2-3-2004

Treatment of myeloma

Delbert Miles
University of Central Florida

Elena Goun
Perm State University

Natalia Konuchova
Perm State University

Tatiana Koretkova
University of Central Florida

Krasnych Pertrovna
Perm State University

See next page for additional authors

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Miles, Delbert; Goun, Elena; Konuchova, Natalia; Koretkova, Tatiana; Pertrovna, Krasnych; Valentinovna, Pimenova; Yurjevich, Solodnikov; and Yyrjevitsh, Solodnikov, "Treatment of myeloma" (2004). *UCF Patents*. 620.
https://stars.library.ucf.edu/patents/620
Creator
Delbert Miles, Elena Goun, Natalia Konuchova, Tatiana Koretkova, Krasnych Pertrovna, Pimenova Valentinovna, Solodnikov Yurjevich, and Solodnikov Yyrjevitsh

This patent is available at STARS: https://stars.library.ucf.edu/patents/620
TREATMENT OF MYELOMA

Inventors: D. Howard Miles, Winter Springs, FL (US); Solodnikov Sergey Yurjevich, Perm (RU); Krasnykh Olga Petrovna, Perm (RU); Korotkova Tatiana Alexandrovna, Orlando, FL (US); Elena A. Goun, Stanford, CA (US)

Assignee: University of Central Florida, Orlando, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 47 days.

Related U.S. Application Data
Provisional application No. 60/296,823, filed on Jun. 8, 2001.

Field of Search

References Cited
U.S. PATENT DOCUMENTS

5,274,002 A 12/1993 Hawkins 514/330
5,334,612 A 8/1994 Kalden 514/440
6,048,896 A 4/2000 Giordani 514/545
6,066,670 A 5/2000 Brown 514/557
6,080,790 A 6/2000 Boyd et al. 514/630
6,121,450 A 9/2000 Jones 546/81

The compounds of the invention which encompasses a class of compounds having the property of anti-carcinogenic activity against human myeloma comprising 4-oxo-2-butenolic acid compounds and 3-hydrazino-2,4-dioxobutanoic acid compounds and more specifically those novel derivatives: 4-(4-Chloro-phenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-4-oxo-but-2-enoic acid methyl ester (OF-07); 2-{N'[2-Bromo-phenyl-(phenyl-methylene)]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-09); 2-{N'[4-Dimethylamino-phenyl-(phenyl-methylene)]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-10) and 2-[N'[4-Chloro-phenyl-(ethylidene)]-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-19) and the use of 2-(N'-Fluoren-9-ylidene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06); 4-(4-Ethoxy-phenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-oxo-butyric acid methyl ester (OF-13); 4-benzoyl-3-benzyloxy-2-(2-oxo-2H-1,4-benzoxazin-3-yl)pyrido[2,1-c][1,4]benzoxazin-1,5-dione (1F-18), 4-Chloro-4-(4-ethoxy-phenyl)-2-(fluoren-9-ylidene-hydrazino)-but-3-enoic acid methyl ester (3F-19); and 2-(N'-Fluoren-9-ylidene-hydrazino)-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1F-04) which are unique in humans as therapeutic means for the eradication of human myeloma.

2 Claims, 1 Drawing Sheet
1

TREATMENT OF MYELOMA

This invention claims the benefit of priority of U.S. Provisional Application Serial No. 60/296,823 filed Jun. 8, 2001.

FIELD OF THE INVENTION

This invention relates to compounds that are 4-oxo-2-butenoic acid and 3-hydrazino-2,4-dioxobutanoic acid derivatives and more particularly to the use of these derivatives for treatment of human myeloma.

BACKGROUND OF THE INVENTION

Cancer is a global killer of humans with breast cancer and colon cancer among the leaders with many other types killing modest amounts of humans yearly including human myeloma for which there appears to be no cure.

Myeloma is a cancer of plasma cells. Plasma cells are normally present in the bone marrow and are responsible for antibody production in response to infection and other immune triggering events. In myeloma, a single defective plasma cell (myeloma cell) gives rise to the much larger number of myeloma cells which build up in the bone marrow. This process disrupts the normal immune system as well as displacing the normal bone marrow cells. The myeloma cells divide and grow more frequently than normal plasma cells and develop cancersous properties which enable myeloma cells to invade and damage bone as well as travel through the blood stream to other bone marrow sites. Because there is no known cure, treatments need to be viewed in terms of how long they are able to control the disease or relieve symptoms and how they affect the patient’s quality of life.

There are over 13,500 new cases of myeloma in the U.S. each year representing 20% of breast cancers and 1% of all types of cancer. The incidence varies from country to country from a low 1/100,000 in China to approximately 4/100,000 in most Western industrialized countries.

The U.S. patent literature has many disclosures of oxo-butenoic (crotonic) compounds:

Pamukci (U.S. Pat. No. 6,232,312) describes crotonic acid derivatives (column 22, lines 43–58) for the treatment of colonic polyps;

Jones et al (U.S. Pat. No. 6,121,450) discloses crotonic acid derivatives (column 8, lines 34; column 78, line 24 and at example 34 as steroid modifiers in treating breast cancer (column 1, lines 55–58);

Kalden, et al (U.S. Pat. No. 5,334,612) discloses compounds said to be useful for treating AIDS including derivatives of carboxylic acid (column 9, lines 31) and pyrrolidine (column 7, line 24);

Brown (U.S. Pat. No. 6,066,670) describes an anti-viral admixture containing crotonic acid for treating tumors (see Abstract);

Horwell, et al (U.S. Pat. No. 5,580,896) discloses many 4-oxo-2-butenoic acid derivatives (column 13, lines 21–59; also in columns 15+, examples acid derivatives (column 13, lines 21–59; also in columns 15+, examples 25,26,32,34,40,43–46,77–79,97,99,103, 106), which are useful for inhibiting colorectal cancer, i.e., colon cancer (Abstract);

Giordani, et al (U.S. Pat. No. 5,580,890) discloses 4-oxo-2-butenoic acid derivatives said to be useful for treatment of AIDS (column 1, line 8 and column 2, line 61; and,

Yonemoto, et al (U.S. Pat. No. 6,083,985) recites a number of anti-tumor or anti-AIDS agents that include heterocylic butanoic acid derivatives.

The U.S. patent literature has many disclosures of butanoic acid derivatives including:

Niciolii, et al (U.S. Pat. No. 6,180,651) discloses many anti-inflammatory and analgesic compounds, including adenoercarcinoma (column 1, line 55), which includes heterocyclic alcohol-esters (column 11, lines 1–16) and butanoic acid derivatives (many Examples including 47 through 162);

Girard, et al (U.S. Pat. No. 5,308,852) discloses many compounds including butanoic acid derivatives (see Methods B and C of schemes II and III) which compounds which are said to inhibit tumor metastasis (column 7, line 56 and column 8, line 4);

Frechette (U.S. Pat. No. 5,696,117), Frechette(5,854,242) and Frechette (U.S. Pat. No. 5,707,990) describe 148 benzoxazine and pyrido-oxazine heterocyclic as antibacterial compounds;

Omedi-Sale (U.S. Pat. No. 3,862,954) shows tri-azole compounds for CNS use;

Hawkins (U.S. Pat. No. 5,274,002) describes many analogs of phenyl ethers of a substituted phenyl of the formula structure at column 1, lines 49–60 with 37 examples of specific compounds which compounds may be useful for tumor inhibition (column 22, line 64; and,

Boyd, et al (U.S. Pat. No. 6,080,790) also describes many tri-substituted phenyl derivatives according to the formula of the Abstract with 15 examples of specific compounds which may be useful for malignant skin diseases (column 5, line 46).

It appears from a review of the foregoing that the oxo-butenoic derivatives of interest are not disclosed and thus there is no report of their activity against human myeloma.

Consequently, there is a need for an anti-cancer drug for humans that mitigates the above mentioned disadvantages of current drug therapy and effectiveness against human myeloma.

SUMMARY OF THE INVENTION

The objective of the present invention is to provide a drug effective for treatment of human myeloma.

Preferred embodiments of the invention encompass novel compounds of derivatives of 4-oxo-2-butenoic acid comprising the property of anti-tumor activity against human myeloma and more specifically those novel compounds, alone or in admixture: OF-07; OF-09; OF-10; and OF-20 and the use of the compounds: OF-06, OF-07; OF-09; OF-10; OF-13; OF-20; IF-04; IF-18 and; 3F-19 in humans as therapeutic means for the eradication of the myeloma carcinogens from the human’s body.

Further objects and advantages of this invention will be apparent from the following detailed description of presently preferred embodiments which are illustrated structurally in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates structurally a chemical compound designated as OF-07.

FIG. 2 illustrates structurally a chemical compound designated as OF-09.
FIG. 3 illustrates structurally a chemical compound designated as OF-10.

FIG. 4 illustrates structurally a chemical compound designated as OF-20.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before explaining the disclosed embodiments of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

As earlier recited this application has been filed in order to both disclose: the novel derivatives of and the specified derivatives of 4-oxo-2-butenoic acid and the 3-hydrazino-2,4-dioxobutanoic acid that are useful for the in vitro treatment of human beings afflicted with myeloma.

To facilitate a full understanding of the invention: the compound designated as OF-07 4-(4-Chloro-phenyl)-2-(N'-fluoren-9-yldiene-hydrazino)-4-oxo-but-2-enoic acid methyl ester; the compound designated as OF-09 is 2-{N'-[(2-Bromo-phenyl)-phenyl-methylene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester; the compound designated as OF-10 is 2-{N'-[(4-Dimethylamino-phenyl)-phenyl-methylene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester; and, the compound designated as OF-20 is 2-{N'-[1-(4-Chloro-phenyl)-ethylidene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester.

As well as the compounds recited above, those found to have use for the treating of human myeloma also include: 2-(N'-Fluoren-9-yldiene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06); 4-(4-Ethoxy-phenyl)-2-(N'-fluoren-9-yldiene-hydrazino)-2-hydroxy-4-oxo-butyric acid methyl ester (OF-13); 4-Benzoyl-3-benzoyloxy-2-(2-oxo-2H-1,4-benoxazin-3-yl)pyridin(2,1-c)[1,4]benoxazin-1,5-dione (1F-18), 4-Chloro-4-(4-ethoxy-phenyl)-2-

(4-fluoren-9-yldiene-hydrazino)-but-3-enoic acid methyl ester (3F-19); and 2-(N'-Fluoren-9-yldiene-hydrazino)-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1F-04).

These compounds have very high activity against myeloma and a very low toxicity as Lethal Dose 50 (LD₅₀) in animals. The percent activity and animal toxicity for each compound is as follows:

- OF-06 (82% against human myeloma and LD₅₀>3000 mg/kg); OF-07 (74% against human myeloma and LD₅₀>750 mg/kg); OF-09 (86% against human myeloma and LD₅₀>1500 mg/kg); OF-10 (96% against human myeloma and LD₅₀>1500 mg/kg); OF-20 (84% against human myeloma and LD₅₀>250 mg/kg); 1F-04 (77% against human myeloma and LD₅₀>1000 mg/kg) and 1F-18 (100% against human myeloma, and LD₅₀>2000 mg/kg); and 3F-19 (100% against human myeloma and LD₅₀>200 mg/kg).

PREPARATION OF (OF-07)

EXAMPLE 1

The preparation of 4-(4-Chloro-phenyl)-2-(N'-fluoren-9-yldiene-hydrazino)-4-oxo-but-2-enoic acid methyl ester (OF-07). A solution of 5.0 g (0.0208 moles) 4-(4-chloro-phenyl)-2-hydroxy-4-oxo-but-2-enoic acid methyl ester (1) and 3.88 g (0.02 moles) of fluoren-9-ylidene-hydrazine (2) in 50 mL of absolute toluene was refluxed for 2 hr with a Dean-Stark trap (the end of the reaction was determined by TLC). The resulting mixture was cooled, precipitate was filtered and recrystallized from benzene-heptene mixture (1:5) to give 5.80 g (67% yield) of orange-brown crystals with mp 167–168° C. Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetonitrile, insoluble in water.

PREPARATION OF (OF-09)

EXAMPLE 2

The preparation of 2-{N'[2-Bromo-phenyl]-phenyl-methylene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-09). A solution of 5.0 g (0.0208 moles) 4-(4-Chloro-phenyl)-2-hydroxy-4-oxo-but-2-enoic acid methyl ester (1) and 3.88 g (0.02 moles) of fluoren-9-yldiene-hydrazine (2) in 50 mL of absolute toluene was refluxed for 2 hr with a Dean-Stark trap (the end of the reaction was determined by TLC). The resulting mixture was cooled, precipitate was filtered and recrystallized from benzene-heptene mixture (1:5) to give 5.80 g (67% yield) of orange-brown crystals with mp 167–168° C. Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetonitrile, insoluble in water.
methyl ester (OF-09). A solution of 6.0 g (0.0291 moles) of 2-hydroxy-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1) and 5.71 g (0.0291 moles) of [(2-Bromo-phenyl)-phenylmethylene]-hydrazine (2) in 80 mL of absolute toluene (1:1) was refluxed with a Dean-Stark trap (the end of the reaction was determined by TLC), cooled and the precipitate was filtered and recrystallized from benzene to give 10.24 g (76% yield) of colorless crystals with mp 119-120° C.

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetonitrile, insoluble in water.

EXAMPLE 3

The preparation of 2-{N'-[(4-Dimethylamino-phenyl)-phenylmethylene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-10). A solution of 1.0 g (0.0048 moles) of 2-hydroxy-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1) and 1.16 g (0.0048 moles) of [3-(Hydrazono-phenyl-methyl)-phenyl]-dimethyl-amine (2) in 30 mL of absolute benzene was refluxed with a Dean-Stark trap (the end of the reaction was determined by TLC), cooled and the precipitate was filtered and recrystallized from benzene-hexane mixture (4:1) to give 1.18 g (61% yield) of yellow crystals with mp 159-160° C.

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetonitrile, chloroform, insoluble in water.

EXAMPLE 4

The preparation of 2-{N'-[1-(4-Chloro-phenyl)-ethylidene]-hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-20). A solution of 6.0 g (0.0291 moles) of methyl phenyl-2-hydroxy-4-oxo-4-phenyl-2-butenoate (1) and 4.91 g (0.0291 moles) of [1-(4-Chloro-phenyl)-
Preparation of (IF-06).

EXAMPLE 5

The preparation of 2-(N'-Fluoren-9-ylidene-hydrazino)-5, 5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06). A solution of 5.0 g (0.02 moles) of 2-hydroxy-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-13) was refluxed for 15 min with a Dean-Stark trap (end of the reaction was determined by TLC) and cooled. The resulting precipitate was filtered and recrystallized from benzene-hexane mixture (5:1) to give 4.36 g (42% yield) of yellow crystals with mp of 116–117°C (decomp).

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetoniitrile, chloroform, insoluble in water.

Preparation of (IF-18).

EXAMPLE 7

The preparation of 4-benzoyl-3-benzoyloxy-2-(2-oxo-2H-1,4-benzoxazin-3-yl)pyrido[2,1-c][1,4]benzazin-1,5-dione (IF-18).

A solution of 1.5 g (0.047 moles) of compound 4* in 10 mL of Dowtherm A** was kept at constant temperature at 183–185°C for 30 min. The solution was cooled and the resulting precipitate of IF-18 was filtered and recrystallized from acetoniitrile to give 0.79 g (54%) of orange crystals with mp of 259–261°C (decomp).

Preparation of (3F-19).

EXAMPLE 8

The preparation of 4-Chloro-4-(4-ethoxy-phenyl)-2-(fluoreno-9-ylidene-hydrazone)-but-3-enoic acid methyl ester (3F-19). To the solution of 10 g (0.0026 moles) of 4-(4-Ethoxy-phenyl)-2-(N'-Fluoren-9-ylidene-hydrazone)-4-oxo-but-3-enoic acid methyl ester (1) (synthesis was previously published by Miles et al., UCF-311A) in 5 mL of anhydrous benzene 0.3935 g (0.0031 moles) oxalyl chloride was added. The reaction mixture was refluxed for 1 hour 40 min, cooled, the precipitate was filtered and recrystallized from absolute benzene to give 0.62 g (54%) of yellow crystals, mp 163–163°C (decomp).

Preparation of (IF-04).

EXAMPLE 9

The preparation of 2-(N'-Fluoren-9-ylidene-hydrazone)-4-oxo-4-phenyl-but-2-enoic acid methyl ester (IF-04). A solution of 5.0 g (0.0242 moles) of 4-phenyl-2-hydroxy-4-oxo-but-2-enoic acid methyl ester (1) and 4.70 g (0.0242 moles) of fluoreno-9-ylidene-hydrazone (2) in 30 mL of toluene was refluxed for 2.5 hr with a Dean-Stark trap (the end of the reaction was determined by TLC). The resulting mixture was cooled, precipitate was filtered and recrystallized from hexane to give 5.83 g (63% yield) of orange-brown crystals with mp 133–134°C.

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetoniitrile, insoluble in water.

The synthesis of OF-06 is an example of well known amination/dehydration reactions.

Preparation of (OF-13).

EXAMPLE 6

The preparation of 4-(4-Ethoxyphenyl)-2-(N'-Fluoren-9-ylidene-hydrazone)-2-hydroxy-4-oxobutyric acid methyl ester (OF-13). A solution of 5.0 g (0.02 moles) of methyl 4-p-ethoxyphenyl-2-hydroxy-4-oxobutenoate (1) and 3.88 g (0.02 moles) of fluoreno-9-ylidene-hydrazone (2) in 80 mL of absolute benzene and absolute toluene (1:1) was refluxed for 3 hr 30 min with a Dean-Stark trap (control for the end of the reaction was determined by TLC). The resulting mixture was cooled and the precipitate was filtered and recrystallized from benzene-diethyl ether-hexane mixture (1:3:2 to give 2.65 g (53% yield) of colorless crystals with mp 114–116°C.

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetoniitrile, insoluble in water.

The synthesis of OF-06 is an example of well known amination/dehydration reactions.

A synthesis of compound IF-4 has been published earlier in: Andrejchikov, Yuri S.; Maslivets, Andrej N.; Krasnykh, Olga P.; Aleksandrova, Galina A.; Vozhalkova, Alla V. Russ. (1993), CODEN: RUXEX7 RU 2003655 C1 19931130 Application: RU 91-5013322 19910704
TABLE 1

Compounds claimed for use in treatment of myeloma only.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Activity (ADCC CCL155)</th>
<th>LD₅₀ mg/kg</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF-06</td>
<td>2-(N'-Fluoren-9-ylidene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester</td>
<td>82%</td>
<td>>3000</td>
<td>Miles et. al., UCF-311A</td>
</tr>
<tr>
<td>OF-13</td>
<td>4-(4-Ethoxy-phenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-exo-butyric acid methyl ester</td>
<td>99%</td>
<td>>1500</td>
<td>Miles et. al., UCF-303A</td>
</tr>
<tr>
<td>IF-18</td>
<td>Benzoic acid 1-benzoyl-4,10-dioxo-3-(2-oxo-2H-benzo[1,4]oxazin-3-yl)-4,4b,8a,10-tetrahydro-9-oxo-4a-aza-phenanthren-2-yl ester</td>
<td>100%</td>
<td>>2000</td>
<td>Miles et. al., UCF-303B</td>
</tr>
</tbody>
</table>
CYTOTOXICITY ASSAY

The anticancer activity against human myeloma of the novel compounds (as earlier reported) was realized by the following procedure which determines the inhibitory effect of test samples on the growth of human myeloma cells.

The anti-carcinogenic activity against human cancer of the novel compounds (as earlier reported) was realized by the following procedure which determines the inhibitory effect of test samples on the growth of human breast cancer cells.

(AFCC CCL155) The CCL155 cells are grown in RPMI 1640 media+20% Fetal bovine serum+4.5 g/L glucose+10 mM HEPES+1.0 mM sodium pyruvate+1% Antibiotic/ Antimycotic for approximately 48 hours at 37° C./5% CO₂ in the presence of the test compound.

Growth/Non-Growth of the cells (e.g., cell density) is determined using Promega’s MTS/PMS assay system. MTS (3-(4,5-dimethylthiazol-2-yl) -5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium, inner salt) is an aqueous compound that is reduced to soluble formazan by the presence of NADH formed by dehydrogenases present within the CCL155 cells. The absorbance of the formazan can be measured at 490 nm and is directly proportional to the number of living cells present in the culture. PMS (Phenazine Methosulfate) is added an electron coupling reagent and greatly increases the rate of reduction.

To facilitate a full understanding of the procedure the following definitions are offered:

Test samples—wells containing test sample and Diluted CCL155 cells
Test values—absorbance of test wells
Blank wells—wells containing test sample and CCL155 media (C155-01S); used to obtain background absorbance due to test sample
Blank values—absorbance of blank wells
Negative Control—maximal cell growth; results of test samples will be expressed as a percent of the Negative Control
Positive Control—known inhibitor of CCL155 cells; used to validate assay system
Matrix—solvent that the samples are prepared/diluted in
Assay samples of similar origin and matrix (e.g., methanol extraction, methylene chloride extraction, water soluble samples, etc.) together on the same plate in order to reduce the number of steps performed per plate.

In order to establish the accuracy of this assay a Positive Control consisting of 50 µM Methotrexate should show less than 75% of the net absorbance of the Negative Control is utilized.

ANIMAL TOXICITY BIOASSAY

Acute toxicity was studied on white mice of both sexes with weight ranging between 18-26 grams under intraperitoneal injection of 2% solution of tested compound in starch (the compound was dissolved in starch slime and injected) on the basis of 0.1 ml of solution per 10 g of the animal weight. Each dose was tested on the group of 6 animals that were observed during 14 days period. (This method was approved by the Pharmacology committee of Russian Ministry of Health and has been widely used since 1968.) Averaged lethal dose (LD₅₀) of the compound was computed using results of experiments on 5-7 groups of animals using method of Litchfield and Wilkinson. (Belenkii M. L. “Elements of quantitative determination of the pharmacological effect,” Leningrad, 1963, 71 page).

USE OF THE INVENTION FOR TREATMENT OF HUMAN MYELOMA

The compounds of the invention facilitate disclosure of compounds having the property of anti-tumor activity against human myeloma including: 4-(4-Chloro-phenyl)-2-(N-fluoren-9-ylidene-hydrazino)-4-oxo-but-2-enoic acid methyl ester (OF-07); 2-[N-(2-Bromo-phenyl)-phenylmethylene]-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-09); 2-[N-(4-Dimethylamino-phenyl)-phenylmethylene]-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-10) and 2-[N-[4-Chloro-phenyl]-ethylidene]-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-20); 2-(N-Fluoren-9-ylidene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06); 4-(4-Ethoxy-phenyl)-2-(N-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-oxo-butyric acid methyl ester (OF-13); 4-benzoyl-3-benzoyloxy-2-(2-oxo-2H-1,4-benzoxazin-3-yl) pyrrole[2,1-c][1,4]benzoxazin-1,5-dione (1F-18); 4-Chloro-4-(4-ethoxy-phenyl)-2-(fluoren-9-ylidene-hydrazono)-but-3-enoic acid methyl ester (3F-19); and 2-(N-Fluoren-9-ylidene-hydrazino)-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1F-04) which are unique in humans as therapeutic means for the eradication human myeloma can be used in a pharmaceutical composition comprising a non-toxic effective amount of the referenced compound or a tautomeric form thereof or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, and a pharmaceutically acceptable carrier thereof.

For administration to man in the curative or prophylactic treatment of human myeloma in vitro dosages of compounds of the invention will generally be in the range of from 5 to 500 mg daily for an average adult patient (70 kg). Thus for a typical adult patient, individual tablets or capsules contain from 2–500 mg of active compound, in a suitable pharmaceutically acceptable vehicle or carrier, for administration in single or multiple doses, once or several times per day. Dosages for intravenous, buccal or sublingual administration will typically be within the range of from 5–1000 mg per single dose as required. In practice the physician will determine the actual dosing regimen which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case but there can be individual instances in which higher or lower dosage ranges may be merited, and such are within the scope of this invention.
The maximum human non-toxic one time administration
dose for the compound(s) of the invention appears to be
from 100 to 1000 mg.

For human use, the compounds of the invention can be
administered alone or jointly, but will generally be admin-
istered in admixture with a pharmaceutical carrier selected
with regard to the intended route of administration and
standard pharmaceutical practice. For example, they may be
administered orally, buccally or sublingually, in the form of
tabs containing excipients such as starch or lactose, or in
capsules or oves either alone or in admixture with
excipients, or in the form of elixirs or suspensions contain-
ing flavouring or colouring agents. The compounds may also
be injected parenterally, for example intravenously,
intramuscularly, subcutaneously or intracoronarily. For
parenteral administration, they are used in the form of
a sterile aqueous solution which may contain other
substances, for example enough salts or glucose to make the
solution isotonic with blood.

The invention thus provides a method for the treatment of
myeloma in a human mammal which comprises adminis-
tering an effective, non-toxic, amount of a compound
according to the invention or a tautomeric form thereof
and/or a pharmaceutically acceptable salt thereof and/or a
pharmaceutically acceptable solvate thereof, to a myeloma
invaded human mammal in need thereof.

ADVANTAGES OF THE INVENTION

Melphalan/Prednisone combination still remains the first
line treatment for myeloma. There is no survival advantage
when MP (Melphalan-Prednisone) is compared with other
various intravenous combination chemotherapeutic agents,
e.g. VAD (Vincristine, Adriamycin, Decadron). Toxicity for
Melphalan: LD50 in mice 23 mg/kg, it should be compared
with the toxicity in the range 1000–1500 mg/kg for the
claimed compounds. Claimed compounds have toxicity at
least 50 times lower.

The oral Melphalan-Prednisone regime has an associated
risk of secondary leukemia and care must be taken and
potential side effects explained to the patients (especially in
the younger age group).

Claimed compounds create a basis for further develop-
ment of the anti-myeloma drugs with lower toxicity and less
side effects.

While the invention has been described, disclosed, illust-
trated and shown in various terms of certain embodiments or
modifications which it has presumed in practice, the scope
of the invention is not intended to be, nor should it be
deemed to be, limited thereby and such other modifications
or embodiments as may be suggested by the teachings herein
are particularly reserved especially as they fall within the
breadth and scope of the claims here appended.

We claim:
1. A derivative of a 4-oxo-2-butoic acid having the
property of anti-myeloma activity, wherein said derivative is
selected from the group consisting of:
4-(4-Chloro-phenyl)-2-(N'-fluoren-9-yldene-hydrazino)-
4-oxo-but-2-enoic acid methyl ester;
2-[N'-{(2-Bromo-phenyl)-phenyl-methylene}-
hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl
ester;
2-[N'{(2-Dimethylamino-phenyl)-phenyl-methylene}-
hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl
ester;
2-[N'[(4-Chloro-phenyl)-ethylidene]-hydrazino]-4-
oxo-4-phenyl-but-2-enoic acid methyl ester.
2. A method of treating myeloma in a human being in need
of such treatment, comprising administering to said human
being one or more derivatives of 4-oxo-2-butoic acid
according to claim 1.

* * * * *