Assessment And In Vitro Repair Of Damaged DNA Templates From Forensic Stains

Ashley Hall

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

https://stars.library.ucf.edu/etd/562
ASSESSMENT AND IN VITRO REPAIR OF DAMAGED DNA TEMPLATES FROM FORENSIC STAINS

by

ASHLEY M. HALL, M.S.
University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the College of Arts and Sciences at the University of Central Florida Orlando, Florida

Fall Term
2005

Major Professor: Jack Ballantyne, PhD
ABSTRACT

DNA extracted from biological stains is often intractable to analysis. This may due to a number of factors including a low copy number (LCN) of starting molecules, the presence of soluble inhibitors or damaged DNA templates. Remedies may be available to the forensic scientist to deal with LCN templates and soluble inhibitors but none presently exist for damaged DNA. In fact, only recently has the biochemical nature, the extent of DNA damage in physiological stains and the point at which the damage inflicted upon a particular sample precludes the ability to obtain a genetic profile for purposes of identification been examined. The primary aims of this work were first to ascertain the types of DNA damage encountered in forensically relevant stains, correlating the occurrence this damage with the partial or total loss of a genotype, and then to attempt the repair of the damage by means of in vitro DNA repair systems.

The initial focus of the work was the detection of damage caused by exogenous, environmental sources, primarily UV irradiation, but also factors such as heat, humidity and microorganism growth. Results showed that the primary causes of the damage that resulted in profile loss were strand breaks, both single and double stranded, as well as modifications to the DNA structure that inhibited its amplification.

Armed with this knowledge, the next focus was the repair of the damage by means of in vitro DNA systems. Efforts have been concentrated on single strand break/gap repair and translesion synthesis assays. By modifying the assays and employing various combinations of the systems, a genetic signature has been recovered from previously intractable samples.
Additionally, the effects that various storage conditions have on the DNA in physiological stains stored in a laboratory were examined. The optimal long term storage conditions for biological evidence has been a matter of debate in the forensic community for some time. But, no comprehensive study had previously been undertaken to describe the effects of dehydration and temperature on degradation and the ability to obtain a genetic profile on bloodstains kept in different types of storage media at a range of temperatures. To examine this, bloodstains were either allowed to dry overnight or placed in the storage medium while still wet and were stored at room temperature, 4°C or 30°C for up to four years. Results showed that specimens dehydrated prior to storage were very stable, and these bloodstains showed no degradation or loss of a genetic profile for up to four years.
I would like to dedicate this work to the people who saw me through its completion. I especially thank my family, friends and my fellow lab members without whom I would never have made it. I have to specifically acknowledge my boys, Matt and Alex, who have had to live with me!
ACKNOWLEDGMENTS

My committee:
Jack Ballantyne, PhD
Debopam Chakrabarti, PhD
Cristina Fernandez-Valle, PhD
Laurie Von Kalm, PhD

Funding and Support:
National Institute of Justice
National Center for Forensic Science

Collaborators:
Roger Woodgate, PhD
John McDonald, PhD
Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD

My fellow lab members:
Lynn Sims Jane Juusola, PhD
Michelle Alvarez Kathy Press
Darlene Daniels Kyle Parker
Melissa Donigan Kelly Klega Dana Kleine
TABLE OF CONTENTS

LIST OF FIGURES ... X

LIST OF TABLES ... XII

CHAPTER ONE: GENERAL INTRODUCTION ... 1

FORENSIC DNA TYPING ... 1

DNA DAMAGE ASSESSMENT .. 2

 Background ... 2

 UV-Induced DNA Damage ... 5

DNA REPAIR .. 11

 DNA Repair Mechanisms ... 11

CHAPTER TWO: MATERIALS AND METHODS – DNA DAMAGE ASSESSMENT 18

BLOODSTAIN PREPARATION ... 18

NAKED DNA .. 18

NAKED DEHYDRATED DNA ... 19

UVC EXPOSURE ... 19

UVA/B EXPOSURE ... 20

ISOLATION AND PURIFICATION OF DNA .. 20

DNA QUANTIFICATION .. 21

 Yield Gel ... 21

 QuantiBlot® Human DNA Quantitation Kit. ... 21

 Real-Time PCR: Alu ... 23

PCR AMPLIFICATION ... 24

 Autosomal Multiplex .. 24

 Alu Amplification .. 25
LIST OF FIGURES

FIGURE 1. CYCLOBUTANE PYRIMIDINE DIMER ... 7
FIGURE 2. (6-4) PHOTOPRODUCT. (ADAPTED FROM TODO ET AL11) 7
FIGURE 3. NAKED DNA EXPOSED TO UVC .. 32
FIGURE 4. GENETIC PROFILING OF UVC IRRADIATED BLOODSTAINS ... 34
FIGURE 5. BLOODSTAINS EXPOSED TO UVC ... 36
FIGURE 6. GENETIC PROFILING OF UVC IRRADIATED BLOODSTAINS ... 38
FIGURE 7. NAKED, DEHYDRATED DNA EXPOSED TO UVC 40
FIGURE 8. GENOTYPING OF NAKED, DEHYDRATED DNA SAMPLES 42
FIGURE 9. UV PPS IN NAKED DNA ... 47
FIGURE 10. UV PPS IN BLOODSTAINS ... 50
FIGURE 11. UV PPS IN NAKED, DEHYDRATED DNA .. 52
FIGURE 12. THE EFFECTS OF UVA IRRADIATION ... 62
FIGURE 13. THE EFFECTS OF UVB IRRADIATION ... 66
FIGURE 14. UVA INDUCED BPPPS ... 71
FIGURE 15. UVB INDUCED BPPPS ... 72
FIGURE 16. OXIDATIVE DAMAGE: UVA ... 77
FIGURE 17. OXIDATIVE DAMAGE: UVB ... 79
FIGURE 18. HUMIDITY EXPERIMENTS ... 87
FIGURE 19. ENVIRONMENTAL SAMPLES ... 93
FIGURE 20. ALU ASSAY FOR THE IN VITRO DETECTION OF DAMAGED DNA ... 96
FIGURE 21. ALU ASSAY: NAKED DNA EXPOSED TO UVC 99
FIGURE 22. ALU QUANTIFICATION OF A LESION SPECIFIC ENZYME DIGEST OF NAKED DNA EXPOSED TO UVC ... 100
FIGURE 23. SUMMARY OF ALU REAL-TIME QUANTIFICATION 108
FIGURE 24. EFFECTS OF TEMPERATURE AND SUBSTRATE ON STORED DNA ... 111
FIGURE 25A - F. AUTOSOMAL PROFILES (PROFILER) OF BLOODSTAINS STORED UNDER VARYING CONDITIONS

..112

FIGURE 26. PHOTOLYASE...125

FIGURE 27. UNEXPOSED NAKED DNA WAS AMPLIFIED USING THE YAP PRIMERS AND INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...134

FIGURE 28. NAKED DNA EXPOSED TO UVC FOR 6 MINUTES WAS AMPLIFIED USING THE YAP PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...135

FIGURE 29. NAKED DNA EXPOSED TO UVC FOR 11 MINUTES WAS AMPLIFIED USING THE YAP PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...136

FIGURE 30. NAKED DNA EXPOSED TO UVC FOR 28 MINUTES WAS AMPLIFIED USING THE YAP PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...137

FIGURE 31. NAKED DNA EXPOSED TO UVC AND ANALYZED ON A NATIVE AGAROSE GEL ..141

FIGURE 32. UNEXPOSED NAKED DNA WAS AMPLIFIED USING THE Alu PRIMERS AND INCORPORATING Taq
ALONE OR Taq + 100 NM TLS ENZYME ..143

FIGURE 33. NAKED DNA EXPOSED TO UVC FOR 6 MINUTES WAS AMPLIFIED USING THE Alu PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...144

FIGURE 34. NAKED DNA EXPOSED TO 30 MINUTES UVC WAS AMPLIFIED USING THE Alu PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...145

FIGURE 35. NAKED DNA EXPOSED TO 40 MINUTES UVC WAS AMPLIFIED USING THE Alu PRIMERS AND
INCORPORATING Taq ALONE OR Taq + 100 NM TLS ENZYME ...146

FIGURE 36. DNA LIGASE / POLYMERASE I REACTION ..148

FIGURE 37. BASE EXCISION REPAIR ...151

FIGURE 38. UNEXPOSED STAIN DNA INCUBATED WITH BER ENZYMES ..155

FIGURE 39. DNA FROM BLOODSTAINS EXPOSED TO THE ENVIRONMENT FOR 8 DAYS158
LIST OF TABLES

Table 1. Summary of the damage detected in naked DNA in solution.

Table 2. Summary of the damage detected in stain DNA.

Table 3. Summary of the damage detected in naked, dehydrated DNA.

Table 4. *Alu* Family Consensus Sequence.

Table 5. Summary of the YAP-TLS experiments.

Table 6. Summary of the YAP Amplified Environmental Samples.

Table 7. Summary of the *Alu*-TLS experiments.

Table 8. Summary of BER results.
LIST OF ACRONYMS/ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD</td>
<td>cyclobutane pyrimidine dimer</td>
</tr>
<tr>
<td>(6-4) PP</td>
<td>6-4[pyrimidine-2'-one]pyrimidine</td>
</tr>
<tr>
<td>MMR</td>
<td>mismatch repair</td>
</tr>
<tr>
<td>BER</td>
<td>base excision repair</td>
</tr>
<tr>
<td>NER</td>
<td>nucleotide excision repair</td>
</tr>
<tr>
<td>TLS</td>
<td>translesion synthesis</td>
</tr>
<tr>
<td>SSB(R)</td>
<td>single strand break (repair)</td>
</tr>
<tr>
<td>DSB(R)</td>
<td>double strand break (repair)</td>
</tr>
<tr>
<td>UVPP</td>
<td>ultraviolet photoproduct</td>
</tr>
<tr>
<td>BPPP</td>
<td>bipyrimidine photoproduct</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CE</td>
<td>capillary electrophoresis</td>
</tr>
<tr>
<td>T4 Endo V</td>
<td>T4 Endonuclease V</td>
</tr>
<tr>
<td>CV-PDG</td>
<td>Chlorella virus pyrimidine dimer glycosylase</td>
</tr>
<tr>
<td>UVDE</td>
<td>ultraviolet damage endonuclease</td>
</tr>
<tr>
<td>FPG</td>
<td>formamidopyrimidine dimer glycosylase</td>
</tr>
<tr>
<td>hOGG1</td>
<td>human 8-oxo-guanine glycosylase 1</td>
</tr>
</tbody>
</table>
CHAPTER ONE: GENERAL INTRODUCTION

Forensic DNA Typing

The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence, such that the absence of DNA data could, in itself, be considered evidence. DNA typing now plays a critical role within the criminal justice system. Numerous individuals have been convicted and falsely accused individuals exonerated based on DNA evidence. Increasing use is being made of databases of DNA profiles for criminal intelligence information.

The ultimate goal of forensic genetic typing is human identification. Current DNA typing technologies differentiate between individuals based on length polymorphisms. Primate specific PCR primers are designed to complement the invariable sequences subtending a short tandem repeat (STR) array which generally ranges from 100 to 400 bp in length. The STR itself is a 2 – 5 bp repeat.

By labeling one of the primers with a fluorescent dye, the PCR product is detected by laser induced fluorescence following capillary electrophoretic separation. The computer software interprets these emissions as peaks which are displayed as an electropherogram.
DNA Damage Assessment

Background

One of the limiting factors with the current DNA typing technologies is that sometimes DNA isolated from physiological stains recovered from the crime scene is found to be intractable to standard STR analysis. This may be due to a number of factors, of which the most important are likely to be the presence of PCR inhibitors, a low copy number (LCN) of starting DNA molecules, or damaged (including degraded) DNA templates. Remedies may be available to the forensic scientist to deal with soluble inhibitors or LCN templates but none presently exists for damaged DNA. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary.

DNA, like all macromolecules, spontaneously decomposes and therefore has a finite, but characteristic, thermodynamic stability. The primary structure can exhibit a variety of different lesions indicative of damage including hydrolysis and oxidation products, single and double strand breaks, UV-induced photoproducts, DNA or protein cross-links and chemical agent-induced covalent adducts. Genomic (i.e. DNA) instability may be endogenous in nature, caused by water and other reactive oxygen species, or exogenous in origin, brought about by factors such as UV irradiation, heat, humidity and environmental genotoxins1,2. \textit{In vivo}, the organism has an extensive armamentarium of
enzymes that are responsible for the continuous recognition and repair of DNA damage that occurs spontaneously as a consequence of cellular metabolism. However, once the tissue is no longer under the control of the normal cellular homeostatic processes, such as is the case for biological stains deposited at a crime scene, DNA damage cannot be repaired. Although the lack of DNA repair ability in a stain is expected to increase the formation of certain types of lesions, some of the degradative processes, such as hydrolysis, are likely to be reduced in the dry state. Thus, dried physiological fluid stains should experience a different rate of DNA lesion formation compared to the situation in situ. It is likely that environmental insults are the primary lesion-causing factors in physiological stains recovered from the crime scene. The principal concern from the forensic science standpoint is that many of these environmentally induced lesions are expected to be inhibitory towards DNA polymerase-mediated primer extension and may result in amplification, and hence DNA typing, failure.

Numerous studies have assessed the effects of various environmental factors on the ability to obtain a DNA profile. For example, McNally and Kobilinsky examined the effect of UV light, heat and humidity on laboratory prepared human bloodstains exposed for periods up to five days. Samples subjected to UV irradiation showed a loss of allelic signal intensity with increasing exposure, but the rate of loss was not consistent. The same authors observed a similar loss of typing ability with increasing exposure to elevated humidity and heat. In another study, McNally and DeForest used environmentally compromised stains obtained from casework samples. In these studies, DNA extracted from bona fide forensic specimens also exhibited varying levels of damage that affected the allelic signal intensity observed with DNA profiling. These
early reports examined the effects of environmentally induced damage to VNTR (or RFLP) analysis but, significantly, not to PCR-based DNA typing systems, which have supplanted VNTR technology for forensic casework use4. Empirical data from the ancient DNA field has confirmed the expectation that less damage is caused to the DNA template under conditions of lower temperatures and humidity5.

Novel DNA typing systems undergo developmental validation studies by the forensic science community prior to use and this often includes studies of the effects of environmental insults on the ability to type DNA accurately at all genetic loci of the DNA typing system employed. The common conclusion reached is that environmentally impacted DNA in biological samples results in a progressive loss of signal and allelic drop out with extended or intense exposure6-9. One of the most detrimental agents appears to be UV irradiation although no studies to determine the precise molecular nature and extent of this damage in forensic biological stains have been reported.

In the absence of fundamental knowledge on the types of DNA damage encountered in forensic stains that would cause amplification failure, it is postulated that single and double strand breaks, UV-induced photoproducts, oxidative damage and, possibly, DNA-DNA cross links are likely to be the most important lesions found in such stains. The long-term goal of the studies described herein is to attempt to repair these lesions to allow DNA typing of otherwise intractable stains. Initial efforts have been concentrated on the assessment of UV-induced DNA damage, since sunlight is a common environmental insult encountered in forensic analysis and the biochemistry of UV-induced DNA damage and repair is well characterized in model systems.
UV-Induced DNA Damage

Pyrimidine Dimers

When DNA is exposed to UV irradiation, the majority of damage is sustained in areas rich in the pyrimidine bases, cytosine and thymine. Adjacent pyrimidines may form covalent bonds, yielding cyclobutane pyrimidine dimers (CPDs) or 6-4[pyrimidine-2'-one] pyrimidines (6-4 photoproducts, (6-4) PP).

CPDs result from the saturation of the 5,6 double bonds of adjacent pyrimidines, leading to the formation of a cyclobutyl ring (Figure 1). In theory, twelve dimeric isomers can exist, but the cis-syn conformation is the predominant form found in the biologically relevant B form DNA although trans-syn dimers have been observed in denatured DNA, or in areas having an unusual structure, such as Z-DNA. (6-4) PPs are most often formed as a result of the association of adjacent thymine and cytosine residues, but their formation is more complex, proceeding via an oxetane intermediate (Figure 2). Ultimately, the C4 hydroxyl or amino group of the 3' base is transferred to the C6 position of the 5' base, resulting in the formation of a C6-C4 Φ bond.

To determine which of the two types of pyrimidine dimers comprises the predominant form of UV damage and whether there is any sort of site specificity in their formation, experiments have been performed using transcribed *E. coli* genes as a model system. Subsequent to UV irradiation, CPDs comprised approximately 65% of the damage whereas (6-4) PPs comprised approximately 35%, a mean ratio of approximately 2:1 CPDs/(6-4) PPs. CPDs occurred at rates that differed 10-15 fold at various locations.
At most locations, these were the predominant type of lesion, but there were sites where
the rate of formation of (6-4) PPs equaled or surpassed that of CPDs12. These results
indicate that sequence and genetic environment can have an effect on the rate and type of
lesion. However it is unclear whether the same generalizations hold true for non-
transcribed loci in humans, the regions of interest in forensic analysis.

Other photoproducts such as pyrimidine hydrates, strand breaks, purine
photoproducts and DNA cross-links are formed with a frequency of less than 4%10.

Although detailed characterization of the nature of DNA damage in biological
stains is still in its infancy, research into the fundamental causes of cancer and genetic
disease has provided valuable insights into the effect of UV irradiation on DNA \textit{in vivo}
and the specific repair mechanisms involved.
Figure 1. Cyclobutane pyrimidine dimer.

Figure 2. (6-4) Photoproduct. (adapted from Todo et al11).

Oxidative Lesions

Oxidative damage to DNA is mediated by reactive oxygen species (ROS), which can be endogenous or exogenous in origin and include singlet oxygen, peroxide radicals (-O\textsubscript{2}), hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), and hydroxyl radicals (-OH). The major intracellular source of these species is the leakage associated with cellular respiration in which oxygen is reduced to H\textsubscript{2}O in the mitochondria13,14. Other ROS generating intracellular processes
include peroxisomal metabolism, enzymatic synthesis of nitric oxide and the metabolism of phagocytic leukocytes. Common extracellular sources include heat, drugs, certain redox cycling compounds, and radiation, especially ionizing radiation and near UV light (320 – 380 nm).

It is likely that H₂O₂ and -O₂ radicals do not themselves react with the nucleic acid, but rather give rise to the more damaging -OH radicals by the Fenton, or Haber-Weiss, reaction which is the transition metal ion catalyzed transfer of electrons from donors such as NADH and superoxide. Of particular interest in a forensic context is the participation of the iron found in red blood cells in this type of chemical interplay, although the unavailability of the iron due to its sequestration in heme would have to be considered. Similarly, because the diffusibility of radical species is a chief determinant of their damage potential, the dehydration of DNA in forensic-type stains would be expected to reduce this ability.

ROS attack of DNA can induce a plethora of lesions. There is little doubt that the -OH radical is the chief culprit. In fact, five main classes of -OH medicated lesions have been described: oxidized bases, abasic sites, intrastrand cross-links, strand breaks and DNA-protein cross-links. Guanine is the base most susceptible to attack, hence the formation of 8-oxo-guanine is the hallmark of oxidative stress. Interestingly, its formation is insignificant (< 3% of oxidized guanine moieties) upon exposure of 2'-deoxyguanosine to -OH radicals in an aqueous aerated solution. If, however, the incubation includes a reducing agent such as Fe²⁺, that number jumps dramatically to approximately 50%.
Under these conditions, formamidopyrimidine (FAPY, which is 2,6-diamino-4-hydroxy-5-formomidopyrimidine), formed by the opening of the imidazole ring at the C8-N9 bond, comprises approximately 20% of the modified guanine moieties. The formation of 8-oxo-guanine and FAPY are competitive processes; the two can be formed via a common radical intermediate, 8-hydroxy-7,8-dihydroguanyl, whose reduction generates FAPY, while its oxidation results in 8-oxo-guanine. Confirming this is the observation that FAPY is not detected subsequent to -OH reduction of 2'-deoxyguanosine in the absence of a reducing agent.

Thymine is also an attractive target for ROS attack and their effects have been extensively studied in cell-free systems. Generally, hydroxyl radical attack of the C-5 carbon generates approximately 60% of the lesions, while the C-6 carbon is the object of attack in approximately 35% of cases. Finally, the abstraction of a hydrogen from the C-5 methyl group occurs with about 5% efficiency. Around half of all oxidized thymine bases can be classified as hydroperoxides. These lesions feature substituted C5-C6 bonds and can stall enzyme-mediated polymerization.

The remaining 50% of thymine modifications, listed in decreasing quantities, are: N-(2-deoxy-β-erythro-pento-furanosyl) formylamine, the four cis and trans diasteromers of 5,6-dihydroxy-5,6-dihydro-thymidine (also known as thymine glycol), the 5R and 5S diastereomers of 1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-hydroxy-5-methylhydantoin, the 5R and 5S diastereomers of 1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-hydroxy-5-methylbarbituric acid, 5-hydroxymethyl-2'-deoxyuridine, and 5-formyl-2'-deoxy uridine.
Hydroxyl radicals mediate sugar damage through the abstraction of electrons from the deoxyribose sugar carbons, with the exception of C-2’. The formation of C-3’, C-4’ and C-5’ centered radicals generally gives rise to single strand breaks\(^{26}\). While the presence of ROS-mediated double strand breaks has been shown, it remains unclear whether they are the result of the deposition of one radical, whereby the -OH nicks the phosphodiester backbone, and is then transferred to and cleaves the strand directly across from the initial blow, or whether it is a clustering effect in which two such radicals are deposited as a result of a single event and act upon the DNA strands independently\(^{27,28}\). Hydroxyl radicals can also initiate chain reactions in which the DNA at a site far removed from that of the initial contact is damaged\(^{2,14}\).

DNA Strand Breaks

UV irradiation can induce single and double strand breaks in the polynucleotide chain and the occurrence of these strand breaks is greatly increased at longer UV wavelengths (> 320 nm). Other causes of single strand breaks include ionizing radiation and base loss. Ionizing radiation induces single strand breaks by radical formation at deoxyribose followed by the loss of a hydrogen atom although the sequence of reactions is not clearly defined. Base loss, such as depurination, can cause strand breakage by a \(\beta\)-elimination reaction in which the 3’ phosphodiester bond of the aldehyde form of deoxyribose is hydrolyzed. Some single strand breaks may also comprise nucleotide gaps\(^{2,29}\).
DNA Repair

DNA Repair Mechanisms

The repair of damaged DNA is essential to survival and living cells have evolved a number of repair mechanisms, some of which appear to possess redundant functions. For example, data from the Human Gene Project reveal that there are at least 130 known human DNA repair genes\(^{30,31}\). The correction of the lesion may be effected by removal of the damaged base through pathways such as base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Alternatively, the damage may be corrected by direct reversal utilizing translesion synthesis (TLS), recombination and rejoining pathways, and photoreactivation through the activity of photolyases.

Since the purpose of this project is to concentrate on the nature of DNA damage expected in biological stains, the processes of BER, photoreactivation, TLS and single stranded break repair (SSBR) are considered here in detail. It is anticipated that an understanding of the biochemistry of these processes could suggest methods for the \textit{in vitro} repair of specific lesions.

Base Excision Repair

BER is a common pathway employed to remove damaged or modified bases from the DNA helix which may result from events such as oxidation, methylation, and deamination. The initial step in the process is catalyzed by a class of enzymes called
DNA glycosylases. While some display a wide range of substrate specificities, most recognize a particular type of damage. For example, enzymes exist that recognize CPDs (chorella virus pyrimidine dimer glycosylase and bacteriophage T4 Endonuclease V), deamination products (uracil N-glycosylase) and other modifications such as 5-methylecytosine, formamidopyrimidine and 8-oxoguanosine²,³²,³⁵.

The glycosylase scans the genome for damage, driven by the DNA-protein electrostatic attraction, and relying on Brownian motion for energy³⁶. It induces kinks at the sites of base damage due to the instability of the modified base pair. The glycosylase owes its binding specificity to a minor groove reading motif, which initiates the flipping of an offending base into the enzyme cleft. One or more amino acids are subsequently inserted into the spot vacated by the nucleic acid. Using water as a nucleophile, the enzyme then cleaves the glycosidic bond, liberating the damaged base and generating an apurinic or apyrimidinic (AP) site³⁶.

Some glycosylases display a subsequent lyase activity. Utilizing a lysine amino group as a nucleophile, these enzymes form a Schiff’s base intermediate which undergoes an enzyme catalyzed β-elimination, cleaving the phosphodiester backbone 3’ to the AP site and leaving 3’ αβ unsaturated aldehyde (4-hydroxy-2-pentenal) and 5’ phosphate termini²,³⁷. Since DNA chain elongation requires a 3’-OH, the cleaved strand is not a suitable substrate for gap repair by DNA polymerase. The AP endonuclease activity of the enzyme cleaves the aldehyde to give an extensible 3’ hydroxyl terminus. In the absence of glycosylase associated lyase activity, the DNA backbone is cleaved directly by a separate AP endonuclease. The 3’ hydroxyl is a suitable substrate for polymerase mediated strand extension, but the 5’ phosphate moiety must be removed prior to
ligation. The primary mechanism of 5’ phosphate removal in eukaryotic cells involves DNA Polymerase β, which possesses a recently described deoxyribose phosphatase function, and polishes the 5’ terminus, making it available to a DNA ligase, which completes the base excision repair.\(^3\)

Photoreactivation

Prokaryotic and lower eukaryotic cells have evolved a direct reversal mechanism, photoreactivation, to cope with UV induced damage. Photolyases are the enzymatic effectors of this type of repair. The enzyme scans the genome, detecting structural distortions in the DNA backbone. Photolyases exist that are specific for each of the two major types of UV lesions, namely CPDs and (6-4) PPs.\(^3\)

The CPD lyase has been well characterized in *E. coli* and its structure provides insight into its function. The enzyme's active site consists of a cleft whose lip comprises electrostatically active amino acids. In this vicinity is the primary chromophore, which is either 5,10-methenyl tetrahydrofolate (MTHF) or 7,8-didemethyl-8-hydroxy-5-deazariboflavin (8-HDF). Tucked in the cleft is the second chromophore, FADH\(^+\), active only in its reduced form. In the first steps of its reaction pathway, the light independent phase, the electrostatic lip of the CPD photolyase cleft associates with the DNA helix. When the site of an ultraviolet induced lesion is detected, the enzyme interacts specifically with the base and phosphate immediately 5’ to the damage and with the bases and phosphates three to four nucleotides 3’ to the dimer, acting upon a region totaling six to eight nucleotides. After the formation of this enzyme-substrate complex, the dimer is
flipped out of the DNA helix into the photolyase pocket. In the second light dependent step, MTHF absorbs a photon of blue light (377 nm). Energy cascades down the inside of the cleft, likely passed along by aromatic residues, to the flavin chromophore. The excited FADH* donates an electron to the pyrimidine dimer, forming an anion, which spontaneously rearranges, breaking the dimer C-C bonds and yielding two pyrimidine monomers. The intact DNA then transfers an electron to FADH, completing the catalytic cycle and regenerating the enzyme39,40.

The (6-4) photolyase, characterized in *Drosophila, Xenopus, Arabidosis* and *Danio rerio*, shows a high degree of amino acid sequence homology with the CPD enzyme and also has an absolute requirement for the FADH$^-$ co-factor, but involves a somewhat more complex mechanism. The current model proposes that the (6-4) lyase recognizes and binds UV damaged DNA in the same manner as its counterpart, flipping an oligonucleotide segment out of the helix into its cleft. The enzyme essentially reverses the pathway taken for photoproduct formation, as described previously (Figure 2). A photon of blue light is absorbed by the primary chromophore, transferred to the reduced flavin, and finally to the pyrimidine dimer, catalyzing a reversion to its oxetane intermediate state. Transfer of the electron back to FADH completes the cycle11.

Translesion Synthesis

Recently, a novel group of DNA polymerases termed the Y family has been described. Its members are capable of translesion synthesis (TLS), a process by which a
polymerase is able to incorporate nucleotide(s) opposite a damaged DNA template, bypassing lesions that normally block synthesis. The ability of any polymerase to incorporate a correct nucleotide into a growing strand depends upon the structure of its active site. The template nucleotide and the incoming dNTP are held and allowed to react in this site, which normally only allows the Watson-Crick (WC) pairing of intact molecules. When the normal replicative polymerase encounters a lesion, polymerase ‘idling’ may occur, a situation in which the enzyme holds in its active site the damaged template DNA and attempts to pair it with successive dNTPs. Every base is a poor match, which the enzyme excises using its associated 3’-5’ exonuclease proofreading activity, and is stalled in its progress. Thus, the proofreading proficient polymerase is locked into futile incorporation/excision cycles. If a polymerase capable of translesion synthesis activity encounters a lesion, and synthesis is to continue, the proofreading activity of the enzyme has to be attenuated or inhibited. Previously, inhibition of the proofreading activity during TLS was thought to occur primarily through the action of accessory proteins. However, recent studies have shown that this deficiency is the result of the structure of the polymerase active site, which is characterized by relaxed constraints on base pair formation and subsequent non-WC pairing. Once a dNTP is successfully added, the polymerase continues with normal elongation until complex dissociation, and so Y family members are generally distributive and not processive enzymes. Lesion bypass proficient polymerases, while sharing a conserved active site sequence, exhibit characteristic specificities and their action can be error prone or error free, the extent of which governs the mutagenic potential of TLS.
The Y-family polymerases can be divided into four phylogenetically distinct subfamilies – UmuC, DinB, Rev1, and Rad30. UmuC like enzymes are found solely in prokaryotes, while Rev1 and Rad30 orthologs including Pol η and Pol ι are strictly eukaryotic. DinB like proteins can be found in members of all three kingdoms, typified by the E.coli Pol IV, the eukaryotic Pol κ, and the archaeal Dpo4 and DinB homolog (Dbh)^45. The biochemical properties of a number of these polymerases have been characterized.

Pol η (RAD30, XPV) performs efficiently and with high fidelity^46-48. Both the yeast and human homologues bypass thymine-thymine CPDs^49, 8-oxodeoxyguanosine^50, as well as several types of bulky adducts^42. The yeast pol η is also able to bypass thymine-cytosine and cytosine-cytosine (6-4)PPs^51. Polymerase ι (RAD30B) has been less extensively characterized. It is able to extend all twelve possible base pair mismatches^52, and can copy abasic sites^53. Recent studies have suggested a role for pol ι in BER. The polymerase has an intrinsic 5'-deoxyribose phosphate lyase activity and, in fact, participates in BER in vitro when incubated with a uracil N-glycosylase, an AP endonuclease and a DNA ligase^54. Rev1, the first recognized member of the Y-family, acts in concert with the B-family enzyme pol ζ. Rev1 first incorporates a dCMP opposite an abasic site, after which pol ζ extends the strand from the mismatched site^55. This pair also allows for the predominantly error free bypass of thymine-thymine (6-4)PPs. Pol κ deals with abasic sites in a different way^56. It shifts frames to use the base 3’ of the lesion as a template, generating a deletion in the newly synthesized strand^57.
Single Strand Break Repair (SSBR)

Single strand breaks are likely to be repaired in vivo by the actions of a DNA polymerase to fill in any gaps followed by ligation to reestablish the integrity of the polynucleotide chain 29,58. However, for this simple reaction to proceed, the correct chemical moieties must be present on the broken ends of the DNA strand, specifically an extensible 3’ hydroxyl and a ligatable 5’ phosphate. Should they not be, enzymatic processing can restore the ends to a ligatable state. PARP-1 (poly(ADP-ribose)polymerase-1) recognizes a strand break, immediately recruiting the XRCC1 scaffold protein which in turn assembles the SSBR complex 59.
CHAPTER TWO: MATERIALS AND METHODS – DNA DAMAGE ASSESSMENT

Bloodstain Preparation

Blood was drawn by venepuncture from human subjects in accordance with the University’s Institutional Review Board and spotted within 24 hours of collection to minimize naturally occurring damage. Blood was aliquotted in 50 µl spots onto Whatman paper and allowed to dry at room temperature. Dried stains were stored at -20°C until use.

Naked DNA

To prepare the naked DNA samples in solution, human genomic DNA (Promega Corporation, Madison, WI) was diluted in sterile water to a concentration of 100 ng µl⁻¹ in a 1.5 mL microcentrifuge tube (Fisher Scientific, Norcross, GA). To generate the dehydrated naked DNA samples, the human genomic DNA in solution was pipetted into a microcentrifuge tube and spun in a Speed-Vac (Albertville, MN) until dehydrated. After the indicated UVC exposure, the samples were resolubilized in sterile water to a concentration of 100 ng µl⁻¹, making use of an overnight incubation in a 56°C water bath.
Naked Dehydrated DNA

To prepare the samples, naked human genomic DNA in solution was pipetted into a polypropylene tube. The liquid was evaporated in a Speed-Vac (Savant, Albertville, MN) and exposed to UVC in this state. Subsequent to exposure, the samples were resolubilized in sterile water to a concentration of 100 ng µl⁻¹ by incubation overnight in a 56°C water bath.

UVC Exposure

DNA samples were exposed to UVC light (254 nm) in a Stratalinker 1800 (Stratagene, LaJolla, CA). Microcentrifuge tubes, containing DNA either in solution or in the dried state were placed, closed, on their sides on the floor of the crosslinker. Bloodstains were likewise placed flat on the floor so each stain received equal exposure. An energy delivery rate of 0.104 J/cm²/min was used to convert all exposure to time in minutes. Exposure times and doses were: 4 hr – 25.0 J cm⁻², 8 hr – 50.0 J cm⁻², 12 hr – 74.9 J cm⁻², 24 hr – 150 J cm⁻², 48 hr – 300 J cm⁻², 79 hr – 493.0 J cm⁻², 102 hr -636.5 J cm⁻², 126 hr – 786.2 J cm⁻², 150 hr – 936.0 J cm⁻², 174 hr – 1085.8 J cm⁻², 198 hr – 1235.5 J cm⁻². Subsequent to UV exposure, samples were stored at -20°C until their use.
UVA/B exposure

DNA samples were exposed to UVA (365 nm) and UVB (315 nm) light in a Stratalinker 1800 (Stratagene, LaJolla, CA). Because UVA/B rays cannot penetrate the polypropylene tubes used for storage, the microcentrifuge tubes, containing DNA either in solution or in the dried state were placed open in a rack in the crosslinker. Because DNA concentration may affect the types of damage done the samples were exposed for 2 hours, removed and water added to replace any volume lost due to evaporation before continuing the irradiation. Bloodstains were placed flat on the floor so each stain received equal exposure. An energy delivery rate of 0.104 J cm\(^{-2}\) min\(^{-1}\) was used to convert all exposure to time in minutes. Exposure times and doses were: 4 hours – 25 J cm\(^{-2}\), 8 hours – 50 J cm\(^{-2}\), 12 hours – 75 J cm\(^{-2}\), 24 hours – 150 J cm\(^{-2}\), 48 hours – 300 J cm\(^{-2}\), 79 hours – 493 J cm\(^{-2}\), 102 hours – 636 J cm\(^{-2}\), 126 hours – 786 J cm\(^{-2}\), 150 hours – 936 J cm\(^{-2}\), 174 hours – 1086 J cm\(^{-2}\), 198 hours – 1236 J cm\(^{-2}\).

Isolation and Purification of DNA

DNA was extracted from blood stains using a standard phenol:chloroform method\(^6\). Briefly, stains were extracted in DNA IQ\(^{TM}\) spin baskets (Promega Corporation), incubated overnight at 56°C in 400 µl DNA extraction buffer (100 mM NaCl, 10 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.5% SDS, 0.1 mg/mL Proteinase K). The crude extract was purified by 25:24:1 phenol/chloroform/isoamyl alcohol (Fisher,
Norcross GA), and spun in a Phase Lock Gel (PLG) Tube (2 mL, heavy, Eppendorf, Boulder, CO) according to the manufacturer’s protocol. DNA was further purified using a Microcon (Millipore, Bedford, MA) according to the manufacturer’s protocol, and stored in sterile water.

DNA Quantification

Yield Gel

Extracted DNA was quantified using a yield gel. An aliquot of each extract was electrophoresed on a 1% agarose gel along with DNA quantification standards, and stained using a 1% ethidium bromide solution. DNA was visualized using a short wave UV light transilluminator. A film of the gel was taken, and quantification completed by a visual comparison of the samples with the standards.

QuantiBlot® Human DNA Quantitation Kit

(Applied Biosystems) DNA standards of seven quantities were prepared – 10 ng, 2.5 ng, 1.25 ng, 0.625 ng, 0.3125 ng, and 0.15625 ng. To test the accuracy of these dilutions, two calibrators were prepared. Five microliters of each standard and calibrator were added to 150 µl spotting solution (0.4 N NaOH, 25 M EDTA, 0.00008% bromophenol
blue). Samples to be quantitated were diluted if necessary and 5 µl of each added to spotting solution.

A piece of positively charged Biodyne B membrane was cut (~11 cm x 7.9 cm) to fit the Convertible® Filtration Manifold System (Gibco-BRL) slot blot apparatus and incubated in 50 mL pre-wetting solution (0.04 N NaOH, 25 mM EDTA) at room temperature for up to 30 minutes. The membrane was then placed on the gasket of the slot blot and covered with the top plate. To ensure the formation of a tight seal, the sample vacuum was turned off while the clamp vacuum was turned on and a vacuum source applied.

Each sample (~155 µl) was slowly added to the center of a different well in the slot blot. After all were loaded, the sample vacuum was slowly turned on until the liquid had been completely drawn through the membrane (~30 seconds). The vacuums were turned off, and the slot blot disassembled. The membrane, supporting the bound DNA, was immediately transferred to a HybriBoat (Gibco BRL) containing 5 mL of 30% H₂O₂ in 100 mL of Hybridization Solution (0.9 M NaCl, 50 mM NaH₂PO₄·H₂O, 5 mM EDTA, 0.5% w/v SDS) pre-warmed to 50°C. The boat was rotated at 50 rpm in a 50°C water bath for 15 minutes, after which the solution was decanted.

Thirty milliliters of hybridization solution was then poured into the boat, it was tipped to the side and 20 µl of the biotinylated D17Z1 probe added. The boat was rotated at 50 rpm in the 50°C water bath for 20 minutes. The solution was decanted and the membrane rinsed briefly in 100 mL of pre-warmed Wash Solution (0.27 M NaCl, 15 mM NaH₂PO₄·H₂O, 0.5% w/v SDS). Another 30 mL of the pre-warmed Wash Solution was added, along with 180 µl of the Enzyme Conjugate (horseradish peroxidase/streptavidin).
The membrane was incubated in a 50°C rotating water bath for 10 minutes. This solution was poured off and the membrane washed for 15 minutes on an orbital shaker (50 rpm) at room temperature in 100 mL of Wash Solution. The membrane was next washed briefly in Citrate Buffer (0.1 M sodium citrate, pH 5.0)

The bound probe was detected using a colorimetric reaction. The membrane was covered with Color Development Solution (30 mL Citrate Buffer, 1.5 mL chromogen:tetramethyl benzidine solution in 100% ethanol, 30 μl 3% H₂O₂) and incubated at room temperature on an orbital shaker (50 rpm). DNA was quantitated by a comparison of the intensity of the color reaction of the DNA standards with that of the questioned samples.

Real-Time PCR: Alu

SYBR Green

The 25 μl reaction contained 2.5 μl SYBR Green Buffer (Applied Biosystems, proprietary), 3 mM MgCl₂, 2 μM dNTPs, 1.25 units AmpliTaq Gold DNA Polymerase, and 22.5 pmol each primer. Cycling conditions were as follows: 1) 95°C 10 m; 2) 40 cycles: 95°C 15 s; 3) 60°C 1 m.
TaqMan® Assay

The 25 µl reaction contained 12.5 µl TaqMan® Universal PCR Master Mix (Applied Biosystems, proprietary), 22.5 pmol each primer (F: TET- aac ccc gtc tct act aaa aat aca aaa a; R: atc tgc gcc tgc aac ct; designed using Primer Express software, Applied Biosystems), and 6.25 pmol probe (agc tact cg gga ggc tga ggc agg a; designed using Primer Express software). Cycling conditions were as follows: 1) 95°C 10 m; 2) 40 cycles: 95°C 15 s; 3) 60°C 1 m.

PCR Amplification

Autosomal Multiplex

Autosomal STR analysis was carried out with 2 ng of genomic DNA using a multiplex comprised of Power Plex 1.2 primers (Promega Corporation) to determine a eight-locus (plus amelogenin) genotype or with nine-locus (plus amelogenin) AmpFLSTR® Profiler™ PCR Amplification kit (Applied Biosystems). The analysis was performed in accordance with the manufacturer’s instructions.
Alu Amplification

The *Alu* protocol, yielding a 265 bp amplimer, was adapted from published reports. The 25 µl reaction was carried out with 2 ng genomic DNA, 2.5 uM dNTPs, 3.25 mM MgCl₂, 10 µg non-acetylated BSA, 2.5 units AmpliTaq DNA Polymerase (Applied Biosystems), and 20 pmol each of the forward and reverse primers (F: FAM - gcg gtg gct cac gcc t; R: gga gtc tcg ctc tgt cg) in 1X Buffer D3 (40 mM Tris-HCl, pH 8.0, 10 mM DTT, 6 mM KCl, 2.5 % glycerol). Cycling conditions were as follows: (1) 95°C for 11 m; (2) 17 cycles – 95°C for 30 s, 56°C for 30 s, 72°C for 30 s, (3) 72°C for 5 m.

PCR Product Detection

Amplified fragments were detected using the ABI Prism 310 capillary electrophoresis system. A 1.5 µl (Profiler, *Alu*) or 0.5 µl (Power Plex 1.2) aliquot of each amplified sample was added to 24 µl Hi-Di formamide (Applied Biosystems) and 1 µl of *GeneScan 500 ROX* (Profiler), *GeneScan 500 TAMRA* (*Alu*) internal lane standard or with 0.25 µl of the CXR internal lane standard (Power Plex 1.2). Tubes were heated at 95°C for three minutes and snap cooled on ice for at least three minutes. Samples were injected through the capillary using the module *GS STR POP4(1 mL)C* (5s injection, 15 kV, 60°C, run time 28 minutes, Filter Set F - Profiler), *GS STR POP4(1 mL)C* (5s injection, 15 kV, 60°C, run time 28 minutes, Filter Set C - *Alu*) or *POP4(1 mL)A* (5s injection, 15 kV, 60°C, run time 28 minutes, Filter Set A – Power Plex 1.2). Samples
were subject to laser induced fluorescence, and analyzed with GeneScan 3.1.2 software (Applied Biosystems).

Lesion Specific Endonuclease Restriction

Cholrella virus pyrimidine dimer glycosylase (CV-PDG)

CV-PDG (Trevigen, Gaithersburg, MD) is a DNA glycosylase with associated AP lyase activity which recognizes both _cis-syn_ and _trans-syn_ CPDs, leaving a single strand gap at the site of this damage. Human genomic DNA samples were digested in a 20 µl reaction containing 0.008 units ng⁻¹ CV-PDG in 1X REC Buffer 11 (Trevigen) (25 mM NaPO₄ pH 6.8, 1 mM EDTA, 100 mM NaCl, 1 mM DTT, 0.1 mg/mL BSA), with an overnight incubation in a 37°C water bath. The reaction was stopped with a 20 minute incubation in a 65°C heating block.

T4 Endonuclease V

T4 Endo V (Epicentre, Madison WI) is a pyrimidine dimer glycosylase with associated AP lyase activity that recognizes _cis-syn_ CPDs, generating a single strand gap. The 20 µl reaction contained 5 x 10⁻⁴ units ng⁻¹ T4 Endo V, 1X REC Buffer 11 (Trevigen) (25 mM NaPO₄ pH 6.8, 1 mM EDTA, 100 mM NaCl, 1 mM DTT, 0.1 mg mL⁻¹ BSA), with an overnight incubation in a 37°C water bath. The reaction was stopped with a 20 minute incubation in a 65°C heating block.
mL\(^{-1}\) BSA). Samples were incubated in a 37\(^{\circ}\)C water bath for 30 minutes, and the reaction stopped with a 20 minute incubation in a 65\(^{\circ}\)C heating block.

\textit{Ultraviolet Damage Endonuclease (UVDE)}

UVDE (Trevigen) is a DNA glycosylase that lacks AP lyase activity. It recognizes both CPDs and 6-4(PPs). The 20 µl reaction included 0.004 µl ng\(^{-1}\) UVDE, 1X REC Buffer V (Trevigen) (20 mM HEPES pH 6.5, 10 mM MgCl\(_2\), 1 mM MnCl\(_2\), 100 mM NaCl). Digests were allowed to proceed overnight in a 30\(^{\circ}\)C water bath, and halted with a 20 minute incubation in a 65\(^{\circ}\)C heating block.

\textit{Formamidopyrimidine Glycosylase (FPG)}

FPG (Trevigen) is a DNA glycosylase with associated lyase activity. It recognizes a number of oxidatively modified bases including open ring forms of 7-methylguanine (2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine, 4,6-diamino-5-formamidopyrimidine), 8-oxo-guanine, 5-hydroxycytosine, 5-hydroxyuracil, aflatoxin bound imidazole ring opened guanine, and imidazole ring opened N-2-aminofluorene-C8-guanine. The 20 µl reaction included 0.001 units ng\(^{-1}\) FPG, 1X REC Buffer 10 (Trevigen) (10 mM HEPES-KOH, pH 7.4, 100 mM KCl, 10 mM EDTA, 0.1 mg mL\(^{-1}\) BSA). The reaction was allowed to proceed at 37\(^{\circ}\)C overnight, and stopped by a 20 minute incubation in a 65\(^{\circ}\)C heating block.
Human 8-Oxoguanine Glycosylase 1 (hOGG1)

hOGG1 functions as both a DNA glycosylase and a lyase. It recognizes 8-oxoguanine/cytosine base pairs, formamidopyrimidine/cytosine base pairs, and to a lesser extent, 8-oxo-guanine/thymine base pairs, removing the oxidized base and leaving a single strand gap. The 20 μl reaction contains 0.01 units ng⁻¹ hOGG1, 1X REC Buffer 6 (Trevigen) (1 mM HEPES-KOH, pH 7.4, 10 mM KCl, 1 mM EDTA). The reaction proceeded at 37°C overnight and was halted with a 20 minute incubation in a 65°C heating block.

Alkaline Gel Electrophoresis

One percent alkaline gels were made by dissolving the appropriate quantity of molecular biology grade agarose (Fisher Scientific) in alkaline gel buffer (50 mM NaCl, 1 mM EDTA). After the gel hardened, it was soaked for at least 30 minutes in alkaline gel running buffer (30 mM NaOH, 1 mM EDTA). To each DNA sample was added an equal volume of alkaline loading buffer (50 mM NaOH, 1 mM EDTA, 2.5% glycerol, 0.025% bromocresol green). The entire sample was loaded onto the gel, as was a λ HindIII lane standard for sizing. Electrophoresis proceeded for 3.1 hours at 70 V (217 volt hours), after which the gel was soaked in neutralization solution (1 M Tris-HCl pH 7.6, 1.5 M NaCl) for one hour to allow SYBR Gold (Molecular Probes, Eugene, OR) staining. Finally, the gel was visualized using a short wave UV transilluminator.
Humidity Chamber Exposure

The humidity chamber was a normal glass aquarium with airtight seals. A hole was cut in the plexiglass lid to allow for the attachment of a 302 nm UV light fixture (flux = 0.204 J cm$^{-2}$ min$^{-1}$), and the seams sealed. 94% humidity was maintained chemically by including four 250 mL beakers of a saturated copper (II) sulfate pentahydrate solution. 50 µl bloodstains were placed on low racks on the bottom of the tank to protect them from gathering water and exposed for times ranging from 1 day to 14 weeks. Subsequently, stains were collected and stored at -20°C until use.
CHAPTER THREE: RESULTS AND DISCUSSION – DNA DAMAGE ASSESSMENT

UVC Damage

UVC Induced Damage to Naked DNA in Solution

Solar ultraviolet radiation consists mainly of UVB (290 – 320 nm) and UVA (320 – 400 nm) rays. The UVC portion of the spectrum (200 – 290 nm) is filtered by the ozone layer and does not reach the earth. For convenience, however, UVC was initially used to induce damage to DNA in the samples since it is likely that UVC induces the same lesions as UVA and UVB, although the kinetics of their formation and their relative proportions may differ^2^.

The strategy for the assessment of UVC damage was to focus initially on naked genomic DNA. Such DNA is not subject to the potential protective effects afforded by the constituents of the cellular environment _in vivo_. One to two micrograms of human genomic DNA (100 ng µl^-1^) was irradiated with UVC light for various times at a flux of 104 mJ cm^-2^ min^-1^ and the effects of this treatment on both the structural integrity of the DNA and the ability to obtain a genetic profile were evaluated.
Native gel electrophoresis revealed that samples exposed for up to 25 minutes comprised high molecular weight DNA (~20 kb) with no apparent degradation in the form of double strand breaks (Figure 3a). However, although the same quantity of DNA (~100 ng) was added to each lane in the gel, the putative high molecular weight DNA band began to exhibit retarded migration in comparison to the 20 kb size marker as the UVC exposure time increased. This observation is consistent with the presence of inter- or intra-strand DNA cross-links. Naked DNA samples exposed to UVC for 1 hour still showed a high molecular weight band, but double strand breaks became apparent. From 4 hours to 48 hours, the number of double stranded breaks steadily increased, until the sample was entirely degraded beyond 48 hours (data not shown).

In order to detect the presence of single strand breaks, the treated DNA samples were run on denaturing alkaline gels (Figure 3b). Single strand lesions were detected after 1 minute UVC exposure, the quantities of which increased noticeably thereafter. High molecular weight DNA was still detectable under these denaturing conditions up to 4 minutes. After 16 minutes, the single strand breaks increased dramatically, with the concurrent loss of the high molecular weight (~20 kb) (HMW) band. Exposure times between 1 hour and 12 hours resulted in the steady increase of both single and double strand breaks and a concurrent steady reduction in the number average molecular weight (NAMW) of the DNA sample. Beyond 12 hours, the sample became completely degraded and could no longer be visualized (data not shown). Interestingly, DNA that exhibited retarded migration compared to the ~20 kb marker was observed with increased
UVC exposure from 1 minute to 1 hour, providing further evidence for the induction of DNA-DNA cross-links.

Figure 3. Naked DNA exposed to UVC and visualized on (A) native agarose gel, or (B) an alkaline gel. A λ HindIII standard is shown for size evaluations. To correlate UVC exposure with the ability to obtain a genetic profile, samples were amplified using an autosomal STR multiplex system. Results are summarized: + indicates a full genotype, (+) indicates a partial profile, - indicates no profile.
To determine the effects of UVC treatment of naked DNA on the ability to obtain a genetic profile, the UVC treated naked DNA samples were amplified and typed using a nine locus autosomal short tandem repeat (STR) multiplex system plus the amelogenin gender marker (AmpFLSTR® Profiler™ PCR Amplification kit). The results are summarized in Figure 3a, and representative electropherograms are displayed in Figure 4. A complete nine locus STR profile was obtained up to 1 minute UVC exposure (0.104 J cm\(^{-2}\)) but increased exposure to 2 minutes resulted in a partial loss of profile, in which the alleles at the D7S820 locus were lost (Figure 4b) with respect to the expected profile (Figure 4a). The partial profiles obtained were characteristic of that expected from a degraded sample in that the larger loci signals were significantly reduced in intensity. As the UV dose was increased, the other loci progressively disappeared until the profile was completely lost at 16 minutes (1.664 J/cm\(^2\)) (Figure 4c). The loss of the genetic profile at this point corresponded to the loss of high molecular weight DNA observed by alkaline gel electrophoresis at the same time (Figure 3b).
Figure 4. Genetic profiling of UVC irradiated bloodstains. Bloodstains were exposed to UVC for A) 8 hours, B) 12 hours, and C) 102 hours, and amplified using an autosomal STR multiplex system.
Next, the effects of UVC exposure on bloodstains were determined. Blood was spotted on filter paper in 50 µl aliquots (approximately one drop) and allowed to dry overnight. Dried bloodstains were exposed to UVC using the same flux rate as before (0.104 J cm\(^{-2}\) min\(^{-1}\)).

Gel Electrophoresis Analysis (Bloodstains)

DNA was isolated from the bloodstains using a standard phenol:chloroform organic extraction procedure and visualized on a native agarose gel (Figure 5a), or on an alkaline agarose gel (Figure 5b). Samples visualized on the native gel consistently showed high molecular weight, non-degraded DNA through at least 102 hours exposure. However, when visualized on the alkaline gel, a significant number of single strand breaks appeared after 4 hours UVC exposure and increased thereafter, although the decline in number average molecular weight with increased exposure time was dramatically slower than that observed with naked DNA in solution. Single strand breaks were evident in all samples including the no exposure control, suggesting that the dehydration and rehydration of the DNA played a role in their formation.
Figure 5. Bloodstains exposed to UVC and visualized on (A) native agarose gel, or (B) an alkaline gel. A λ HindIII standard is shown for size evaluations. To correlate UVC exposure with the ability to obtain a genetic profile, samples were amplified using an autosomal STR multiplex system. Results are summarized: + indicates a full genotype, (+) indicates a partial profile, - indicates no profile.
DNA Profiling (Bloodstains)

With respect to the ability to obtain an STR profile, full nine locus profiles were obtained with UVC exposure up to 8 hours (Figure 6a). At 12 hours, however, there was a significant loss of alleles at several loci (Figure 6b) and partial profiles continued to be obtained up to 79 hours. The profile was lost completely at 102 hours (Figure 6c).

Collectively, the results indicate that, compared to naked DNA, DNA in bloodstains is protected somewhat against the damaging effects of UVC. For example, the genetic profile was lost in naked DNA samples exposed to 1.664 J cm\(^{-2}\) (16 minutes) of UVC, while it required 636 J cm\(^{-2}\) (102 hours) to produce the same effect in bloodstains, an approximate 360-fold increase in UVC dose. This protection from the harmful effects of UVC in bloodstains could be due to the dehydrated state of the nucleic acid in the stain, the local cellular milieu of the DNA or a combination of both. To further explore this issue, the effects of UVC irradiation on naked, but dehydrated, genomic DNA were investigated.
Figure 6. Genetic profiling of UVC irradiated bloodstains. Bloodstains were exposed to UVC for A) 8 hours, B) 12 hours, and C) 102 hours, and amplified using an autosomal STR multiplex system.
Effects of Dehydration on UVC Induced DNA Damage

Gel Electrophoresis Analysis (Dehydrated, Naked DNA)

Naked human genomic DNA was dried and exposed to UVC at the same flux as before. After exposure, the DNA was re-solubilized to a concentration of 100 ng µl⁻¹. Again, samples were visualized on native (Figure 7a) and alkaline (Figure 7b) agarose gels. Dehydrated naked DNA exposed to UVC up to 25 minutes showed high molecular weight DNA on the native gel, but began to degrade after 1 hour as evinced by the appearance of double strand breaks and the concomitant reduction of the intensity of the HMW band over time (Figure 7a). The high molecular weight band was lost at 6 hours and the DNA was degraded completely at 48 hours. Alkaline gel electrophoresis revealed a gradual decrease in the NAMW of the DNA in samples irradiated from 6 minutes to 4 hours, indicative of increasing numbers of single strand breaks (Figure 7b). The 8 hour sample showed an increase in number average molecular weight, consistent with the presence of significant levels of DNA-DNA cross-links. As seen in the dehydrated stain DNA, single strand breaks were evident in all samples. They increased gradually over time until 12 hours after which significant numbers of single strand breaks were present and, like the native gel results, the 48 hour sample was completely degraded.
Figure 7. Naked, dehydrated DNA exposed to UVC and visualized on (A) native agarose gel, or (B) an alkaline gel. A λ HindIII standard is shown for size evaluations. To correlate UVC exposure with the ability to obtain a genetic profile, samples were amplified using an autosomal STR multiplex system. Results are summarized: + indicates a full genotype, (+) indicates a partial profile, - indicates no profile.
DNA Profiling (Naked, Dehydrated DNA)

Dehydrated naked DNA was capable of producing a complete nine locus STR profile up to 12 hours exposure (74.9 J cm\(^{-2}\)) but was totally lost at 24 hours and beyond (Figure 8) as summarized in Figure 7a. Thus the UVC exposure time needed to produce a total profile loss in dehydrated, naked DNA was longer than the 16 minutes (1.6 J cm\(^{-2}\)) required to produce the same effect in naked DNA in solution but, significantly, less than the 102 hours (636 J cm\(^{-2}\)) necessary to do so when DNA was present in bloodstain form. DNA in the latter is both dehydrated and present in a nucleoprotein (i.e. chromatin) complex within the cellular infrastructure. Therefore, dehydration *per se* affords DNA a measure of protection against the harmful effects of UVC irradiation.
Figure 8. Genotyping of naked, dehydrated DNA samples. Dehydrated naked DNA samples were exposed to UVC for A) 0 hours, B) 12 hours, and C) 24 hours, and amplified using an autosomal multiplex.
Bi-Pyrimidine Photoproducts

Next, the formation of the two major types of bi-pyrimidine photoproducts (BPPP) in UVC treated DNA (CPDs and (6-4)PPs) were evaluated using, as before, naked DNA in solution, naked dehydrated DNA and DNA isolated from UVC exposed bloodstains. To accomplish this, three different lesion specific endonucleases, *Chlorella* virus pyrimidine dimer glycosylase (CV-PDG), T4 Endonuclease V (T4 EndoV), and *S. pombe* ultraviolet damage endonuclease (UVDE), were used. CV-PDG is a DNA glycosylase with associated AP lyase activity that recognizes both cis-syn and trans-syn CPDs, leaving a single strand gap at the site of this damage. T4 Endo V is also a pyrimidine dimer glycosylase with associated AP lyase activity, but recognizes only cis-syn CPDs, generating a single strand gap. UVDE is a DNA glycosylase lacking AP lyase activity. It recognizes both CPDs and 6-4(PPs), generating a strand nick at the site of damage. The recognition specificity of this enzyme is not as limited as that of CV-PDG and T4 Endo V. UVDE has been shown to cleave at AP sites, but may also recognize other types of damage, such as adducts or modified bases, due to a relaxed structural constraint at its recognition site.

BPPPs in UVC Treated Naked DNA

The formation of CPDs in naked DNA in solution was investigated first. For each of the time intervals examined, both an enzyme treated sample and a ‘no enzyme’ treated control were run side by side. The latter control was used to take into account any heat,
pH or oxidative induced damage inflicted during the DNA extraction and digestion procedures themselves. Samples were first digested using CV-PDG. Samples that contained CPDs were often indistinguishable from untreated controls when run on a native gel (data not shown), but produced characteristic smears of DNA on an alkaline gel as the result of the formation of endonuclease induced single strand breaks (Figure 9a). CPDs formed rapidly after only 5 seconds irradiation (0.009 J cm\(^{-2}\)), and steadily increased until 30 seconds (0.052 J cm\(^{-2}\)), at which point their formation appeared to level off. These results were confirmed by T4 Endo V digestion and alkaline gel electrophoresis of the same samples (Figure 9b). These observations are consistent with previous reports indicating that CPD formation reaches saturation at doses around 0.05 J cm\(^{-2}\)\(^{22,62}\).

Next, naked DNA in solution was treated with UVDE to detect the formation of both types of BPPPs, including (6-4)PPs (Figure 9c). Enzyme induced single strand breaks were apparent after 30 seconds, and increased linearly with dose until 16 minutes exposure. Thereafter the damage to naked DNA remained constant, until the sample could no longer be visualized at 12 hours (data not shown). The linear increase in single strand breaks beyond the 30 second UVC exposure observed to produce CPD saturation is consistent with the continuous formation of (6-4) PPs, and is in accord with published reports. Interestingly, identical results were observed when the same samples were visualized on a native gel (Figure 9d) indicating the possible presence of double strand breaks. However the formation of DNA double strand breaks requires the input of an enormous quantity of energy, and has only been documented at the UVC doses described here when administered in the vacuum UV range (< 254 nm). Therefore, the degraded
DNA observed here on native gels is most likely the result of a sufficient number of single strand breaks being generated in close proximity to one another on opposite DNA strands, such that the resulting fragmentation appears akin to that produced by *bona fide* double strand breaks.

Our previous data indicated that a genetic profile was partially lost after 2 minutes UVC exposure to naked DNA (0.21 J cm\(^{-2}\)) (Figure 4a), a full minute and a half after CPD formation had leveled off and subsequent to the appearance of single strand breaks and DNA-DNA crosslinks, which were observed after only 1 minute (Figure 4b). The formation of (6-4)PPs (and other lesions recognized by UVDE) steadily increased with UVC exposure until 16 minutes (1.66 J cm\(^{-2}\)), which coincidentally was the point at which the genetic profile was lost. UVDE detected damage did not increase appreciably beyond this. Collectively, these results are inconsistent with CPDs being the principal or only cause of genetic profile loss in the UVC treated naked DNA samples. However, the kinetics of profile loss are consistent with a role for single strand breaks and, possibly, DNA cross links in this process.
Figure 9. UV PPs in naked DNA. Naked DNA samples in solution were exposed to UVC light for the times indicated, then restricted with A) CV-PDG, B) T4 Endonuclease V; C&D) UVDE. Digested samples and undigested controls were analyzed using an alkaline gel (A, B, and D), or a native gel (C).

BPPPs in UVC Treated Bloodstains

Previous data indicated that naked DNA in solution experienced the effects of UVC induced damage more severely than DNA in other states, since it is unprotected by the cellular milieu and/or dehydration. Using the assays based upon the lesion specific enzymes developed for naked DNA, dried bloodstains exposed to UVC light were examined for the presence for BPPPs. However, a complicating factor with the analysis is the necessity of employing a DNA extraction procedure subsequent to UV exposure and prior to enzyme digestion, during which DNA could be subjected to further damage caused by the additional experimental manipulations required. To account for this a ‘no enzyme’ control was included for each time interval. Because each ‘no enzyme’ sample was subject to the same manipulations and incubations as the digested samples, any damage incurred by the physical processes of the experiment were controlled for.

To examine the formation of CPDs, DNA isolated from bloodstains exposed to UVC for times ranging from 25 minutes to 102 hours was restricted using CV-PDG (Figure 10a), T4 EndoV (Figure 10b), and UVDE (Figure 10c), and visualized on an alkaline gel. Shown in Figures 10a (CV-PDG) and 10b (T4 Endo V) are representative samples originating from some of the time intervals. To detect the presence of (6-4)PPs
the same bloodstain extracted samples were restricted with UVDE, and run on an alkaline gel (Figure 10c). A comparison of the CV-PDG, T4 EndoV and UVDE restricted samples with their no enzyme digestion controls revealed little difference if any, indicating that BPPPs are not formed in dehydrated, biological stains in significant quantities as detected by this assay.

It has been shown above that a genetic profile is partially lost from bloodstain DNA exposed to UVC after 12 hours (75 J cm\(^{-2}\)), and completely lost after 102 hours (636.5 J cm\(^{-2}\)) (see Figure 4). Thus, the loss of the profile does not appear to be only, or even principally, due to the presence of UVC induced-BPPPs, or any other lesion recognized by UVDE. Although it is not entirely clear what type of damage is responsible for the profile loss, single strand breaks or gaps are formed, as evidenced by a decrease in number average molecular weight of the DNA on denaturing gels after UVC exposure (Figure 3). Although it was not possible to quantify the number of single strand breaks with our assay, the number of single strand breaks on opposite DNA strands was insufficient to produce products with the appearance of double strand breaks on native gels as was found, for example, with UVDE digested, UVC treated naked DNA (Figure 9d).
Figure 10. UV PPs in bloodstains. Bloodstains were exposed to UVC light for the times indicated, the DNA extracted and restricted with A) CV-PDG, B) T4 Endonuclease V; C) UVDE. Digested samples and undigested controls were analyzed using an alkaline gel.

BPPPs in UVC Treated Naked, Dehydrated DNA

The physical state of the DNA in bloodstains appeared to protect it against the formation of BPPPs. In order to determine the protective effects of dehydration the naked dehydrated DNA samples described previously were digested using the same lesion specific endonucleases. A comparison of the CV-PDG (Figure 11a), T4 EndoV (Figure 11b) and UVDE (Figure 11c) restricted samples with their respective ‘no enzyme’ controls revealed the formation of a limited number of BPPPs, until the samples became so fragmented beyond 4 hours that they could no longer be visualized on the gel (data not shown). Significantly, a full genetic profile was still obtained with fragmented DNA after 12 hours exposure, but was completely lost by 24 hours. This situation is quite different than that observed using naked DNA in solution, indicating that the dehydrated state plays a significant role in the resistance of the DNA to damage, and the maintenance of the ability to obtain a genetic profile.
Figure 11. UV PPs in naked, dehydrated DNA. Dried naked genomic DNA was exposed to UVC light prior to resolubilization in sterile water for the times indicated. Samples were restricted with A) CV-PDG; B) T4 Endonuclease V; or C) UVDE, and visualized on an alkaline gel.
Conclusions: UVC

As a model for DNA damage assessment in physiological stains recovered from crime scenes, human bloodstains and naked DNA in the hydrated and dehydrated states have been subjected to varying doses of UVC radiation. UVC irradiation of DNA in other model systems is known to produce bulky bipyrimidine photoproducts (BPPPs) that prevent the primer extension activity of DNA polymerase, and thus such treatment would be inhibitory toward the PCR process used in forensic genetic analysis. Indeed, as the work presented here shows, it was possible to damage the DNA sufficiently in a forensic-like bloodstain to cause a standard autosomal STR profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect BPPPs, single and double strand breaks and DNA-DNA cross links, produced some unexpected findings.

Contrary to the situation with living tissues or cells in culture, the predominant UVC induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major forms of UVC damage causing genetic profile loss appear to be single strand breaks. It is not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed.

A significant measure of protection against UVC-mediated genetic profile loss is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu. This is exemplified by the kinetics of profile loss in bloodstains versus naked DNA in solution and in the dehydrated states. It took an average of 102 hours of UVC at a flux of 104 mJ cm\(^{-2}\) min\(^{-1}\) to effect a profile loss in human bloodstains. In contrast, it
took 16 minutes and 24 hours to produce the same effect with naked human DNA in solution and naked, dehydrated human DNA respectively. Thus, dehydration of the DNA alone protected the DNA such that a 90 fold increase in dose was required to produce enough damage to cause profile loss, whereas the cellular context afforded additional protection to the DNA (in addition to dehydration in the bloodstain) in that an additional 4 fold increase in dose was required to produce the same effect.

To explain these observations, it is hypothesized that is it the conformational state of the DNA, as well as cellular constituents, that protect the nucleic acid from UV induced damage. DNA in solution normally exists in a B conformation, an arrangement that facilitates the direct absorption of a photon of UV light by adjacent bases and the formation of bipyrimidine dimers. Dehydrated DNA, however, tends to assume an A conformation, in which adjacent pyrimidines may be positioned in a manner that is unfavorable for cyclobutane or pyrimidine-pyrimidone formation. Additionally, normal solution chemistry reactions in general are impeded in the dehydrated state. Protection by the cellular milieu may be due to other UVC absorbing species present including proteins and RNA, which may reduce the effective dose experienced by the genomic DNA.

Future studies will evaluate the effects of UVA and UVB on the ability to obtain a genetic profile from physiological stains as well as the combined effects of other common environmental influences such as heat and humidity.

Characterization of the molecular lesions that prevent the ability to obtain a standard STR DNA profile in damaged DNA recovered from crime scene physiological stains is an important first step in determining possible DNA repair strategies. The
results of the work presented here immediately suggest some possible remedies for repair of UVC damaged DNA and are the subject of ongoing investigations.
UVA/UVB Damage

Previously, a model for the assessment of DNA damage in biological stains was developed, measuring the damage done by UVC light to naked DNA in solution, naked dehydrated DNA, and the DNA extracted from dried physiological stains, from which few generalizations can be made. First, the most extensive damage is done to naked DNA in solution, followed by naked dehydrated DNA, with stain DNA showing the least damage. The DNA is protected by the cellular milieu in a stain, but even more significantly by the state of dehydration. Next, bulky UV photoproducts (CPDs and (6-4) PPs) were evident in the naked DNA samples, but could not be seen in either of the dehydrated sample types. Oxidative lesions were not detected, likely due to limitations in assay sensitivity, while strand breaks were common to all sample types, and prevalent in the dehydrated types, leading, lastly, to the speculation that these breaks are among of the primary causes of profile loss in dehydrated samples. While UVC rays, absorbed by the stratospheric oxygen generated by plant photosynthesis, do not reach the earth’s surface and therefore are not biologically relevant, they are especially efficient DNA damaging agents due to the inclusion of the nucleic acid absorption maximum (260 nm) in their range and the experiments were expected to set the stage for our next studies involving physiologically important wavelengths.

To explore the effects of UVA (365 nm) or UVB (315 nm) light on DNA, naked DNA in solution was initially used. One to two micrograms of human genomic DNA (100 ng µl⁻¹) were exposed to UV light for periods of time ranging from 0 to 198 hours (8.25 days) at a flux of 104 mJ cm⁻² min⁻¹. Flux was measured by an internal sensor in
the Stratalinker 1800 that was used to deliver the UV rays, and exposure times were
normalized such that total exposure was accurately expressed in terms of hours (i.e. a 1
hour exposure = 6.24 J cm\(^{-2}\)). Because neither UVA nor UVB rays could penetrate the
polypropylene of the microcentrifuge tube, it was necessary to place the tubes upright
with the lids open to allow irradiation. When a sample was exposed in this manner, some
of the liquid evaporated off, effectively increasing the concentration of the sample. To
eliminate any possible concentration effects on the damage, samples were exposed for 2
hours, removed and water added to replace any volume lost due to evaporation before
continuing the irradiation.

Although naked DNA in solution was the most convenient to work with, it did not
mirror the situation in true forensic samples where a body fluid is deposited on a
substrate and subsequently dehydrated. Therefore, the DNA extracted from dried
biological stains was considered next. To prepare the bloodstains, 50 µl aliquots of
human blood were spotted on cotton cloth and allowed to dry at room temperature
overnight. Stains were then exposed to UV and the DNA extracted using a standard
organic protocol. In this case, the stain DNA could potentially be guarded from harm by
both its dehydrated state and the cellular infrastructure, but it would not be possible to
ascertain which condition afforded a greater measure of protection.

To assess the contributions of each of these protective factors individually, a third
type of sample was prepared in which naked DNA was dehydrated. Naked DNA was
vacuum dried in a microcentrifuge tube, exposed to UV and then resolubilized overnight
in sterile water. This facilitated a determination of the effects of dehydration in the
absence of the cellular milieu.
The damaged DNA was analyzed using both native and alkaline agarose gel electrophoresis. A native gel allowed for the visualization of double strand breaks with a decrease in the number average molecular weight (NAMW) indicative of a greater number of breaks. An alkaline gel was used to provide information concerning the presence of single strand breaks, again with the NAMW inversely proportional to the number of breaks.

To correlate the damage observed with the ability to obtain a genetic profile, the damaged DNA was amplified using a standard autosomal short tandem repeat (STR) multiplex (Power Plex 1.2). PCR products were visualized by capillary electrophoresis.

Finally, the relative abundance of various types of damage including UV photoproducts and oxidative base modifications was determined through the use of lesion specific endonucleases. Each of these glycosylases recognized a particular type of damage, removed the offending base(s) and all but one subsequently functioned as a lyase, cleaving the phosphodiester backbone and resulting in a single strand gap. Post-restriction samples as well as ‘no enzyme digest’ controls were electrophoresed on an alkaline gel. A reduction in the NAMW of the restricted sample compared to its control was indicative of a greater number of breaks and, hence, lesions.

\textit{DNA exposed to UVA}

UVA light ranges in intensity from 320 to 400 nm. The longest of the UV rays, it is transmitted through the atmospheric ozone layer at a significantly greater rate than the more energetic wavelengths and so comprises 95% of the rays that reach the earth.
However, the direct absorption of UVA photons by DNA is insignificant, and studies have shown that few photoproducts can be detected after UVA irradiation of living cells. The ones that do form show a strong sequence dependence, with primarily T-T CPDs and, to a lesser extent, T-C and C-C CPDs being formed. (6-4) PPs are not formed by UVA rays. UVA primarily causes damage indirectly through the action of photosensitizers, molecules that absorb the UV energy and transfer it to DNA. When the molecule is oxygen, this is known as the photodynamic effect. The generation of reactive oxygen species (ROS) leads to the formation of strand breaks and oxidative products, the chief UVA-mediated lesions detected in living cells and cell-free systems. The damage done by UVA irradiation of dried DNA is less well defined.

The effects of UVA on naked DNA in solution were considered first. Native gel electrophoresis revealed a high molecular weight (HMW) band (~ 20 kb) through 174 hours UVA exposure (1086 J cm\(^{-2}\)) (Fig. 12A). Significant quantities of double strand breaks were absent until 126 hours UVA (786 J cm\(^{-2}\)), after which their formation slightly increased as evinced by the loss of the HMW band. The contribution of single strand breaks was assessed by alkaline gel electrophoresis (Fig. 12B), revealing the loss of a HMW band by 79 hours exposure (493 J cm\(^{-2}\)). A limited quantity of strand breaks were evident from 4 hours (25 J cm\(^{-2}\)), increasing linearly with dose. However, as indicated in Figure 3A, a UV dose as high as 1235.52 J cm\(^{-2}\) (198 hours) was not sufficient to cause even a partial profile loss.

Next, the effects of UVA exposure on the DNA in dried physiological stains were assessed. As visualized on a native gel (Fig. 12C), there was no sign of double strand break formation up to 198 hours. An alkaline gel (Fig. 12D) did reveal some damage. A
HMW band could be seen through 102 hours (636 J cm\(^{-2}\)), but single strand breaks were evident immediately, increasing linearly with UV dose. Noticeable after 4 hours exposure, the migration of a portion of the DNA through the gel matrix was retarded, running higher than the 20 kb molecular weight marker, an indicator of inter- or intrastrand crosslinks. After irradiation for up to 198 hours, there was no loss of a genetic profile in the DNA isolated from dried bloodstains.

Finally, the effects of UVA on naked, dehydrated DNA were studied. As seen on a native agarose gel (Fig. 12E), double strand breaks were present even in the ‘no exposure’ control sample, indicating that the processes of dehydration and subsequent rehydration of the unprotected nucleic acid were themselves a source of damage. The fragmentation remained relatively constant until 102 hours, at which point higher molecular weight DNA was lost. An alkaline gel (Fig. 12F) told a similar story. Considering the two gels together, it appeared that, while single strand breaks certainly contributed to the fragmentation of the DNA, double strand breaks were ubiquitous. However, this damage was not severe enough to prohibit the amplification of the PowerPlex alleles in any of the samples tested.

A physiologically relevant UVA dose ranges from 18 – 36 J cm\(^{-2}\), equivalent to the dose delivered during a typical tanning bed session or to a ten minute exposure to the noontime sun at 45° latitude. Equating this to exposure in the experimental system, the relevant range becomes 2.9 – 5.8 hours. The farthest time point tested, 198 hours (1236 J cm\(^{-2}\)), represented a 213 - 426 fold increase in UV dose over this range, but was still insufficient to impair PCR amplification of the autosomal loci tested, indicating that,
taken singly, UVA rays do not cause the DNA damage that results in the loss of a profile in samples taken from dried biological stains.
Figure 12. The effects of UVA irradiation. Naked DNA was irradiated and analyzed on A) a native gel or B) alkaline gel. The DNA in dried biological stains was exposed to UVA and electrophoresed on C) a native gel or D) an alkaline gel. The effects of UVA exposure of naked, dehydrated DNA was assessed using E) a native gel or F) an alkaline gel. Exposure times were: 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours.
DNA exposed to UVB

The UVB portion of the spectrum ranges from 290 to 320 nm. Because it is mostly absorbed by atmospheric ozone, it comprises only about 5% of the rays that reach the earth\(^2\). The major effects of UVB on DNA are a result of the direct absorption of the energy residing in photons of light. The primary lesions observed in living cells and cell-free systems are bipyrimidine photoproducts (BPPPs)\(^{22}\). Their formation is sequence dependent and the three main types observed are (in order): cis-syn T-T CPDs, T-C (6-4) PPs, and T-C CPDs\(^{65}\).

Other types of lesions are generated to a lesser extent. 8-oxo-guanine, the hallmark of oxidative damage, can be detected after UVB irradiation. The mechanism of its formation is still unclear, but the oxidation of guanine by an -OH radical is implicated. The -OH radical can also cause single strand breaks through the abstraction a hydrogen from the C3, C4, or C5 of the deoxyribose sugar\(^{67,68}\). Cytosine photohydrates (6-hydroxy-5,6-dihydrocytosine), formed by the hydration of a singlet excited state cytosine, can also be UVB-induced\(^{65}\).

The effects of UVB on naked DNA in solution were described first. Human genomic DNA was diluted to a concentration of 100 ng µl\(^{-1}\) in a microcentrifuge tube and exposed to UVB light (315 nm) in the Stratalinker 1800, as described above. As seen on a native agarose gel Figure 13A, double strand breaks began to form around 48 hours (299.5 J cm\(^{-2}\)) after which they increased linearly with dose, and a HMW band could be seen through 79 hours. On the alkaline gel (Figure 13B), the formation of a few single
strand breaks could be seen as early as 4 hours (24.96 J \text{ cm}^{-2}), gradually increasing with additional irradiation, with a HMW band only detectable up to 24 hours (149.76 J \text{ cm}^{-2}).

Considering the two gels together, it appeared that single strand breaks were formed early, their quantities increasing gradually until double strand breaks were formed. It was not possible to tell, however, whether these were true double strand breaks (dsbr), in which the phosphodiester backbones of the DNA are cleaved directly across from each other, or if the fragmentation is the result of single strand breaks formed on opposing strands in close enough proximity to mimic a dsbr. The quantities formed, however, were not sufficient to cause even a partial profile loss until 174 hours exposure (1085.76 J \text{ cm}^{-2}), as told in Figure 13A.

Next, bloodstains were prepared by aliquotting 50 µl spots of blood on cotton cloth and allowing them to dry overnight at room temperature. The bloodstains were placed flat on the floor of a Stratalinker 1800 for exposure. Native gel electrophoresis of the DNA isolated from these bloodstains revealed few incidents of double strand breaks (Figure 10C). Although a limited number could be detected at 24 hours and thereafter, a HMW band was present through 198 hours (1235.52 J \text{ cm}^{-2}).

An alkaline gel (Figure 13D) revealed the presence of single strand breaks immediately, as was seen with UVA exposed samples, indicating again that the processes of dehydration and rehydration contributed to the nicking of the DNA. A HMW band was no longer present after 48 hours (299.52 J \text{ cm}^{-2}), as the quantity of strand breaks increased, but a genotype was still obtainable through 198 hours. Evidence of DNA-DNA cross-links, in the form of nucleic acid migrating more slowly than the 20 kb molecular weight marker, could also be seen on the alkaline gel.
The final damage substrate was naked, dehydrated genomic DNA. Naked DNA in solution was dehydrated using a Speed-Vac. The tubes were held upright in a rack with the lids open for exposure in the Stratalinker 1800, then rehydrated and analyzed. Double strand breaks appeared immediately and increased linearly with UV dose (Figure 10E). A HMW band remained through 79 hours. Single strand breaks were also detected at all time points, gradually increasing over time (Figure 13F).

Because the overall contribution of the UVB component to the collected rays that reach the earth’s surface is relatively small (5%), the relationship between exposure to simulated UVB rays and natural sunlight is not as well defined as is the latter’s correlation with UVA irradiation (see above).
Figure 13. The effects of UVB irradiation. Native gels showing A) naked DNA; B) stain DNA; C) naked, dehydrated DNA and alkaline gels showing D) naked DNA; E) stain DNA; F) naked, dehydrated DNA exposed to UVB for 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours.
The formation of UV photoproducts in naked DNA in solution, DNA extracted from physiological stains, and naked, dehydrated DNA was investigated using lesion specific endonucleases. These enzymes, players in the first step of the base excision repair pathway, specifically recognize CPDs and/or (6-4) photoproducts. For the experiments described here, the enzymes T4 Endonuclease V (T4 Endo V), *Chlorella* virus pyrimidine dimer glycosylase (CV-PDG), and *S. Pombe* ultraviolet damage endonuclease (UVDE) were employed.

T4 Endonuclease V is a pyrimidine dimer glycosylase with an associated AP lyase activity. It recognizes *cis-syn* CPDs, leaving a single strand gap at the site of the dimer. CV-PDG is also a glycosylase that can function as an AP lyase and cleaves both *cis-syn* and *trans-syn* CPDs, generating a single strand gap. UVDE recognizes both CPDs and 6-4(PPs). It is a DNA glycosylase that lacks AP lyase activity, thus creating a single strand nick.

Each of the sample types tested was restricted with all three enzymes for confirmation of the results; representative alkaline gels are shown. For each time point, a no enzyme control was also run. All of the samples were processed under identical conditions, to account for any heat, pH or oxidative damage caused by the DNA extraction and incubation procedures themselves. Therefore, a comparison of each restricted sample with its control allowed a fair assessment of the damage. A positive control was also run with each experiment, confirming that the nuclease was functional.
Figure 14A shows the results of a T4 Endo V digest of UVA exposed naked DNA in solution. As confirmed by experiments with CV-PDG and UVDE, UV PPs formed slowly, beginning between 4 (25 J cm$^{-2}$) and 8 (50 J cm$^{-2}$) hours as indicated by the reduction in the NAMW caused by enzyme induced single strand gaps. These increased linearly with dose through 198 hours (1235 J cm$^{-2}$). Strand breaks were obvious in the control samples, but there was a marked difference in their relative quantities when compared with their enzyme treated counterparts. Although UV PPs were formed in naked DNA samples, they were not present in sufficient quantities to hamper autosomal STR profiling through 198 hours (8.25 days), as described above.

Next, the DNA extracted from bloodstains exposed to UVA was probed for UV PPs. The results of the UVDE incubation are shown (Figure 14B). No BPPPs could be detected, but strand breaks were present and a HMW band was absent at all time points, including the no exposure control, confirming earlier observations that the processes of dehydration and rehydration contributed to strand breakage. From the 4 hour sample, DNA migrating more slowly than the 20 kb molecular weight marker was evident, indicating the presence of inter-or intra-strand cross-links. Still, these lesions did not result in even a partial profile loss, as shown previously.

Endonuclease restriction of UVA irradiated, naked, dehydrated DNA proved similarly futile. The alkaline gel subsequent to a UVDE digest (Figure 14C) did not reveal the presence of any UV PPs, but did provide evidence of inter-of intrastrand cross-links with the slowly migrating nucleic acid visualized above the 20 kb molecular weight marker. Also present were strand breaks in each sample, likely a result of the hydration
processes, as was the absence of a HMW band. However, full genetic profile was still obtainable from samples exposed up to 198 hours.

A repeat of the experiments on UVB irradiated DNA yielded similar results. After a digestion of naked DNA in solution with CV-PDG (Figure 15A), enzyme induced strand breaks and a reduction of the HMW band were seen as early as 4 hours, a trend which increased proportionally with dose, and resulted in the complete loss of the HMW band by 48 hours (300 J cm\(^{-2}\)), indicative of the formation of BPPPs. Although strand breaks were present in the ‘no enzyme’ controls after this point, UV dimers could be detected by a comparison of the NAMW of the enzyme treated sample with that of its respective control. In this case 174 hours (1086 J cm\(^{-2}\)) exposure caused a partial profile loss (Figure 15A).

Next, the DNA extracted from UVB exposed dried bloodstains was examined. The results of a UVDE restriction are shown (Figure 15B). While no photoproducts were evident, the formation of strand breaks and the absence of a HMW band from the no exposure control through 198 hours could be observed. The slowly migrating DNA, seen above the 20kb molecular weight marker, again indicated the formation of inter- or intrastrand cross-links, but even their presence did not inhibit the amplification of STR DNA, as discussed above.

An interrogation of naked, dehydrated DNA exposed to UVB with CV-PDG revealed the formation of dimers after 8 hours (Figure 15C), their numbers increasing slightly with dose, as evinced by reduction of the NAMW in the farther time points. This increase, however, is insignificant when compared with that observed in naked DNA irradiated with UVA (Figure 14A) or UVB (Figure 15A). While there was no evidence
of cross-links, strand breaks were present in all samples, consistent with the observed effects of dehydration/rehydration. As described previously, the sum of the insults was not sufficient to cause even a partial profile loss in any sample.
Figure 14. UVA induced BPPPs. A) naked DNA; B) stain DNA; C) naked, dehydrated DNA was exposed to UVA for 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours and restricted with endonucleases that recognize BPPPs. Digests and ‘no enzyme’ controls were visualized on alkaline gels.
Figure 15. UVB induced BPPPs. A) naked DNA; B) stain DNA; C) naked, dehydrated DNA was exposed to UVB for 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours and restricted with endonucleases that recognize BPPPs. Digests and ‘no enzyme’ controls were visualized on alkaline gels.
Oxidative Damage

Oxidative damage to DNA is mediated by reactive oxygen species (ROS), which can be endogenous or exogenous in origin. The major intracellular source of these species is the leakage associated with cellular respiration in which oxygen is reduced to H2O in the mitochondria13,14. Common extracellular sources include heat, drugs, certain redox cycling compounds, and radiation, especially ionizing radiation and near UV light (320 – 380 nm)2,69.

ROS attack of DNA can produce a plethora of lesions. There is little doubt that the hydroxyl radical is the chief culprit. Guanine is the base most susceptible to attack, followed by thymine. 8-oxo-guanine, the hallmark of oxidative stress, is the most abundant base modification, comprising 50% of modified guanine residues. It is a miscoding lesion, pairing with adenine and leading to a G \textrightarrow T transversion2. Another 20% of the damaged guanine moieties take the form of formamidopyrimidine (FaPy), a polymerase stalling lesion20,21.

Around half of all oxidized thymine bases can be classified as hydroperoxides, formed by the substitution of the C5-C6 bonds. They have the ability to halt enzyme-mediated polymerization20,23.

Hydroxyl radicals mediate sugar damage by the abstraction of electrons from the deoxyribose sugar carbons, giving rise to single strand breaks26. They can also initiate chain reactions in which the DNA at a site far removed from that of the initial contact is damaged2,14.
Previous experiments, as described above, involved the use of UVC light to induce DNA damage. Under these conditions, oxidative lesions could not be detected in any of the sample types tested. It should be noted that some of these modifications were likely present, but at levels beneath the detection limits of the system, or in forms not recognized by the enzymes used. Their relatively low abundance can be explained by a consideration of the catalyst involved. The UVC range includes 260 nm, which is the nucleic acid absorption maximum. Therefore, one would expect that the predominant types of lesions would be the result of the direct absorption of energy by the DNA, rather than through the action of radical intermediates, which is precisely what was found in naked DNA (Figure 6) in the form of UV photoproducts. Interestingly, however, these dimers could not be detected in dehydrated DNA.

Because UVA and UVB have both been shown to generate ROS, the observation of these lesions was expected. To assess the oxidative damage done to naked DNA in solution, the DNA in bloodstains, and naked, dehydrated DNA by both UVA and UVB irradiation, the lesion specific endonucleases human 8-oxo-guanine glycosylase 1 (hOGG1) and formamidopyrimidine dimer glycosylase (FPG) were employed. Both enzymes display a dual glycosylase/lyase action in vitro, and result in a single strand gap at the site of damage. Damaged samples and their ‘no enzyme’ controls were restricted with each of the endonucleases and analyzed on alkaline gels as previously described.
Naked DNA in solution was exposed to UVA rays (365 nm), and incubated with both hOGG1 and FPG, yielding the same results. As shown in Figure 16A, an FPG digest showed the absence of oxidative lesions until 79 hours, after which gradual increase in their formation was detectable. As shown by the ‘no enzyme’ controls, strand breaks began to form around the same time, increasing until the HMW band was lost at 126 hours (786 J cm\(^{-2}\)). Even after this fragmentation of the DNA, a reduction in the NAMW of the treated vs. non-treated DNA was obvious, indicating the continued formation of oxidative products. However, in no case was the genetic profile of a sample affected.

Enzyme mediated detection of oxidative products in bloodstain DNA proved futile, a hOGG1 digest giving no evidence of their generation (Figure 16B). There was, however, evidence of cross-links with the retardation of the migration of a portion of the nucleic acid though to gel matrix, confirming the results seen on the alkaline gel of stain DNA exposed to UVA with no further treatment (Figure 14D). As observed with all dehydrated samples analyzed, strand breaks were present at all time points, including the no exposure control. It is possible that oxidative lesions were present, but undetectable due to sensitivity limitations. In fact, the absence of an abundance of damage was somewhat surprising given that the Fe\(^{2+}\) catalyst of the Fenton reaction was present. A careful consideration of the situation in a dehydrated stain, however, may provide an explanation. The iron component of hemoglobin is sequestered and therefore unavailable to participate in Fenton-like reactions. In a living cell, there exist pools of free iron that
feed into the hemoglobin biosynthetic pathway. These would be available to participate in ROS generating reactions prior to their incorporation. Once the cell becomes dehydrated, however, their diffusibility would be severely limited and access to them limited. An inhibition of the diffusibility of any radical generated would similarly inhibit its ability to contact the nucleic acid and cause damage.

Likewise, oxidative damage could not be detected in naked, dehydrated DNA using a FPG digest (Figure 16C); a comparison of the NAMW of the restricted DNA with that of the ‘no enzyme’ control revealed no difference. There was no indication of the formation of cross-links, but strand breaks were evident in all samples as was typical with the dehydrated types. Of course, it remains likely that some oxidative products were formed, but at levels below the detection threshold.
Figure 16. Oxidative damage: UVA. A) naked DNA; B) stain DNA; C) naked, dehydrated DNA was exposed to UVA for 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours and restricted with endonucleases that recognize oxidation products. Digests and ‘no enzyme’ controls were visualized on alkaline gels.
Next, UVB (315 nm) irradiated DNA was screened for oxidative lesions. By reacting naked DNA in solution with hOGG1, the formation of these products was detected as early as 24 hours, at which time the HMW band was also lost (Figure 17A). The fragmentation of the DNA due to enzyme induced single strand gaps increased proportionally with time, remaining detectable even with the introduction of UVB induced breaks (‘no enzyme’ controls) from 48 hours. As indicated in Figure 13, UVB induced damage was severe enough to cause the partial loss of a profile in samples exposed for 174 hours (1086 J cm\(^{-2}\)) or longer.

UVB irradiation of stain DNA was not sufficient to bring about the formation of detectable oxidative modifications, as determined by FPG digestion (Figure 17B). However, as was seen in stain DNA exposed to UVA (Figure 12D), cross-links began to form as early as 4 hours. Also present in all samples were strand breaks, damage common to dehydrated sample types. Through 198 hours, there was no inhibition of the amplification of STR DNA.

FPG interrogation of naked, dehydrated DNA was similarly fruitless (Figure 17C), but there was some evidence of cross-link formation in the earlier time points with the migration of nucleic acid slower than the 20 kb molecular weight marker.
Figure 17. Oxidative damage: UVB. A) naked DNA; B) stain DNA; C) naked, dehydrated DNA was exposed to UVB for 1) 0 hours; 2) 4 hours; 3) 8 hours; 4) 12 hours; 5) 24 hours; 6) 48 hours; 7) 79 hours; 8) 102 hours; 9) 126 hours; 10) 150 hours; 11) 174 hours; 12) 198 hours and restricted with endonucleases that recognize oxidation products. Digests and ‘no enzyme’ controls were visualized on alkaline gels.
Conclusions: UVA & UVB

The damage observed in naked DNA in solution, stain DNA, and naked dehydrated DNA is summarized in the following tables. The earliest time point at which each of the lesions could be detected is given, and the results of the previously described UVC experiments are included for comparison. Samples were exposed to UVC for up to 48 hours (2 days), and to UVA/B for up to 198 hours (8.25 days).

Table 1. Summary of the damaged detected in naked DNA in solution.

<table>
<thead>
<tr>
<th></th>
<th>UVC (to 48 h)</th>
<th>UVB (to 198 h)</th>
<th>UVA (to 198 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV PPs</td>
<td>5 sec</td>
<td>25 min</td>
<td>4 h</td>
</tr>
<tr>
<td>oxidative lesions</td>
<td>no</td>
<td>24 h</td>
<td>24 h</td>
</tr>
<tr>
<td>cross-links</td>
<td>1 min</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>ssbr</td>
<td>1 min</td>
<td>25 min</td>
<td>24 h</td>
</tr>
<tr>
<td>dsbr</td>
<td>1 h</td>
<td>24 h</td>
<td>126 h</td>
</tr>
<tr>
<td>partial profile</td>
<td>2 min</td>
<td>174 h</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 2. Summary of the damage detected in stain DNA.

<table>
<thead>
<tr>
<th></th>
<th>UVC (to 48 h)</th>
<th>UVB (to 198 h)</th>
<th>UVA (to 198 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV PPs</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>oxidative lesions</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>cross-links</td>
<td>4 h</td>
<td>4 h</td>
<td>4 h</td>
</tr>
<tr>
<td>ssbr</td>
<td>4 h</td>
<td>0 h</td>
<td>0 h</td>
</tr>
<tr>
<td>dsbr</td>
<td>102 h</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>partial profile</td>
<td>12 h</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 3. Summary of the damaged detected in naked, dehydrated DNA.

<table>
<thead>
<tr>
<th></th>
<th>UVC</th>
<th>UVB</th>
<th>UVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV PPs</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>oxidative lesions</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>cross-links</td>
<td>4 h</td>
<td>4 h</td>
<td>24 h</td>
</tr>
<tr>
<td>ssbr</td>
<td>0 h</td>
<td>0 h</td>
<td>0 h</td>
</tr>
<tr>
<td>dsbr</td>
<td>no</td>
<td>0 h</td>
<td>0 h</td>
</tr>
<tr>
<td>partial profile</td>
<td>12 h</td>
<td>126 h</td>
<td>no</td>
</tr>
</tbody>
</table>
As described above, a model for DNA damage assessment in physiological stains recovered from crime scenes was developed by subjecting human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. The scope of model has been extended to include UVA and UVB light.

The direct absorption of UVA photons by DNA is insignificant, and studies have shown that few photoproducts can be detected after UVA irradiation of living cells. UVA primarily causes damage indirectly through the action of photosensitizers, molecules that absorb the UV energy and transfer it to DNA or use it generate ROS2,65. Although moderate quantities of CPDs, formed as the result of photosensitization, oxidative lesions, and strand breaks in naked DNA were detected subsequent to UVA irradiation, the combined effects of the insults was not sufficient to cause even the partial loss of a genetic profile up to 8.25 days exposure.

The only lesions detected in dehydrated DNA, both naked and in stain form, were cross-links and strand breaks, but again these did not inhibit the amplification of STR DNA. These results were somewhat surprising since UVA comprises 95% of the UV rays that reach the earth and it is a known damaging agent in living cells. In fact UVA irradiation has been associated with the formation of melanomas70. One possibility for the absence of the inhibition of the ability to genotype the DNA in the experimental systems is that the UVA generated base modifications are primarily mutagenic rather than polymerase stalling and thus would not affect the ability to genotype. With the cell-free samples, the lack of available photosensitizers certainly protected the DNA from damage. Additionally, the absence of fully hydrated cells in which photosensitizers are
afforded greater access to the DNA rather than suffering from limited diffusibility is likely contributory.

According to published reports, the major effects of UVB on DNA are a result of the direct absorption of the energy residing in photons of light. The primary lesions observed in living cells and cell-free systems are bipyrimidine photoproducts. However, their formation in naked DNA was not seen until 4 hours exposure (25 J cm\(^{-2}\)), and they were absent from the dehydrated sample types altogether. Oxidative modifications, such as 8-oxo-guanine, can also result from UVB irradiation, but these were not formed in significant quantities until 24 hours exposure (150 J cm\(^{-2}\)), and were undetectable in dehydrated naked and stain DNA.

Confounding the analysis of the data is the observation that the STR profile was partially lost by 126 hours (786 J cm\(^{-2}\)) in naked, dehydrated DNA, but was not affected in naked DNA until 174 hours (1086 J cm\(^{-2}\)). The amplifications were repeated a number of times with the same results. It should be noted, however, that the profiles obtained for the higher time points from both types of naked DNA samples were similar with the larger alleles present at very low relative fluorescence units (rfu) at 102 hours and thereafter. Because more damage was detected in naked DNA in the hydrated state than in the dehydrated state, there must be present additional damage in the latter that was not detectable using the systems employed, but resulted in amplification inhibition.

It was previously theorized that a dehydrated state afforded a significant measure of protection to DNA, a result of the B → A conformation change, in which adjacent bases assumed positions relative to each other that were unfavorable to dimerization by direct absorption of energy. This state also limited the diffusibility of reaction
components, impeding the normal solution chemistry. Finally, the presence of the cellular milieu afforded an additional measure of protection.

It is apparent, however, that the damage incurred by crime scene samples that is severe enough to prevent the primer extension activity of DNA polymerase, thus inhibiting the PCR process used in forensic genetic analysis is not caused solely by UVA/B irradiation.
Effects of Humidity

The above described experiments provided convincing evidence that UV light, especially the physiologically relevant longer rays, alone was not the ubiquitous catalyst of the DNA damage resulting in the loss of the genetic profile from a forensic specimen. To ascertain the source of these insults, additional variables were added to subsequent experiments. It was previously demonstrated that the dehydrated state of the DNA in a stain afforded it a significant measure of protection from damaging agents. However, it was reasoned that since a stain exposed to the environment rather than in a climate controlled laboratory would experience varying levels of humidity, partial rehydration of the nucleic acid may render it more susceptible to injury.

To investigate this, a humidity chamber was constructed in a normal glass aquarium with airtight seals (Figure 18A). A plexiglass lid with an opening to which a UV light fixture was affixed was fashioned. These seams were also sealed airtight. A humidity/temperature meter was attached inside the tank to measure conditions and samples were placed flat on 2” high microcentrifuge racks to avoid wetting them with any moisture that gathered at the bottom of the tank. To simulate natural sunlight, samples were irradiated using a 302 nm bulb for time periods ranging from 1 day to 14 weeks at a flux of 0.024 J cm$^{-2}$ min$^{-1}$. Ninety-four percent humidity was maintained chemically by the inclusion in the sealed tank of a saturated solution of copper II sulfate pentahydrate. These conditions created an internal temperature of approximately 27°C (81°F).
Figure 18. Humidity Experiments. A) an airtight humidity chamber was constructed from a glass aquarium; B) a photograph of the bloodstains after exposure to simulated sunlight in the chamber; C) a native agarose gel showing the degradation of the DNA; D) the results of a T4EndoV digest of stain DNA incubated in the chamber, visualized on an alkaline gel.
As seen in Figure 18B, the stains gradually faded with extended exposure, but still retained their red color.

After exposure in the humidity chamber, DNA was extracted from the stains using a standard organic protocol and visualized on a native agarose gel (Figure 18C). Double strand breaks were formed as early as 2 days, albeit in low quantity, and their numbers increased with time. The HMW band was lost by 5 weeks, the point at which genotyping was partially inhibited.

Although UV PPs were not detected in any of the stain DNA tested in previous experiments, it was possible that the increase in the humidity with the concomitant change in hydration state would prove conducive to their formation. The samples were digested with T4EndoV and electrophoresed on an alkaline gel together with the ‘no enzyme’ controls (Figure 18D). Comparing the treated and untreated samples, the NAMW of the DNA looked the same and it did not appear that any dimers had formed. However, considering the state of the nucleic acid, an alternative explanation was likely. The DNA was so degraded prior to enzymatic restriction that the additional breaks indicative of dimer removal simply could not be visualized. Due to this situation, no further digests were performed.

The alkaline gel also provided additional bits of information concerning the state of the phosphodiester backbone. The native gel (Figure 18C) showed the presence of a limited number of double strand breaks through 3 weeks, so the breaks seen in the 1, 2, and 3 week samples must have been single stranded.

The results indicated that breaks, both single and double stranded, were the primary lesions formed under conditions of high humidity and simulated sunlight.
exposure. However, it is very probable that UV PPs and oxidative base modifications were formed but could not be detected due to procedural limitations. Still, it took 5 weeks (12,096 J cm\(^{-2}\)) of direct exposure to cause even a partial inhibition of STR amplification. But, the ability to type true forensic samples can be impeded well before that time, so the contributions of heat, humidity and UV, while certainly contributory, are not the end of the story.

In fact, a major environmental factor was excluded from experimentation – the contribution of microorganisms. All of the stains were made from freshly drawn blood and were dried overnight prior to their use. Experiments were carried out in a controlled laboratory environment. Additionally, the continuous UV irradiation of samples at a short distance from the source would likely have inhibited microorganism growth. In fact, an attempt to culture any microorganisms present on the exposed stains on both PDA (potato dextrose agar) and TSA (tryptic soy agar) gave negative results.

Therefore, the next experiments involved the unprotected exposure of bloodstains to the environment, subjecting them to a range of insults.
Environmental Samples

The next logical step in the quest to describe the DNA damage in dehydrated stains was their unprotected exposure to the environment, subjecting them to insults such as heat, light, humidity, precipitation, and UV and rendering them susceptible to microorganism growth. Fifty microliter drops of blood were dried on cotton cloth and placed in direct sunlight on an unenclosed patio in Orlando, Florida. Two sets of samples were exposed for 3 days, 1 week, 3 weeks, 6 weeks and 9 weeks. The average temperature over this time was 78°C (high – 85°C; low – 37°C) and the average humidity was 83% (high – 89%; low – 77%).

A photograph of the exposed stains (Figure 19A) was telling. After only 3 days outdoors, the stains became faded, losing the dark red color that could be seen in the humidity chamber samples through 6 weeks (Figure 18A), and there appeared to be microorganism growth. A full genotype was obtained through 3 days, a partial through 1 week. Subsequently, the profile was completely lost.

Gel analysis of the DNA revealed something interesting. The 3 day sample was heavily degraded, as visualized on both native (Figure 19B) and alkaline (Figure 19C) gels. But, high molecular weight was once again present in the 1 and 3 week samples. Highly fragmented DNA was again detected at the 6 week time point, in contrast to the HMW band seen in the 9 week sample. Due to the exposure conditions and the physical appearance of the stains, we reasoned that the HMW DNA must belong to a eukaryotic microorganism such as a mold or a yeast. To prove this, the QuantiBlot® Human DNA
Detection Kit, a generally accepted and widely used method for the quantification of human DNA, was employed. Briefly, the questioned sample is denatured and immobilized on a nitrocellulose membrane. Next, an enzyme-conjugated probe complementary to satellite DNA on chromosome 17 (D17Z1) is incubated with the membrane. After any unbound probe is washed off, the reporter molecule is added and the DNA quantified by comparison with a set of known standards included on the membrane. As detailed in Figure 19A, human DNA was observed in the 0 day, 3 day and 1 week samples, but the remaining were negative, confirming the supposition that the DNA detected from the higher time points was contributed by microorganisms.

For further proof, the species found on the bloodstains were cultured. A sterile, cotton-tipped swab was wetted with sterile water. This was rubbed across the bloodstain and transferred to both PDA and TSA plates. These types were chosen because they are general purpose media and allow the growth of a wide range of organisms. The plates were incubated at room temperature for 3 – 6 days. For each time point an unexposed stain was also swabbed and plated as a control (Figure 19E). By 1 day, microorganism growth was obvious, the number of colonies increasing with prolonged environmental exposure. Significantly, the predominant colonies appear to be the eukaryotic forms (mold and/or yeast).

A T4Endo V digest to detect UV PPs proved unsuccessful (Figure 19E). it is expected that these dimers were formed, but could not be detected using the gel-based method due to the extensive degradation of the samples. Therefore, we did the endonuclease mediated detection of additional lesions was not attempted.
These results indicate that microorganism growth is a significant cause of DNA damage leading to the non-typeability of forensic samples. To utilize the cellular constituents for sustenance, these creatures secrete digestive enzymes that can introduce the double strand breaks we saw. The heat and humidity that promote such growth are certainly contributory factors as well. The availability of water in the form of humidity for the hydration of the DNA would lead to a greater diffusibility of radical species, allowing them access to the nucleic acid for the formation of oxidative lesions.
Figure 19. Environmental Samples. 50 µl bloodstains were exposed unprotected to the environment. A) a photograph of the exposed stains; B) DNA electrophoresed on a native gel; C) DNA electrophoresed on an alkaline gel; D) microorganisms cultured from exposed bloodstains; E) an alkaline gel subsequent to a T4EndoV digest for the detection of UV PPs.
Conclusions

Taken as a whole, the results of the UVA/B/C, humidity, and environmental experiments indicate that no single factor is responsible for damaging forensic-type samples sufficiently to cause a profile loss. A significant measure of protection is afforded to DNA in the dehydrated state, a result of the B→A conformation change. The cellular milieu acts as an additional shield from damage, although to a lesser extent.

Surprisingly, UV photoproducts were not detected in dehydrated DNA in significant quantities. Instead, strand breaks, base modifications and crosslinks were the primary lesions. Microorganism induced DNA damage, in the form of double strand breaks, was certainly a major concern, and is expected to be a major contributor to the loss of DNA typing ability in forensic-type stains. There is currently no method available for the in vitro repair of double strand breaks in human genomic DNA, but systems to re-pair single strand breaks/gaps and to accommodate certain types of base modifications have been developed and are reported below.
Damage Detection: Genome-Wide Scan

While the above described gel-based methods have proven successful in the detection of different types of DNA damage, they are somewhat insensitive. PCR based assays involving the *Alu* insert are under development to eliminate these problems. *Alu* repeats are a class of short interspersed elements (SINEs). They are ubiquitous in the human genome, comprising ~5%-10% of the total DNA, and found at a frequency of approximately one per 3000 bp\(^{71,72}\). Therefore, an assessment of damage indicated within the repeats is expected to be representative of the complete genome. These *Alu* elements can be divided into a number of families and sub-families based on particular mutations that have accumulated in certain families over evolutionary time. Primers were designed specifically to complement as many of these groups as possible, avoiding primer placement at sites containing sequence differences\(^{71,73}\).

The basis of the assay is shown in Figure 20. The ability to detect DNA damage using the PCR based method depends upon polymerase stalling at the site of a strand break, prematurely terminating strand elongation, with a concomitant reduction of the specific PCR product. To detect DNA lesions, DNA is restricted with a lesion-specific nuclease, generating a single strand gap and halting polymerization. Therefore, the reduction of amplicons can be seen as a lowering of the *Alu* peak in the restricted sample relative to the unrestricted control. Initially, both linear and exponential amplification techniques were investigated, but abandoned the former due to limitations in its sensitivity.
Figure 20. *Alu* assay for the *in vitro* detection of damaged DNA.
The technique has been somewhat successful. A semi-quantitative assay has been developed by halting amplification in its exponential phase, and ensuring that template is the limiting factor. Figure 21 shows a DNA titration of UVC damaged template amplified using the optimized protocol. Naked DNA was exposed to UVC for the times indicated and amplified, yielding a 265 bp product. With increased irradiation, the peak is reduced until it is absent.

Although the technique is successful when used in this context, problems arise when trying to detect different types of damage using lesion specific endonucleases. DNA lesions stall the polymerase, making difficult the comparison of Alu peak heights before and after treatment (Figure 22). Naked DNA in solution was exposed to UVC. The DNA was restricted with CV-PDG, replacing CPDs with single strand gaps. Subsequent digestion with S1 nuclease, an enzyme capable of cleaving the DNA strand opposite a gap, resulted in a double strand break at the site of the BPPPs. PCR following the incubation of undamaged DNA with the enzyme pair or in buffer alone ('no enzyme' control) (Figure 22A) resulted in the amplification of nearly equivalent quantities of the Alu inserts, as determined by peak height. However, incubation of UVC exposed naked DNA (1 minute) with no enzyme, CV-PDG/S1, CV-PDG only or S1 only (Figure 22B) gave similar results with no significant difference in the peak heights of the respective amplimers.

To solve this problem, we attempted to alter bypass properties of polymerase, allowing translesion synthesis. We experimented unsuccessfully with different polymerases, including proofreading deficient types, and alternate divalent metal ion co-factors. It is evident that the DNA damage must be repaired, either by pre-amplification
enzymatic processing or by the inclusion of a translesion polymerase in the PCR reaction, to allow *Alu*-mediated lesion specific damage detection.
Figure 21. Naked DNA exposed to UVC. Naked DNA exposed to UVC was amplified using the semi-quantitative Alu assay.
Figure 22. *Alu* quantification of a lesion specific enzyme digest of naked DNA exposed to UVC.
After the development of the semi-quantitative PCR/CE based system, the *Alu* assay was transferred to a quantitative real-time format. The primers and probe were designed to complement sequences found in the oldest *Alu* families, reasoning that these inserts would be present in higher copy number and would more accurately represent the genome as a whole. Specifically, primers and probes were placed at sites that were conserved among the majority of families to maximize genome coverage. Table 4 shows the *Alu* consensus sequence relative to the Sx family. A (+) indicates the site of an insertion in a different family and a (-) shows a deletion in the same family. Bold blue letters represent SNPs or inserts. The Sx consensus sequence was published by Batzer et al\(^7\) and the remaining sequences were taken from NCBI.

Initially an absolute quantification protocol in which a forward and reverse primer were added and in a SYBR green buffer was used. The dye fluoresces when bound to double stranded DNA, allowing the instrument to quantify total DNA. Two nanograms template DNA was added to the reaction, the expected result a linear decrease in PCR quantifiable DNA. Looking at a limited number of points over time, this is what was observed. The graph in Figure 23A summarizes these results. The Y-axis shows DNA quantity, and the X-axis tells minutes of UVC exposure. However, when additional time points were added, a different effect was observed (Figure 23B). There was a decreasing trend over the course of time, but sample to sample there was a see-saw effect in which a sample appeared to have more DNA than the previous time point. Interestingly, a higher quantity of DNA was detected in the 30 second sample with respect to the no exposure control. Because the DNA in the various samples was aliquotted from the same stock prior to UVC exposure, it was not likely that the observed effect was due to
quantification errors prior to processing. The assay was repeated using naked DNA exposed to UVB in both the hydrated and dehydrated state, and our humidity chamber samples, with similar results.

Thinking that this may be an artifact of the SYBR Green system, the samples were next analyzed using a real-time TaqMan assay in which a primer set as well as a probe having the reporter molecule were included. The results were comparable to those obtained from the SYBR green assay (Figure 23C).

Next, to rule out the possibility that this was an artifact of the \textit{Alu} protocol, the samples were analyzed using the Quantifiler® Human DNA Quantitation Kit, a commercially available real time PCR quantification system. Again, the same trend was observed (Figure 23D).

It was possible that this effect was a result of the real-time PCR process, so the amplification was next transferred to a traditional thermocycler followed by CE detection, but with similar results (Figure 23E).

Finally, it stood to reason that the observed phenomenon was a PCR artifact. To confirm this, the samples were quantified using the QuantiBlot®, in which the DNA is immobilized on a nitrocellulose membrane and detected by incubation with a probe complementary to satellite DNA, as described above. The results were as expected, with a gradual decline in detectable DNA as the satellite sequences were damaged, but no seesaw effect as in the PCR amplified samples (Figure 23F).

Once it had been established that this was indeed a PCR artifact, the nature of it needed to be determined. The answer came from the ancient DNA field – jumping PCR. This is a phenomenon seen in degraded samples in which the primer binds and is
elongated to the site of the damage where the polymerase stalls. In the next round of PCR, this truncated amplimer can act as a primer, effectively increasing the primer concentration with respect to that available to the undamaged control DNA, resulting in a greater PCR yield75,76. The effect is pronounced with smaller amplimers; it was not observed with the amplification of the 265 bp \textit{Alu} product.

If this technique is to be used to detect specific lesions in DNA that has been exposed to a variety of insults, it will be necessary to first repair the other types of damage. The assay would be useful, in its present form, for the detection of intra-laboratory created lesions in which a single damaging agent is used and so the type of damage is known, but information on quantity is lacking.
Table 4. *Alu* Family Consensus Sequence. A (+) indicates the site of an insertion in a different family and a (-) shows a deletion in the same family. Bold blue letters represent SNPs or inserts. The Sx consensus sequence was published by Batzer et al, 2003 and all others were taken from NCBI.
A

Naked DNA / UVC: SYBR Green

B

Naked DNA (UVC) SYBR Green

C

Naked DNA (UVC): TaqMan Assay
Figure 23. Summary of *Alu* real-time quantification. A) naked DNA exposed to UVC and quantified using SYBR Green; B) naked DNA exposed to UVC and quantified using SYBR Green, effects of additional time points; C) naked DNA exposed to UVC and quantified using the primer/probe combination in a TaqMan assay; D) UVC irradiated naked DNA quantified using Quantifiler®; E) UVC exposed DNA amplified using a traditional themocycler and detected by CE; F) UVC irradiated naked DNA quantified by hybridization (QuantiBlot®).
Effects of Temperature and Substrate on Stored DNA

It has long been a matter of debate within the forensic community what constitutes the optimal, or acceptable, storage condition for a biological sample. Due to cost and space limitations in refrigerator/freezers in crime laboratories, biological evidence is often stored at room temperature or even in a warehouse setting. The dehydration state of the stain, as has been demonstrated, and storage materials are also an important consideration.

To examine the effects these variables have on the degradation of the DNA in forensic-type samples, and ultimately on the ability to obtain a STR profile, 50 µl bloodstains were spotted on cotton material. Two sets of the stains were allowed to dry overnight. One of these was then transferred to a plastic bag and the other to a paper envelope. A third set was not allowed to dry, but was placed immediately in a plastic bag. A control group of stains was stored at -35°C, and the remaining sets were stored at 4°C, room temperature (~25°C), or 30°C (to simulate conditions in a warehouse). Samples were collected and analyzed at 1 day, 1 week, 5 weeks, 3 months, 6 months, 13 months, and 4 years. The DNA was extracted using a standard organic procedure and analysis was completed using the autosomal STR systems Profiler (Applied Biosystems) or PowerPlex 1.2 (Promega).

After 4 years, a strong high molecular weight (HMW) band could be seen in all of the samples stored at 4°C. The samples kept at room temperature also showed HMW bands, although they were significantly fainter, especially in the sample that had been
placed in a plastic bag while still wet. In contrast, all of the samples stored at 30°C were degraded. Additionally, the samples placed in a plastic bag while still wet were more degraded than those that were dried before being placed in the bag. Similarly, the sample dried then stored in an envelope shows a stronger, less degraded HMW band (Figures 24A, 24B, 24C).

While there was no observable difference between the profiles of the control and exposed bloodstains up to 13 months, the four year samples stored at 30°C showed signs of degradation in that the larger alleles became reduced in size relative to the others (Figure 25A - F). Although the profile was not lost in these cases it began to deteriorate and it is envisioned that samples stored in a non environmentally controlled warehouse type setting (i.e. with high heat and humidity) could eventually become so damaged that it becomes intractable to DNA analysis. It appears that there is a clear advantage to storing biological samples at 4°C for extended periods of times.
Figure 24. Effects of temperature and substrate on stored DNA. Fifty microliter bloodstains were spotted and immediately transferred to a plastic bag (blood, wet/plastic), dried overnight then stored in a plastic bag (blood, dried/plastic), or dried overnight then stored in a paper envelope (blood, dried/envelope). They were stored at varying temperatures, as indicated above for A) 3 months; B) 13 months; or C) 4 years.
Figure 25A. Autosomal profiles (Profiler) of bloodstains that were placed in a plastic bag while still wet and stored for 13 months at -35°C (control) or 30°C.
Figure 25B. Autosomal profiles (PowerPlex 1.2) of bloodstains that were placed in a plastic bag while still wet and stored for 4 years at -35°C (control) or 30°C.
Figure 25C. Autosomal profiles (Profiler) of bloodstains that were dried, placed in a plastic bag, and stored for 13 months at -35°C (control) or 30°C.
Figure 25D. Autosomal profiles (PowerPlex 1.2) of bloodstains that were dried, placed in a plastic bag, and stored for 4 years at -35°C (control) or 30°C.
Figure 25E. Autosomal profiles (Profiler) of bloodstains that were dried, placed in an envelope, and stored for 13 months at -35°C (control) or 30°C.
Figure 25F. Autosomal profiles (PowerPlex 1.2) of bloodstains that were dried, placed in an envelope, and stored for 4 years at -35°C (control) or 30°C.
CHAPTER FOUR: MATERIALS AND METHODS – DNA REPAIR

Isolation and Purification of DNA

DNA was extracted from blood stains using a standard phenol:chloroform method60. Briefly, stains were extracted in DNA IQTM spin baskets (Promega Corporation), incubated overnight at 56°C in 400 µl DNA extraction buffer (100 mM NaCl, 10 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.5% SDS, 0.1 mg mL-1 Proteinase K). The crude extract was purified by 25:24:1 phenol/chloroform/isoamyl alcohol (Fisher, Norcross GA), and spun in a Phase Lock Gel (PLG) Tube (2 mL, heavy, Eppendorf, Boulder, CO) according to the manufacturer’s protocol. DNA was further purified using a Microcon (Millipore, Bedford, MA) according to the manufacturer’s protocol, and stored in sterile water.

DNA Quantification

Extracted DNA was quantified using a yield gel. An aliquot of each extract was electrophoresed on a 1% agarose gel along with DNA quantification standards, and stained using a 1% ethidium bromide solution. DNA was visualized using a short wave UV light transilluminator. A film of the gel was taken, and quantification completed by a visual comparison of the samples with the standards.
Naked DNA

To prepare the naked DNA samples in solution, human genomic DNA (Promega Corporation, Madison, WI) was diluted in sterile water to a concentration of 100 ng µl⁻¹ in a 1.5 mL microcentrifuge tube (Fisher Scientific, Norcross, GA). DNA samples were exposed to UVC light (254 nm) in a Stratalinker 1800 (Stratagene, LaJolla, CA).

Alkaline Gel Electrophoresis

One percent alkaline gels were made by dissolving the appropriate quantity of molecular biology grade agarose (Fisher Scientific) in alkaline gel buffer (50 mM NaCl, 1 mM EDTA). After the gel hardened, it was soaked for at least 30 minutes in alkaline gel running buffer (30 mM NaOH, 1 mM EDTA). To each DNA sample was added an equal volume of alkaline loading buffer (50 mM NaOH, 1 mM EDTA, 2.5% glycerol, 0.025% bromocresol green). The entire sample was loaded onto the gel, as was a λ HindIII lane standard for sizing. Electrophoresis proceeded for 3.1 hours at 70 V (217 volt hours), after which the gel was soaked in neutralization solution (1 M Tris-HCl pH 7.6, 1.5 M NaCl) for one hour to allow SYBR Gold (Molecular Probes, Eugene, OR) staining. Finally, the gel was visualized using a short wave UV transilluminator.
Amplification

Autosomal Multiplex

Autosomal STR analysis was carried out with 2 ng of genomic DNA using a multiplex comprised of Power Plex 1.2 primers (Promega Corporation) to determine an eight-locus (plus amelogenin) genotype. The analysis was performed in accordance with the manufacturer’s instructions.

Alu Amplification

The Alu amplification protocol yielded a 125 bp amplimer. Primers were designed in-house using Primer Express software (Applied Biosystems). The 25 µl reaction included, 1 ng template DNA, 2.5 µM dNTPs, 2.5 mM MgCl₂, 0.5 units AmpliTaq DNA polymerase, and 5 pmol each of the forward and reverse primers (F: TET- aac ccc gtc tct act aaa aat aca aaa a; R: atc tgc gct cac tgc aac ct; designed using Primer Express software, Applied Biosystems), in 1X Buffer D3 (40 mM Tris-HCl, pH 8.0, 10 mM DTT, 6 mM KCl, 2.5% glycerol). If applicable, 100 nM of a translesion polymerase was added. Cycling conditions were as follows: (1) 85°C 1 m; (2) 22 cycles – 85°C for 30 s, 56°C for 30 s, 60°C for 5 m, (3) 60°C for 5 m.

YAP Amplification

The YAP locus was amplified in a 25 ul reaction containing 2 ng template DNA, 2.5µdNTPs, 1.6 mM MgCl₂, 8 µg non-acetylated BSA, 0.5 units AmpliTaq DNA Polymerase, 10 pmol each of the forward and reverse primers (F: TET- agg act age aat age agg gga aga; R: cag ggc caa ctc caa cca ag) in 1X Buffer D3. Cycling conditions were as follows: (1) 85°C for 1 min, (2) 32 cycles: 85°C for 30 s, 59°C for 60 s, 60°C for 5 minutes, and (3) final extension at 60°C for 5 min.

PCR Product Detection

Amplified fragments were detected using the ABI Prism 310 capillary electrophoresis system. A 0.5 µl aliquot of each amplified sample was added to 24 µl Hi-Di formamide (Applied Biosystems) and 1 µl of the CXR internal lane standard. Tubes were heated at 95°C for three minutes and snap cooled on ice for at least three minutes. Samples were injected through the capillary using the module GS STR POP4(1 mL)A (5s injection, 15 kV, 60°C, run time 28 minutes, Filter Set A). Samples were subject to laser induced fluorescence, and analyzed with GeneScan 3.1.2 software (Applied Biosystems).
Photoreactivation

The CPD photolyase catalyzes the direct reversal of CPDs. The 20 µl reaction contained 500 ng DNA, 0.08 ng photolyase per ng DNA in 1X REC Buffer 14 (20 mM Tris-HCl, pH 7.8, 50 mM NaCl, 1 mM EDTA, 1 mM DTT). The microcentrifuge tubes were placed open in a rack on the top shelf on an exposure stand approximately 12 inches from the light source. The reaction was initiated by exposure to UVA light (365 nm) and allowed to proceed for 2 hours.

Modified Base Excision Repair

The modified base excision repair strategy included a 30 µl reaction containing 0.015 units ng\(^{-1}\) human Polymerase B, 0.0025 units ng\(^{-1}\) \textit{E. coli} Endonuclease IV, and 0.0025 units ng\(^{-1}\) T4 DNA ligase in 1X BER Buffer 4 (50 mM Tris-HCl, pH 7.8, 10 mM DTT, 100 mM MgCl\(_2\), 10% glycerol). It was allowed to proceed overnight at 37\(^{\circ}\)C and was halted with a 20 minute incubation in a 65\(^{\circ}\)C heating block.
CHAPTER FIVE: RESULTS AND DISCUSSION – DNA REPAIR

Photoreactivation

Prokaryotic and lower eukaryotic cells have evolved a direct reversal mechanism, photoreactivation, to cope with UV induced damage. Photolyases are the enzymatic effectors of this type of repair. In the first steps of the reaction pathway, the light independent phase, the electrostatic lip of the photolyase cleft associates with the DNA, scanning the genome for helical distortions. When an ultraviolet induced lesion is detected, the enzyme interacts specifically with the base and phosphate immediately 5' to the damage and with the bases and phosphates three to four nucleotides 3' to the dimer, acting upon a region totaling six to eight nucleotides. After the formation of this enzyme-substrate complex, the dimer is flipped out of the DNA helix into the photolyase pocket39,40.

In the second light dependent step, the enzyme absorbs a photon of blue light (377 nm). This energy cascades down the inside of the photolyase cleft ultimately being transferred to the BPPP to form an anion which spontaneously rearranges, breaking the C-C bond of the dimer and returning the bases to their original forms. Photolyases exist that are specific for each of the two major types of UV lesions, namely CPDs and (6-4) PPs39.

The experiments described below incorporated the CPD photolyase, gauging its success by the recovery of a genetic profile subsequent to treatment. It has been shown
previously that, with respect to intra-laboratory damaged samples, only the exposure of naked DNA to UVC resulted in the formation of BPPPs in quantities sufficient to inhibit autosomal STR amplification. Therefore, only these samples were included in repair attempts.

Naked DNA [100 ng ul⁻¹] was exposed to UVC for times ranging from 20 seconds to 4 minutes. Five hundred nanograms of this DNA was reacted with photolyase by exposure to UVA light (365 nm) in a closed cabinet at room temperature for 2 hours. A ‘no enzyme’ control consisting of 500 ng of the same UVC sample was incubated under the same conditions. The amplification of the damaged DNA was then attempted using the autosomal STR multiplex Power Plex 1.2. DNA subjected to 20 seconds of UVC (Figure 26B) was so damaged that the genotype was almost completely lost. Treatment of the same DNA with photolyase prior to amplification, however, facilitated the recovery of a full profile (Figure 26C).

While the initial results were promising, the repair could not be repeated using DNA exposed to greater quantities of UVC. CPD formation reaches saturation at doses of approximately 0.05 J cm⁻¹ (30 seconds, in this system)⁶⁴, thereafter (6-4) PPs are the primary BPPP formed and so the CPD photolyase would cease to be effective. Because damage detection experiments had shown that UV PPs, while certainly contributory, were not the chief cause of amplification inhibition, no further work was done with photolyase.
Figure 26. Photolyase. A) Naked DNA was typed using an autosomal STR multiplex. It was then exposed to UVC for various time points including 20 seconds then incubated; B) without photolyase; or C) with photolyase prior to amplification.
Translesion Synthesis

Recently, a novel group of DNA polymerases termed the Y family has been described. Its members are capable of translesion synthesis (TLS), a process by which a polymerase is able to incorporate nucleotide(s) opposite a damaged DNA template, bypassing lesions that normally block synthesis. The ability of any polymerase to incorporate the correct nucleotide into a growing strand depends upon the structure of its active site42. The template nucleotide and the incoming dNTP are held and allowed to react in this site, which normally only allows the Watson-Crick (WC) pairing of intact molecules. Standard replicative polymerases have “palm,” “finger,” and “thumb” domains which can only accommodate WC base pairing. Should one of these enzymes encounter a damaged base, it idles, locked into futile dNTP incorporation/incision cycles since none is a good fit41.

Y-family polymerases have smaller thumb and finger domains than their counterparts, but also have a “little finger” domain. This is the least conserved structure of the translesion polymerases and is thought to contribute significantly to the different biochemical properties of family members such as bypass ability and processivity45. There is substantial movement of this little finger to accommodate the various types of lesions, thus it is a relaxed constraint at the active site that allows for lesion bypass. Under physiological conditions, however, these polymerases are distributive rather than processive, adding only about six to ten bases before dissociating from the DNA strand45.

Translesion synthesis is an attractive option for the \textit{in vitro} repair of damaged DNA. The incorporation of a Y-family polymerase into a PCR reaction with a
thermostable replicative polymerase, such as Taq (from *Thermus aquaticus*), would allow for a direct bypass of the damage without the need for repair processing prior to amplification.

The PCR reaction incorporating *Taq* and a TLS is envisioned to proceed as follows: *Taq* polymerase (present in higher quantity) extends the primer until it encounters a lesion, stalls and then dissociates from the DNA. The TLS is then loaded and bypasses the lesion. Since the translesion polymerase is distributive, it dissociates shortly after translesion synthesis, allowing *Taq* polymerase to reassociate and resume genomic DNA synthesis.

A number of thermostable translesion polymerases have recently been isolated and characterized [4, 78]. The following experiments involve the use of four naturally occurring DNA polymerase 4-like proteins from the archaeal bacteria *Sulfolobus solfataricus* (Dpo4), *Sulfolobus shibatae* (Ssh), *Sulfolobus tengchongensis* (Ste), and *Acidianus infernus* (Ai), as well as with two laboratory-created chimeras – Ai/Sso (*Sulfolobus acidocaldarius*) and Ai/Ste.

Dpo4 was the earliest characterized thermostable member of the Y-family. Published data indicates that it can bypass a number of lesions including abasic sites, thymine-thymine CPDs, (6-4)PPs, cisplatin adducts, and N-acetyl-2-aminofluorne adducts [78]. More recent data indicates that it can traverse oxidative lesions as well (personal communication, Dr. Roger Woodgate). The wide range of moieties that can be accommodated by this polymerase is reminiscent of the situation with the relaxed structural constraint of the active site of the ultraviolet damage endonuclease (UVDE),
which allowed it to recognize a plethora of lesions. This hints that Dpo4 may have the ability to bypass more types of damage than have been shown experimentally.

Ssh, Ste, and Ai are closely related to Dpo4 and possess similar enzymatic properties, but are approximately two to three times less active in vitro45 (personal communication, Dr. John McDonald). Ai in particular is much less processive than the others. To enhance its activity, the two chimeras were constructed. Briefly, restriction sites were introduced into the Ai and Ste genes immediately prior to the region encoding the LF domain. Then, the Ai LF domain was replaced by subcloning the Ste LF to create the Ai/Ste polymerase. The Sso LF domain was likewise used to replace the endogenous Ai LF, generating the Ai/Sso protein45.

To incorporate a TLS polymerase into an amplification reaction with \textit{Taq}, a buffer had to be developed in which both were active. Reasoning that the TLS was a less robust enzyme and so would be harder to accommodate, the first attempted PCR employed a buffer recipe developed for use with Dpo4 and Pol ι78,79, but under these conditions \textit{Taq} failed to amplify the target. By considering the buffer requirements for each, a number of alternative mixtures were subsequently developed, altering the concentrations and constituents until finding the optimal blend.

Once there was a functional buffer, the PCR components were optimized. An important consideration was the polymerase concentration. Because the reaction is envisioned proceeding as described above, the \textit{Taq}/TLS ratio was critical. The inclusion of too much enzyme restricted TLS access to the DNA template, but too little resulted in amplification failure. A low quantity of the TLS proved insufficient to effect lesion
bypass because the enzyme was unable to out-compete Taq for template contact, but the inclusion of higher quantities of the protein tended to inhibit PCR altogether.

It should be noted that the use of alternative polymerases was considered. Because of the cycling conditions necessary to accommodate a TLS (below), any hot start polymerase was eliminated as a possibility. As described above, an excess of Taq restricted TLS access to the DNA. Additionally, Taq is a relatively processive polymerase *in vitro*, meaning that it does not tend to dissociate from the template as often as would a less processive enzyme, such as Pfu (from *Pyrococcus abyssi*). However, attempting the incorporation of Pfu required the addition of a large quantity of the protein (3 units compared to 0.5 units Taq), defeating the purpose.

The remaining reaction components – dNTPs, MgCl₂, BSA, and template concentration – were next optimized. A Taq titration ranging from 0.25 to 5 units was performed to determine the lowest concentration at which amplification was successful, with 0.5 units the choice. The optimal MgCl₂ was likewise determined to be 3 mM (*Alu*) or 1.6 mM (‘YAP’), and the template requirement 1 ng (*Alu*) or 2 ng (YAP).

The cycling conditions were an especially important consideration. Although the translesion polymerases were thermostable, their activity was reduced by continued incubation at 95°C, the denaturation phase of the cycles[^45]. This meant, first, that a hot start could not be used. Next, an 85°C incubation was not sufficient to denature the whole of the genomic DNA and only alleles of approximately 200 base pairs or fewer were successfully amplified under those conditions.
Typically, the extension phase of a PCR cycle ranges from 30 seconds to 1 minute. However, this amount of time may be insufficient to allow the polymerase switching at a damage site, and so the incubation time was increased to 5 minutes.

To evaluate the success of TLS incorporation into a PCR reaction, two systems were used—YAP and \textit{Alu}. The YAP primers amplify two alleles – 81 bp and 85 bp - present in a single copy in the genome, and the \textit{Alu} product is a single peak at 128 bp. Due to the inclusion of the 85°C denaturation it was necessary to re-design the \textit{Alu} primers described earlier since they amplified a 265 bp allele. The new primers were again designed to complement sequences conserved among \textit{Alu} families to maximize genome representation.

After titrating each of the translesion polymerases over a range of 1 to 200 nM with an invariable quantity of \textit{Taq}, it was decided that 100 nM was the optimal concentration for inclusion in both the YAP and \textit{Alu} assays. Because the addition of the TLS to the reaction effectively increased the total polymerase concentration, it was necessary to be sure that any increase in the signal of a ‘repaired’ allele with respect to that amplified by \textit{Taq} alone was truly the result of repair activity and not simply due to the increased availability of enzyme. Therefore, as a control, a reaction was included in which the concentration of \textit{Taq} was doubled.

Naked DNA damaged with UVC for 0, 6, 11, or 28 minutes was amplified in a YAP reaction containing ‘\textit{Taq} only’ (0.5 u), ‘double \textit{Taq}’ (1 u), or \textit{Taq} (0.5 u) + 100 nM TLS. Adding twice the \textit{Taq} to the PCR reaction of unexposed DNA resulted in a significant increase in peak height (Figure 27) with respect to the ‘\textit{Taq} only’ condition. However, when compared to the peaks amplified in the presence of a TLS there was, in
general, no significant difference. Dpo4 did not seem to perform as well as the other enzymes, but this may be due to the age of our aliquot. Ai also shows a reduced activity, consistent with earlier reports. From these results, it appears, first, that the TLS enzymes have been successfully incorporated into the PCR reaction, and next that the addition of two times the Taq has compensated for any polymerase concentration effects, and can be used as a control in further experiments.

YAP amplification of the DNA exposed to UVC for 6 minutes resulted in no significant difference in peak height in any of the samples with respect to the standard Taq reaction (Figure 28), indicating that either the TLS were not traversing the lesions, or that the UV-induced DNA damage was not the type that could be bypassed. Due to further experimentation, described below, the latter is likely the case. Again, Ai was not as robust as the other TLS enzymes.

Similarly, there was no significant difference in the quantities of DNA amplified from the 11 minute or 28 minute samples (Figures 29 & 30), with the exception of the Ai reactions which resulted in amplification failure. Of interest is the observation that neither doubling the concentration of Taq nor adding a Y-family polymerase affected the efficiency of amplification, again symptomatic of DNA too damaged to be bypassed.

The results of these experiments are summarized in Table 5. The observed peak heights, in relative fluorescence units are listed. It is obvious that the TLS were active in the amplification, as evinced by the peak heights equal to that of the ‘double Taq’ no exposure and 6 minute samples, but there was no damage present that they could bypass. This is feasible given the small size of the amplimers (81bp, 85 bp). These results were confirmed using environmental samples. Fifty microliter bloodstains were exposed
outdoors for 0 or 8 days and amplified using the YAP protocol incorporating the bypass polymerases. The results are summarized in Table 6. As was seen with the UVC exposed samples, the enzymes were successfully incorporated into the PCR, but did not participate in lesion bypass.

Prior to this, there have been no reported cases in which Y-family polymerases have been successfully incorporated into a PCR reaction with a standard replicative enzyme.
Table 5. Summary of the YAP-TLS experiments. Naked DNA exposed to UVC was amplified using the YAP primers and incorporating the translesion polymerases (100 nM each), as listed. The peak heights, as detected by capillary electrophoresis, are listed in relative fluorescent units.

<table>
<thead>
<tr>
<th></th>
<th>0m (rfu)</th>
<th>6m (rfu)</th>
<th>11m (rfu)</th>
<th>28m (rfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq</td>
<td>782, 259</td>
<td>485, 354</td>
<td>156, 148</td>
<td>0</td>
</tr>
<tr>
<td>Double Taq</td>
<td>6347, 1588</td>
<td>540, 315</td>
<td>226, 202</td>
<td>88, 81</td>
</tr>
<tr>
<td>Dpo4</td>
<td>4869, 1781</td>
<td>625, 313</td>
<td>197, 207</td>
<td>254, 60</td>
</tr>
<tr>
<td>Ssh</td>
<td>7570, 1286</td>
<td>353, 195</td>
<td>55, 49</td>
<td>184, 120</td>
</tr>
<tr>
<td>Ste</td>
<td>7440, 3194</td>
<td>620, 441</td>
<td>135, 326</td>
<td>187, 146</td>
</tr>
<tr>
<td>Ai</td>
<td>4163, 1169</td>
<td>275, 145</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ai/Sso</td>
<td>7060, 1513</td>
<td>674, 645</td>
<td>261, 217</td>
<td>95, 89</td>
</tr>
<tr>
<td>Ai/Ste</td>
<td>7510, 1607</td>
<td>557, 449</td>
<td>280, 290</td>
<td>80</td>
</tr>
</tbody>
</table>
Figure 27. Unexposed naked DNA was amplified using the YAP primers and incorporating *Taq* alone or *Taq* + 100 nM TLS enzyme.
Figure 28. Naked DNA exposed to UVC for 6 minutes was amplified using the YAP primers and incorporating Taq alone or Taq + 100 nM TLS enzyme.
Figure 29. Naked DNA exposed to UVC for 11 minutes was amplified using the YAP primers and incorporating *Taq* alone or *Taq* + 100 nM TLS enzyme.
Figure 30. Naked DNA exposed to UVC for 28 minutes was amplified using the YAP primers and incorporating Taq alone or Taq + 100 nM TLS enzyme.
<table>
<thead>
<tr>
<th></th>
<th>0 d (rfu)</th>
<th>8 d (rfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq</td>
<td>7133, 4218</td>
<td>308, 140</td>
</tr>
<tr>
<td>Double Taq</td>
<td>6895, 6077</td>
<td>883, 524</td>
</tr>
<tr>
<td>Dpo4</td>
<td>7473, 4779</td>
<td>349, 423</td>
</tr>
<tr>
<td>Ssh</td>
<td>7825, 5401</td>
<td>473, 486</td>
</tr>
<tr>
<td>Ste</td>
<td>7810, 4571</td>
<td>670, 406</td>
</tr>
<tr>
<td>Ai</td>
<td>7397, 4343</td>
<td>460, 115</td>
</tr>
<tr>
<td>Ai/Sso</td>
<td>7802, 5812</td>
<td>568, 357</td>
</tr>
<tr>
<td>Ai/Ste</td>
<td>7789, 5869</td>
<td>460, 235</td>
</tr>
</tbody>
</table>

Table 6. Summary of the YAP amplified environmental samples. The DNA extracted from bloodstains was exposed outdoors for 0 or 8 days and amplified using ‘Taq,’ ‘double Taq,’ or Taq + 100 nM TLS. The numbers represent peak height in rfu.
The use of the newly developed Alu system, with its 128 bp amplimer, allowed further testing of the abilities of the translesion polymerases that had been incorporated into a PCR. Naked DNA from the same stock used in the YAP experiments was exposed to UVC for 0, 6, 30 or 40 minutes then amplified with ‘Taq alone’ (0.5 u), ‘double Taq’ (1 u), or Taq (0.5 u) + 100 nM TLS.

Surprisingly, there were significant differences in some of the amplified peaks in the ‘no exposure’ samples. The ‘Taq alone’ peak was approximately half the height of the ‘double Taq’ peak, as expected, but had nearly the same RFUs as those resulting from the addition of Dpo4 and Ai/Ste (Figure 33), seemingly indicating that those enzymes had been inactive. The Ai/Sso and Ssh amplimers were around the same height as that seen with ‘double Taq’ suggesting that the enzymes were active, but not engaged in lesion bypass. The Ste and Ai peaks, however, were significantly larger than even the ‘double Taq.’ Taking into consideration the YAP results described above, this is indicative of translesion bypass activity. Of course, confounding this interpretation was the fact that it was observed in a no exposure control. A look at the state of the DNA on a native agarose gel, however, offers an explanation (Figure 32). There sample is a bit fragmented and there is no discrete high molecular weight band – the sample is obviously somewhat damaged, an observation consistent with the activity seen from Y-family polymerases.

After 6 minutes’ exposure, the peak height difference between ‘Taq’ and ‘double Taq’ was not as pronounced and the Dpo4, Ssh, and Ai/Ste PCR products were nearly equal in size to the latter (Figure 34). In contrast to the situation with the no exposure control, the Ai/Sso peak was almost twice the size of that of the ‘double Taq,’ while the
Ai and Ste peaks were even greater. These results are consistent with increased translesion synthesis activity with the polymerases most able to bypass the types of damage encountered in a particular sample yielding an increased PCR product.

The general trend continued after 30 minutes’ exposure. The Dpo4 and Ai/Ste products were approximately the same size as the ‘double Taq,’ while Sh and Ai/Sso amplimers were around twice as numerous (Figure 35). Again, the inclusion of Ai and Ste in the reaction resulted in a significant increase in PCR product with respect to the use of twice the concentration of the typical polymerase.

DNA exposed to UVC for 40 minutes was not amplifiable using the standard Alu reaction, but a peak could be obtained by doubling the Taq concentration. Dpo4, Sh, Ai/Sso and Ai/Ste containing PCRs produced products approximately equivalent to the latter, but Ai and Ste again amplified more than twice the DNA than did their counterparts (Figure 36). These results, taken together, provide evidence that not only have Y-family polymerases been incorporated into a standard PCR reaction with Taq DNA polymerase, as seen with the YAP assay, but they are engaged in damage bypass. Although the majority of the TLS enzymes displayed translesion synthesis at one point in our experiments, Ai and Ste were clearly the stars.

As described above, when the same set of experiments was attempted with the YAP locus, there was no evidence of lesion bypass, only an indication that the enzymes were active. It was theorized that this was due to the abbreviated amplimer size and the absence of damage that could be traversed. By designing a system representing approximately 10% of the human genome, this obstacle was successfully overcome. The enzymes were provided with a repairable template and have demonstrated for the first
time the in vitro repair of damaged DNA by the inclusion of a Y-family polymerase with a replicative polymerase in a standard PCR reaction.

An obvious concern when gauging repair success by peak height is that the observed differences are due to pipetting differences when adding amplified product, rather than a true recovery of damaged DNA. Therefore, ten replicates of a number of both the unreacted and repaired samples were prepared for injection on the 310. The maximum, minimum, and mean were determined. In every instance, the minimum repaired peak was significantly larger than the maximum untreated peak, indicating that the observed difference was not an artifact of CE analysis.

Figure 31. Naked DNA exposed to UVC and analyzed on a native agarose gel.
Table 7. Summary of the *Alu*-TLS experiments. Naked DNA exposed to UVC was amplified using the *Alu* primers and incorporating the translesion polymerases (100 nM each), as listed. The peak heights, as detected by capillary electrophoresis, are listed in relative fluorescent units.

<table>
<thead>
<tr>
<th></th>
<th>0m (rfu)</th>
<th>6m (rfu)</th>
<th>30m (rfu)</th>
<th>40m (rfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq</td>
<td>581</td>
<td>725</td>
<td>190</td>
<td>0</td>
</tr>
<tr>
<td>Double Taq</td>
<td>1677</td>
<td>1141</td>
<td>435</td>
<td>230</td>
</tr>
<tr>
<td>Dpo4</td>
<td>667</td>
<td>1125</td>
<td>421</td>
<td>205</td>
</tr>
<tr>
<td>Ssh</td>
<td>1894</td>
<td>1300</td>
<td>821</td>
<td>237</td>
</tr>
<tr>
<td>Ste</td>
<td>4613</td>
<td>6488</td>
<td>2611</td>
<td>781</td>
</tr>
<tr>
<td>Ai</td>
<td>4219</td>
<td>3463</td>
<td>1806</td>
<td>509</td>
</tr>
<tr>
<td>Ai/Sso</td>
<td>1433</td>
<td>2984</td>
<td>976</td>
<td>229</td>
</tr>
<tr>
<td>Ai/Ste</td>
<td>843</td>
<td>1084</td>
<td>555</td>
<td>228</td>
</tr>
</tbody>
</table>
Figure 32. Unexposed naked DNA was amplified using the *Alu* primers and incorporating *Taq* alone or *Taq* + 100 nM TLS enzyme.
Figure 33. Naked DNA exposed to UVC for 6 minutes was amplified using the *Alu* primers and incorporating *Taq* alone or *Taq* + 100 nM TLS enzyme.
Figure 34. Naked DNA exposed to 30 minutes UVC was amplified using the \textit{Alu} primers and incorporating \textit{Taq} alone or \textit{Taq} + 100 nM TLS enzyme.
Figure 35. Naked DNA exposed to 40 minutes UVC was amplified using the Alu primers and incorporating Taq alone or $Taq + 100$ nM TLS enzyme.
Single Strand Break/Gap Repair

Experiments have shown that single strand breaks and/or gaps are significant contributors to the inability to type compromised DNA samples. Therefore, the repair of these lesions has been attempted, first with a simple gap filling/ligation reaction, then by modifying the base excision repair pathway \textit{in vitro}.

In theory, the repair of a single strand gap should be easy – simply add the missing bases using a polymerase and re-join the backbone with a ligase. A single strand break should be even simpler, only requiring a ligase to seal the nick. Unfortunately, in practice, it may not be so uncomplicated. Polymerase mediated extension of a DNA end requires the presence of a 3’ –OH, which may not be found at the broken end of the strand. Additionally, the ligase requires a 5’ phosphate group, which again may not be readily available. There have been reports from the ancient DNA field, however, of a successful repair accomplished by reacting damaged DNA with DNA polymerase I and DNA ligase80,81. Repair using this method was attempted, experimenting with various enzyme concentrations, incubation conditions, and substrates. Subsequent to a repair reaction, samples were analyzed on an alkaline agarose gel to determine the success. Figure 37 shows a typical result – naked DNA was exposed to UVC for 0, 6, or 16 minutes then incubated with the two enzymes in a single reaction. In no case was degraded DNA recovered.
Figure 36. DNA ligase / Polymerase I Reaction. Naked DNA was exposed to UVC for 0, 6, or 16 minutes. Repair of single strand gaps/breaks was attempted by incubation with DNA polymerase I and T4 DNA ligase. Samples were analyzed on an alkaline agarose gel.
The probable explanation is that the broken ends were subtended by alternative chemical moieties that were neither extensible nor ligatable. *In vivo*, these ends can be dealt with by enzymes of the base excision repair pathway. Specifically, an apurinic (AP) nuclease, such as endonuclease IV, can recognize abasic sites as well as gaps and nicks, processing the ends and leaving an extensible 3’ –OH. Next, a repair competent polymerase that can fill in the gap, but also possesses a deoxyribophosphatase activity capable of ‘polishing’ the altered 5’ end and restoring to it a ligatable phosphate group, such as polymerase β, is allowed to react. Finally, a DNA ligase seals the nick.

An *in vitro* reconstitution of this pathway was attempted. Because the ultimate goal was the repair of the DNA from forensic stains, i.e. dehydrated body fluids subjected to a variety of insults and many times present in low copy number, it was necessary to optimize the conditions such that the three enzymes functioned synergistically in a single reaction, eliminating the need for buffer switching between multiple incubations.

First, a common ‘BER Buffer’ was developed, in which all enzymes were active. To do so, the buffer components such as metal ions and salt concentrations were tested. pH was another concern - the three enzymes had optimal pH requirements ranging from 7.4 to 8.1, but it was found that all were still active at 7.8. Likewise, all three were functional at 37°C.

Figure 38 shows the result of a BER reaction. Naked DNA was exposed to UVC for 0, 6 and 10 minutes. Repair was then attempted with the enzyme combinations as listed above the gel. The inclusion of Pol β in the reaction results in the recovery of a significant amount of DNA. While there doesn’t appear to be any difference between the
samples incubated with or without ligase, it is likely that the gel-based method is simply not sensitive enough to detect the differences.
Figure 37. Base excision repair. UVC irradiated DNA was incubated with the constituents of the modified BER pathway in various combinations as indicated above the gel. Analysis was accomplished using an alkaline gel.
Although these results are promising, it is unlikely that a single repair mechanism will suffice when dealing with true forensic-type samples in which the DNA is subject to a myriad of insults and incurs a diverse array of lesions. Therefore, an attempt was made to repair environmentally exposed bloodstain DNA by combining BER and TLS.

Samples were exposed outdoors for 0, 6, 7, or 8 days. The DNA was extracted and BER attempted with the 8 day sample. A third of each sample was incubated with EndoIV, Pol β and ligase, another third with only EndoIV and ligase, and last fraction was not treated. The DNA was amplified using the YAP primers and incorporating ‘Taq only,’ ‘double Taq’ or 100 nM Dpo4, Ai/Sso, or Ste. The results are summarized in Table 8. Peak height is described in relative fluorescence units.

The resulting electropherograms are shown in Figure 39. A difference in peak heights was seen in the 0 day sample amplified with Taq only (A – C), but doubling the enzyme concentration (D – F) or including a TLS in the reaction rendered the remaining peaks (G – O) approximately equal.

The 8 day sample, however, showed evidence of repair. From the untreated DNA, YAP peaks of 470 and 667 were obtained (Figure 40C). When the sample was incubated with EndoIV and ligase the heights increased to 917 and 1073 (Figure 40B). Surprisingly, reaction with all three BER enzymes resulted in only a slight increase – to 1332 and 1125 rfu (Figure 40A). A similar trend was seen with the remaining samples (Figure 40 D – O), indicating that the damage was primarily single strand breaks rather than gaps which would require the polymerase mediated addition of dNTPs.

The incorporation of translesion polymerases into the post-BER amplification to facilitate the recovery of even more of the lost profile was also attempted. To ensure that
any signal increase seen was the result of lesion bypass rather than of the increased polymerase concentration, the ‘double Taq’ condition was taken as the baseline (Figure 40D - F). Compared to this, the Taq/Dpo4 amplified peaks were actually lower, and no repair polymerization had taken place. However, both the Taq/Ai-Sso and Taq/Ste reactions showed evidence of repair - the ‘no repair’ control peak was not increased significantly in any case, but both of the enzyme blends yielded an increased PCR product in the BER treated samples (see Table 8 and Figure 40). Prior to BER, the same environmental samples were amplified using the YAP system (summarized in Table 7), but failed to display any repair polymerization in that case as well.

Taken together, these results indicate that damage done to the YAP locus comprised both single strand breaks/gaps and base modifications. The breaks were the primary cause of polymerase stalling, as evinced by the necessity of their repair prior to any observable bypass activity by the Y-family polymerases. But, once the template was restored, the TLS polymerases were able to effect translesion synthesis.

The present report presents evidence of the first system to effect the successful in vitro repair of single strand breaks/gaps in human genomic DNA damaged via natural processes. The addition of a translesion polymerase to a PCR reaction with a standard replicative enzyme is likewise a novel mechanism, and the use of the two methods together has proven successful in initial experiments. In the future, these systems will be used to repair damage found in various types of forensic-type samples, attempting the recovery of an autosomal STR profile.
Table 8. Summary of BER results. Environmentally exposed bloodstains were repaired using the modified BER strategy and amplified with the inclusion of TLS.

<table>
<thead>
<tr>
<th></th>
<th>0 days (rfu)</th>
<th>8 days (rfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAQ ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoIV / Pol β / Ligase</td>
<td>2659, 1186</td>
<td>1332, 1125</td>
</tr>
<tr>
<td>EndoIV / No Pol β / Ligase</td>
<td>8604, 8515</td>
<td>917, 1073</td>
</tr>
<tr>
<td>No Repair</td>
<td>5662, 2198</td>
<td>470, 667</td>
</tr>
<tr>
<td>Double TAQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoIV / Pol β / Ligase</td>
<td>9242, 6278</td>
<td>1573, 1340</td>
</tr>
<tr>
<td>EndoIV / No Pol β / Ligase</td>
<td>8205, 8632</td>
<td>1741, 1539</td>
</tr>
<tr>
<td>No Repair</td>
<td>8696, 3916</td>
<td>584, 238</td>
</tr>
<tr>
<td>TAQ + DPO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoIV / Pol β / Ligase</td>
<td>9202, 5258</td>
<td>1298, 838</td>
</tr>
<tr>
<td>EndoIV / No Pol β / Ligase</td>
<td>8715, 8428</td>
<td>1341, 1771</td>
</tr>
<tr>
<td>No Repair</td>
<td>8776, 3657</td>
<td>536, 342</td>
</tr>
<tr>
<td>TAQ + AI/SSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoIV / Pol β / Ligase</td>
<td>8653, 8995</td>
<td>2314, 1609</td>
</tr>
<tr>
<td>EndoIV / No Pol β / Ligase</td>
<td>7510, 8288</td>
<td>2544, 1712</td>
</tr>
<tr>
<td>No Repair</td>
<td>8022, 5634</td>
<td>338, 510</td>
</tr>
<tr>
<td>TAQ + STE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EndoIV / Pol β / Ligase</td>
<td>8880, 7439</td>
<td>2273, 1534</td>
</tr>
<tr>
<td>EndoIV / No Pol β / Ligase</td>
<td>8606, 8505</td>
<td>2417, 2829</td>
</tr>
<tr>
<td>No Repair</td>
<td>8744, 4538</td>
<td>583, 205</td>
</tr>
</tbody>
</table>
Figure 38. Unexposed stain DNA incubated with BER enzymes, as described. *Taq* polymerase was used to amplify the YAP locus, as shown.
Figure 38. Unexposed stain DNA incubated with BER enzymes, as described. 100 nM Dpo4 or Ai/Sso was incorporated into a YAP amplification, as shown.
Figure 38. Unexposed stain DNA incubated with BER enzymes, as described. 100 nM Ste was incorporated into a YAP amplification, as shown.
Figure 39. The DNA from bloodstains exposed to the environment for 8 days was incubated with BER enzymes, as described. *Taq* polymerase was used to amplify the YAP locus, as shown.
Figure 39. The DNA from bloodstains exposed to the environment for 8 days was incubated with BER enzymes, as described. 100 nM Dpo4 or Ai/Sso was incorporated into a YAP amplification, as shown.
Figure 39. The DNA from bloodstains exposed to the environment for 8 days was incubated with BER enzymes, as described. 100 Ste was incorporated into a YAP amplification, as shown.
Conclusions

Forensically-relevant stains, i.e. dehydrated physiological samples deposited at the scene of a crime, are subject to a myriad of insults including heat, light, humidity, UV and microorganism growth, which can cause various types of DNA damage. The principal concern from the forensic science standpoint is that many of these environmentally induced lesions are expected to be inhibitory towards DNA polymerase-mediated primer extension and may result in amplification, and hence DNA typing, failure. The results presented here first showed that the types of damage that are most frequently encountered in dehydrated samples are not UV photoproducts, but rather strand breaks, base modifications and, to a lesser extent, DNA-DNA crosslinks.

Attempting the repair of such damage, with the ultimate goal of recovering a genetic profile from a previously intractable sample, three systems were successfully developed. The first was a direct reversal of the damage by photolyase. This enzyme, capable of breaking the CPD bonds and restoring the DNA to its undamaged state, was limited in its usefulness since, as described above, UV photoproducts are not the major lesions that result in non-typeability.

Next, a set of thermostable translesion polymerases were incorporated into a PCR reaction with a standard replicative polymerase, facilitating the recovery of genetic material from both intra-laboratory damaged samples and true forensic specimens exposed to the environment, and representing the first time such a combination of enzymes had successfully performed in concert as an in vitro repair system.

A modified base excision repair system was optimized for the repair of single strand breaks and/or gaps. By optimizing a buffer in which the three enzymes of the
pathway were functional, repair was effected in a single tube, without the need for buffer switches. Breaks/gaps were successfully repaired in both UV exposed samples generated in the lab, and in environmentally exposed samples.

Finally, DNA repaired using the BER system was subsequently amplified using the Taq/TLS blend described above, resulting in the successful recovery of a PCR amplified peak. While these two systems are not likely to be the only methods for the repair of damaged DNA in forensic stains, they are certainly promising, and the work presented here suggests the direction for future research in the in vitro repair of damaged DNA templates.
LIST OF REFERENCES

78. Boudsocq, F., Iwai, S., Hanaoka, F. & Woodgate, R. Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with

