligned at voltage off-state, such as IPS mode and FFS mode liquid crystal displays.
A fourth objective of the present invention is to provide a compensation method to keep the normal view dark state of liquid crystal displays relatively unchanged.

A liquid crystal display that includes a first substrate with alignment film having a first polarizer laminated on an outside surface, wherein the first polarizer faces a light source, a second substrate with alignment film having a second polarizer laminated on an outside surface, wherein the second polarizer faces an observer, a liquid crystal layer sandwiched between the first substrate and the second substrate, a positive birefringence uniaxial A-film with its optical axis parallel to the negative birefringence uniaxial A-film surface plane, and a negative birefringence uniaxial A-film with its optical axis parallel to the negative birefringence uniaxial A-film surface plane, wherein the negative birefringence uniaxial A-film is located between the first substrate and the second substrate, a positive birefringence uniaxial A-film, wherein the positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film are located between the first polarizer and the second polarizer, and wherein the optical axis of the positive birefringence uniaxial A-film is approximately perpendicular to the optical axis of the negative birefringence uniaxial A-film.

The angle between an absorption axis of the first polarizer and an absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between an absorption axis of the second polarizer and an alignment direction of the liquid crystal layer is in a range between approximately −5° and approximately +5°, and preferably in the range between approximately −2° and approximately +2°.

The angle between an absorption axis of the second polarizer and an alignment direction of the liquid crystal layer is in a range between approximately −5° and approximately +5°, and preferably in the range between approximately −2° and approximately +2°.

The angle between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film can be located between the liquid crystal layer and the first polarizer.

The positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film can be located between the liquid crystal layer and the second polarizer.

The positive birefringence uniaxial A-film has a retardation value $\Delta n = n_0 - n_1$ where Δn is birefringence of the positive birefringence uniaxial A-film.

The negative birefringence uniaxial A-film has a retardation value $\Delta n = n_0 - n_1$ where Δn is birefringence of the negative birefringence uniaxial A-film.

A liquid crystal display that includes a first substrate with alignment film having a first polarizer laminated on an outside surface, wherein the first polarizer faces a light source, a second substrate with alignment film having a second polarizer laminated on an outside surface, wherein the second polarizer faces an observer, a liquid crystal layer sandwiched between the first substrate and the second substrate, a positive birefringence uniaxial A-film with its optical axis parallel to the negative birefringence uniaxial A-film surface plane, and a negative birefringence uniaxial A-film with its optical axis parallel to the negative birefringence uniaxial A-film surface plane, wherein the negative birefringence uniaxial A-film is located between the first substrate and the second substrate, a positive birefringence uniaxial A-film, wherein the positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film are located between the first polarizer and the second polarizer, and wherein the optical axis of the positive birefringence uniaxial A-film is approximately perpendicular to the optical axis of the negative birefringence uniaxial A-film.

The angle between an absorption axis of the first polarizer and an absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between an absorption axis of the second polarizer and an alignment direction of the liquid crystal layer is in a range between approximately −5° and approximately +5°, and preferably in the range between approximately −2° and approximately +2°.

The angle between an absorption axis of the second polarizer and an alignment direction of the liquid crystal layer is in a range between approximately −5° and approximately +5°, and preferably in the range between approximately −2° and approximately +2°.

The angle between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The angle between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°, and preferably in the range between approximately 88° and approximately 92°.

The positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film can be located between the liquid crystal layer and the first polarizer.

The positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film can be located between the liquid crystal layer and the second polarizer.

The positive birefringence uniaxial A-film has a retardation value $\Delta n = n_0 - n_1$ where Δn is birefringence of the positive birefringence uniaxial A-film.

The negative birefringence uniaxial A-film has a retardation value $\Delta n = n_0 - n_1$ where Δn is birefringence of the negative birefringence uniaxial A-film.

A method for increasing the viewing angle of a liquid crystal display, can include the steps of applying a positive birefringence uniaxial A-film, having its optical axis parallel to the positive birefringence uniaxial A-film surface plane, between a liquid crystal layer and one of a first polarizer and a second polarizer, and applying a negative birefringence uniaxial A-film, having its optical axis parallel to the negative birefringence uniaxial A-film surface plane, adjacent to the positive birefringence uniaxial A-film.

The method can further include integrating the positive birefringence uniaxial A-film with a liquid crystal display having a homogeneously aligned liquid crystal layer at voltage-off state, wherein the liquid crystal layer is driven by a substantially lateral electrical field.

The method can further include locating the positive birefringence uniaxial A-film, the negative birefringence uniaxial A-film and the liquid crystal layer between two orthogonally crossed polarizers.

Further objects and advantages of the invention will be apparent from the following preferred embodiments which are illustrated schematically in the accompanying drawings.

FIGURES

FIG. 1A is a schematic view of two crossed polarizers from a normal viewing direction.

FIG. 1B is a schematic view of two crossed polarizers from an oblique viewing polar angle θ at the bisector of the crossed polarizers.

FIG. 2 is a graphical representation of the typical field of view of two orthogonally crossed polarizers.

FIG. 3A is a graphical representation of typical viewing angle characteristics of a conventional IPS mode LCD at voltage-off state.

FIG. 3B is a graphical representation of typical viewing angle characteristics of a conventional IPS mode LCD at voltage-on state.

FIG. 3C is a graphical representation of typical iso-contrast ratio viewing angle characteristics of a conventional IPS mode LCD.

FIG. 4A is a representation of two orthogonally crossed polarizers under normal view.

FIG. 4B illustrates a Poincarè sphere representation of the two orthogonally crossed polarizers of FIG. 4A.

FIG. 5A illustrates two orthogonally crossed polarizers under oblique view.

FIG. 5B illustrates a Poincarè sphere representation of the two orthogonally crossed polarizers of FIG. 5A.
FIG. 6A illustrates the configuration of two orthogonally crossed polarizers with positive A-film and negative A-film compensation in this invention.

FIG. 6B illustrates the oblique view layout of optical axes of the positive A-film and negative A-film and absorption axes of crossed polarizers of FIG. 6A.

FIG. 6C illustrates a Poincaré sphere representation of the two orthogonally crossed polarizers and compensation films of FIGS. 6A and 6B.

FIG. 7 illustrates the light leakage characteristics of the crossed polarizers with positive A-film and negative A-film compensation according to FIGS. 6A through 6C.

FIG. 8A illustrates the configuration of two orthogonally crossed polarizers with a negative A-film and a positive A-film compensation in this invention.

FIG. 8B illustrates the oblique view layout of optical axes of the negative A-film and positive A-film and absorption axes of crossed polarizers of FIG. 8A.

FIG. 8C illustrates a Poincaré sphere representation of the two orthogonally crossed polarizers and compensation films of FIGS. 8A and 8B.

FIG. 9 illustrates the light leakage characteristics of crossed polarizers with a negative A-film and a positive A-film compensation according to FIGS. 8A through 8C.

FIG. 10 illustrates a schematic structure of the multi-film compensation IPS (or FFS) mode as described in a first embodiment of the present invention.

FIG. 11 is a Poincaré sphere representation of an IPS (or FFS) mode LCD with a positive A-film and negative A-film compensation according to a first embodiment.

FIGS. 12A and 12B illustrate a field of view of the multi-film compensated IPS mode LCD of embodiment 1 at voltage-off state and at voltage-on state, respectively.

FIG. 13 illustrates a contrast ratio field of view of the multi-film compensated IPS mode LCD of embodiment 1.

FIG. 14 is a Poincaré sphere representation of an IPS (or FFS) mode LCD with a negative A-film and a positive A-film compensation according to FIG. 13.

FIGS. 15A and 15B illustrate a field of view of the multi-film compensated IPS mode LCD of embodiment 2 at voltage-off state and at voltage-on state, respectively.

FIG. 15C illustrates a contrast ratio field of view of the multi-film compensated IPS mode LCD of embodiment 2.

FIG. 16 illustrates a schematic structure of the multi-film compensation IPS (or FFS) mode as described in a second embodiment of the present invention.

FIG. 17 is a Poincaré sphere representation of an IPS (or FFS) mode LCD with a positive A-film and a negative A-film compensation according to FIG. 16.

FIGS. 18A and 18B illustrate a field of view of the multi-film compensated IPS mode LCD of embodiment 3 at voltage-off state and at voltage-on state, respectively.

FIG. 18C illustrates a contrast ratio field of view of the multi-film compensated IPS mode LCD of embodiment 3.

FIG. 19 illustrates a schematic structure of the multi-film compensation IPS (or FFS) mode as described in a fourth embodiment of the present invention.

FIG. 20 is a Poincaré sphere representation of an IPS (or FFS) mode LCD with a negative A-film and a positive A-film compensation according to FIG. 19.

FIGS. 21A and 21B illustrate a field of view of the multi-film compensated IPS mode LCD of embodiment 4 at voltage-off state and at voltage-on state, respectively.

FIG. 21C illustrates a contrast ratio field of view of the multi-film compensated IPS mode LCD of embodiment 4.

FIG. 22 illustrates a schematic structure of the multi-film compensation IPS (or FFS) mode as described in the prior art.

FIG. 23 is a Poincaré sphere representation of an IPS (or FFS) mode LCD with a negative A-film and a positive A-film compensation according to FIG. 22.

FIGS. 24A and 24B illustrate a field of view of the multi-film compensated IPS mode LCD of the prior art at voltage-off state and at voltage-on state, respectively.

FIG. 24C illustrates a contrast ratio field of view of the multi-film compensated IPS mode LCD of the prior art.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

Many LCDs use orthogonally crossed polarizers because they achieve a good dark state from a normal viewing angle. The conventional polarizer used for LCDs are produced by stretching a polymeric film, such as polyvinyl alcohol (PVA) doped with iodine or organic dye. The optical property of a polarizer is equivalent to a uniaxial absorption film with its absorption axis parallel to the optical axis of the polarizer and its transmission direction perpendicular to the optical axis of the polarizer; therefore, the absorption direction and the transmission direction of a polarizer is perpendicular with each other.

Under normal viewing, the absorption axes (directions) of orthogonally crossed polarizers are perpendicular to each other, as illustrated in FIG. 4A where the dashed line 42 represents the absorption direction of the bottom polarizer and the solid line 44 represents the absorption direction of the top polarizer. On the Poincaré sphere illustrated in FIG. 4B, the point identified as POL(T) is the transmission direction of the bottom polarizer and point POL(A) is the absorption axis of the bottom polarizer and point ANA(A) is the absorption axis of the top polarizer. Under normal viewing, the transmission direction POL(T) of the bottom polarizer and the absorption direction ANA(A) of the top polarizer are exactly overlapped. Therefore, no light leaks out and a very good dark state is achieved.

However, under oblique view from the off-axis direction, the absorption axis 52 of the bottom polarizer and absorption axis 54 of the top polarizer are not perpendicular, especially from the oblique direction of the bisector of the crossed polarizers as shown in the schematic view of FIG. 5A. On the Poincaré sphere in FIG. 5B, it is shown that the transmission direction of the bottom polarizer (point POL(T)) and the absorption direction of the top polarizer (point ANA(A)) are separated from each other.

As a result, light leakage occurs as previously illustrated in FIG. 2. In LCDs with the liquid crystal layer homogeneously aligned at off-state and driven by a lateral electric field, such as the IPS-mode (in-plane switching mode) and FFS-mode (fringe field switching mode) LCDs, the dark state light leakage results primarily from the crossed polarizer light leakage. Therefore, reducing or eliminating the light leakage from the crossed polarizers can enhance the viewing angle of the IPS and FFS mode LCDs.

FIG. 6A illustrates the configuration of crossed bottom polarizer 61 and top polarizer 63 with a positive A-film 65 and
a negative A-film \(67\) sandwiched between them. The absorption axis \(62\) of the bottom polarizer \(61\) is perpendicular to the absorption axis \(64\) of the top polarizer \(63\). The positive A-film \(65\) is a uniaxial birefringence film with its optical axis \(66\) parallel to its film surface plane and has a birefringence \(\Delta n_2 - n_c > 0\). The angle between the optical axis \(66\) of the positive A-film \(65\) and the absorption axis \(62\) of the bottom polarizer \(61\) is less than approximately \(95^\circ\) and greater than approximately \(85^\circ\). In a preferred embodiment, the angle is less than approximately \(92^\circ\) and greater than approximately \(88^\circ\). The positive A-film \(65\) has a phase retardation in the range of \(0.05 \leq \Delta n/\lambda \leq 0.25\), where \(\lambda\) is the wavelength of incident light, \(d\) is the thickness of the negative A-film \(67\) and \(\Delta n_2 - n_c\) is the birefringence of the positive A-film \(65\).

The negative A-film \(67\) is a uniaxial birefringence film with its optical axis \(68\) parallel to its film surface plane and has a birefringence \(\Delta n_2 - n_c < 0\). The angle between the optical axis \(66\) of the negative A-film \(67\) and the absorption axis \(64\) of the top polarizer \(63\) is less than approximately \(95^\circ\) and greater than approximately \(85^\circ\). In a preferred embodiment, the angle is less than approximately \(92^\circ\) and greater than approximately \(88^\circ\). The negative A-film \(67\) has a phase retardation in the range of \(-0.25 \leq \Delta n/\lambda \leq -0.05\), where \(\lambda\) is the wavelength of incident light, \(d\) is the thickness of the negative A-film \(67\) and \(\Delta n_2 - n_c\) is the birefringence of the negative A-film \(67\).

FIG. 6B illustrates the oblique view layout of optical axes of the positive A-film and negative A-film and absorption axes of crossed polarizers in FIG. 6A. Apparently under oblique view, the absorption axis \(62\) of the bottom polarizer \(61\) and the absorption axis \(64\) of the top polarizer \(63\) are not perpendicular with each other any more. Although not perpendicular under oblique view, the crossed polarizers only generate very little light leakage after the compensation of positive A-film \(65\) and negative A-film \(67\).

The following is an explanation of the film compensation principle used in the method and apparatus of the present invention. As illustrated in FIG. 6C, as the incident light passes through the bottom polarizer \(61\), it becomes linearly polarized and is located at point POL(T). After passing through the positive A-film \(65\), the polarization state moves to point B. After passing through the negative A-film \(68\), point B moves to point ANA(A). The light is completely absorbed by the top polarizer \(63\) and no leakage occurs. To keep the normal view and on-axis dark state unchanged, the optical axes of the positive A-film \(65\) and the negative A-film \(67\) are approximately perpendicular to the absorption axes of their adjacent polarizers.

FIG. 7 illustrates the field of view of crossed polarizers with a positive A-film \(65\) and a negative A-film \(67\) compensation according to FIGS. 6A through 6C. Comparing FIG. 2 without film compensation to FIG. 7 with film compensation, the largest light leakage decreases approximately 30 times.

Alternatively, the positions of the positive A-film and the negative A-film can be exchanged as illustrated in the schematic view of FIGS. 8A and 8B and the Poincaré sphere presentation in FIG. 8C. In FIG. 9, the results of the alternative compensation configuration are illustrated. Comparing FIG. 7 to FIG. 9, it is apparent that the reduction in light leakage is approximately the same.

To extend the compensation method of the present invention to LCDs with liquid crystal layer initially homogenous alignment, such as IPS mode LCD and FFS mode LCD, the alignment direction (rubbing direction) of the liquid crystal layer, the optical axis directions of both positive and negative A-films, the absorption axis directions of both polarizers should be properly set up and the film retardation values of both positive and negative A-films need to be optimized.

Table 1 lists the liquid crystal parameters that were used in the following computer simulation.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_a)</td>
<td>1.5621 ((\lambda = 550) nm)</td>
</tr>
<tr>
<td>(n_{as})</td>
<td>1.4771 ((\lambda = 550) nm)</td>
</tr>
<tr>
<td>(\varepsilon_f)</td>
<td>4.4</td>
</tr>
<tr>
<td>(K_{11})</td>
<td>(9.2 \times 10^{-12}) N</td>
</tr>
<tr>
<td>(K_{22})</td>
<td>(6.1 \times 10^{-12}) N</td>
</tr>
<tr>
<td>(K_{33})</td>
<td>(14.6 \times 10^{-12}) N</td>
</tr>
<tr>
<td>Cell gap</td>
<td>4.0 (\mu)m</td>
</tr>
<tr>
<td>Pretilt angle</td>
<td>(1^\circ)</td>
</tr>
</tbody>
</table>

In a first embodiment, FIG. 10 illustrates the use of the multi-film compensation method and apparatus with an IPS-mode LCD, comprising a bottom polarizer \(101\) with a first absorption direction \(102\) and a top polarizer \(109\) with a second absorption direction \(110\) perpendicular to the first absorption direction \(102\) of the bottom polarizer \(101\), a homogeneously aligned liquid crystal (LC) layer \(103\) with its alignment direction parallel to the absorption direction \(102\) of the bottom polarizer \(101\), a positive A-film \(105\) with its optical axis \(106\) perpendicular to the absorption direction \(102\) of the bottom polarizer \(101\), a negative A-film \(107\) with its optical axis \(108\) perpendicular to the absorption direction \(110\) of the top polarizer \(109\).

The LC layer \(103\) is substantially homogeneously aligned at off-state when no voltage is applied to the LC layer \(103\) and forms a twist profile when driven by the lateral electric field generated from the comb-shaped electrodes. While FIG. 10 illustrates the use with an IPS-mode LCD, usage of the novel multi-film compensator is equally applicable to an FFS-mode LCD.

FIG. 11 is a Poincaré sphere presentation of the compensation principle when a positive A-film and a negative A-film compensation are applied to the IPS (or FFS) mode LCD of FIG. 10. Point POL(T) is the transmission direction of the bottom polarizer \(101\), POL(A) is the absorption direction \(102\) of the bottom polarizer \(101\), ANA(A) is the absorption direction \(110\) of the top polarizer \(109\), and the point designated as LC is the liquid crystal alignment direction.

The incident light becomes linearly polarized (point POL(T)) after passing through the bottom polarizer \(101\). Since the alignment direction of the LC layer \(103\) is along the absorption direction \(102\) of the bottom polarizer \(101\), the linearly polarized light does not change its polarization state after it passes through the LC layer \(103\). Therefore, the same compensation method used with the pure crossed polarizers can be used with the IPS-mode and FFS-mode LCDs. When the linearly polarized light then passes through the positive A-film \(105\), point POL(T) moves to point B. After the light passes through the negative A-films \(107\), point B moves to point ANA(A), which is the absorption direction of the top polarizer \(109\). Therefore, the light is totally absorbed by the top polarizer \(109\) and very little light leakage occurs at other oblique angles. Table 2 provides a sample list of the optimized film parameters for the positive A-film and the negative A-film.

FIGS. 12A through 12C illustrate the results of the simulation for IPS-mode 1.CD having a positive A-film and a negative A-film showing that a contrast ratio approximately larger than 200:1 is achieved in the \(\pm 85^\circ\) viewing cone.
the fourth embodiment. Compared to embodiment 3, the positions of the positive A-film 105 and the negative A-film 107 in this fourth embodiment are exchanged. FIG. 20 shows the compensation principle of this fourth embodiment and Table 5 is a list of the optimal film parameters from positive A-film 105 and negative A-film 107.

<table>
<thead>
<tr>
<th>Film Type</th>
<th>Thickness (µm)</th>
<th>Birefringence Δn = n₁ - n₂</th>
<th>Retardation of film dΔn (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive A-film</td>
<td>56.0</td>
<td>0.0015</td>
<td>84.0</td>
</tr>
<tr>
<td>Negative A-film</td>
<td>63.0</td>
<td>-0.0015</td>
<td>-94.5</td>
</tr>
</tbody>
</table>

The compensation results for the fourth embodiment are illustrated in FIGS. 21A through 21C. As with the third embodiment, a contrast ratio of 100:1 is obtained for substantially all polar angles.

For the purpose of comparison, FIG. 22 illustrates a prior art compensation scheme for an IPS LCD using a positive C-film 204 and a positive A-film 205. In the prior art, the absorption axis 202 of bottom polarizer 201 and the absorption axis 210 of the top polarizer 209 are also perpendicular with each other. The optical axis 206 of the positive A-film 205 is perpendicular to the absorption axis 210 of the top polarizer 209.

The optical axis of the positive C-film 204 is perpendicular to the surface plane of the positive C-film 204. That means the optical axis of the positive C-film 204 is along the surface normal direction of the positive C-film 204. FIG. 23 illustrates the compensation principle in Poincaré sphere representation corresponding to the prior art compensation scheme of FIG. 22. Table 6 lists the parameters of the positive A-film and the positive C-film compensation film used in the prior art.

<table>
<thead>
<tr>
<th>Film Type</th>
<th>Thickness (µm)</th>
<th>Birefringence Δn = n₁ - n₂</th>
<th>Retardation of film dΔn (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive A-film</td>
<td>87.0</td>
<td>0.0015</td>
<td>130.5</td>
</tr>
<tr>
<td>Positive C-film</td>
<td>56.5</td>
<td>-0.0015</td>
<td>84.8</td>
</tr>
</tbody>
</table>

The resulting dark state, bright state transmission, and contrast ratio of the prior art are plotted in FIGS. 24A through 24C, respectively. The largest light leakage in FIG. 24A is approximately 35 percent larger than the light leakage shown in FIG. 12A. Additionally, the viewing angle corresponding to the 200:1 contrast ratio in embodiment 1 is 10° wider than that of the prior art as shown when FIGS. 12C and 24C are compared. More importantly, the negative A-film in embodiments 1 through 4 of this invention has a much lower cost than C-film and performs better for enlarging the viewing angle of the IPS and the FFS LCDs.

The method and apparatus of the present invention laminates one of a top substrate and a bottom substrate of the liquid crystal layer with a positive A-film and a negative A-film. The multi-film compensated liquid crystal displays of the present invention increases the contrast ratio for a larger viewing angle at a reduced cost.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodi-
ments as may be suggested by the teachings herein are par­

tically reserved especially as they fall within the breadth

and scope of the claims here appended.

We claim:

1. A liquid crystal display comprising:
a first substrate with alignment film having a first polarizer
laminated on an outside surface, wherein the first polar­
izer faces a light source;
a second substrate with alignment film having a second
polarizer laminated on an outside surface, wherein the
second polarizer faces an observer;
a liquid crystal layer sandwiched between the first sub­
strate and the second substrate;
a positive birefringence uniaxial A-film with its optical axis
parallel to the positive birefringence uniaxial A-film sur­
faced, wherein the negative birefringence uniaxial A-film is
adjacent to the positive birefringence uniaxial A-film, wherein
the positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film are located between the first polarizer and
the second polarizer laminated on one of the first and second substrates within the liquid crystal display without a
polarizing beam splitter, and wherein the optical axis of the positive birefringence uniaxial A-film is approxi­
mately perpendicular to the optical axis of the negative
birefringence uniaxial A-film.

2. The liquid crystal display of claim 1, wherein an angle
between an absorption axis of the first polarizer and an
absorption axis of the second polarizer is in a range between
approximately 85° and approximately 95°.

3. The liquid crystal display of claim 2, wherein the range
is between approximately 88° and approximately 92°.

4. The liquid crystal display of claim 1, wherein an angle
between an absorption axis of the first polarizer and an
alignment direction of the liquid crystal layer is in a range between
approximately −5° and approximately +5°.

5. The liquid crystal display of claim 4, wherein the range
is between approximately −2° and approximately +2°.

6. The liquid crystal display of claim 1, wherein an angle
between an absorption axis of the second polarizer and an
alignment direction of the liquid crystal layer is in a range between
approximately −5° and approximately +5°.

7. The liquid crystal display of claim 6, wherein the range
is between approximately −2° and approximately +2°.

8. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°.

9. The liquid crystal display of claim 8, wherein the range
is between approximately 88° and approximately 92°.

10. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°.

11. The liquid crystal display of claim 10, wherein the range
is between approximately 88° and approximately 92°.

12. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence
uniaxial A-film and the absorption axis of the second polar­
er is in a range between approximately 85° and approximately 95°.

13. The liquid crystal display of claim 12, wherein the range
is between approximately 88° and approximately 92°.

14. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°.

15. The liquid crystal display of claim 14, wherein the range
is between approximately 88° and approximately 92°.

16. The liquid crystal display of claim 1, wherein the posi­
tive birefringence uniaxial A-film and the negative birefrin­
gence uniaxial A-film are located between the liquid crystal layer and the first polarizer.

17. The liquid crystal display of claim 1, wherein the posi­
tive birefringence uniaxial A-film and the negative birefrin­
gence uniaxial A-film are located between the liquid crystal layer and the second polarizer.

18. The liquid crystal display of claim 1, wherein the nega­
tive birefringence uniaxial A-film has a retardation value
δΔn, where λ is the wavelength of incident light, d is the
thickness of the negative birefringence uniaxial A-film and
δΔn, is birefringence of the negative birefringence
uniaxial A-film.

19. The liquid crystal display of claim 1, wherein the liquid
crystal layer is substantially homogeneously aligned between
the first substrate and the second substrate at voltage-off state
and is driven by a substantially lateral electrical field.

20. The liquid crystal display of claim 19, wherein the liquid
crystal display is an in-plane switching mode liquid crystal
display.

21. The liquid crystal display of claim 19, wherein the liquid
crystal display is a fringe field switching mode liquid crystal
display.

22. A liquid crystal display comprising:
a first substrate with alignment film having a first polarizer
laminated on an outside surface, wherein the first polar­
er faces a light source;
a second substrate with alignment film having a second
polarizer laminated on an outside surface, wherein the
second polarizer faces an observer;
a liquid crystal layer sandwiched between the first sub­
strate and the second substrate;
a positive birefringence uniaxial A-film with its optical axis
parallel to the positive birefringence uniaxial A-film sur­
faced, wherein the negative birefringence uniaxial A-film is
adjacent to the positive birefringence uniaxial A-film, wherein
the positive birefringence uniaxial A-film and the negative birefringence uniaxial A-film are located between the first polarizer and
the second polarizer laminated on one of the first and second substrates within the liquid crystal display without a
polarizing beam splitter, and wherein the optical axis of the positive birefringence uniaxial A-film is approxi­
mately perpendicular to the optical axis of the negative
birefringence uniaxial A-film.

23. The liquid crystal display of claim 1, wherein an angle
between an absorption axis of the first polarizer and an
absorption axis of the second polarizer is in a range between
approximately 85° and approximately 95°.

24. The liquid crystal display of claim 23, wherein the range
is between approximately 88° and approximately 92°.

25. The liquid crystal display of claim 1, wherein an angle
between an absorption axis of the first polarizer and an
alignment direction of the liquid crystal layer is in a range between
approximately −5° and approximately +5°.

26. The liquid crystal display of claim 25, wherein the range
is between approximately −2° and approximately +2°.

27. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°.

28. The liquid crystal display of claim 27, wherein the range
is between approximately 88° and approximately 92°.

29. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the positive birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°.

30. The liquid crystal display of claim 29, wherein the range
is between approximately 88° and approximately 92°.

31. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence
uniaxial A-film and the absorption axis of the second polar­
er is in a range between approximately 85° and approximately 95°.

32. The liquid crystal display of claim 31, wherein the range
is between approximately 88° and approximately 92°.

33. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°.

34. The liquid crystal display of claim 33, wherein the range
is between approximately 88° and approximately 92°.

35. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°.

36. The liquid crystal display of claim 35, wherein the range
is between approximately 88° and approximately 92°.

37. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the first polarizer is in a range between approximately 85° and approximately 95°.

38. The liquid crystal display of claim 37, wherein the range
is between approximately 88° and approximately 92°.

39. The liquid crystal display of claim 1, wherein an angle
between the optical axis of the negative birefringence uniaxial A-film and the absorption axis of the second polarizer is in a range between approximately 85° and approximately 95°.

40. The liquid crystal display of claim 39, wherein the range
is between approximately 88° and approximately 92°.