Water Laser Plasma X-Ray Point Source and Apparatus

Martin Richardson
University of Central Florida

Kai Gabel
University of Central Florida

Feng Jin
University of Central Florida

Masataka Kado
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

https://stars.library.ucf.edu/patents/646
A high repetition-rate laser plasma target source system and lithography system is disclosed. The target source system comprises a preferred embodiment of a liquid tank source and freezer which freezes microscopic particles into crystal shapes which are projected by a nozzle jet from a high repetition rate liquid-droplet injector into the path of a flashing laser beam, which results in producing soft x-rays of approximately 13 nm. Uncollected and unshot target crystals are collected and reliquified by a heater source in order to be recycled back to the liquid tank source. Optionally an auxiliary source and detector system can be used to allow for instantaneous triggering of the laser beam. The target source system can be incorporated into well known EUV lithography systems for the production of wafer chips.
Fig. 3
Fig. 4
Fig. 5

- Compact High Repetition Rate Laser 802
- Collector Mirror Housing 810
- Target System 820
- Pumping System 815
- Small Laser-Plasma Vessel (~25 cms) 817
- EUV Exposure Chamber 840
WATER LASER PLASMA X-RAY POINT SOURCE AND APPARATUS

This invention relates to lasers, and in particular to an ice water laser plasma soft-x-ray or EUV projection lithography.

BACKGROUND AND PRIOR ART

For soft x-ray or EUV projection lithography there is a need for a high repetition-rate laser plasma source that can radiate at a specific wavelength of approximately 13 nm in the EUV part of the spectrum and capable of operating at approximately 1200 Hz. This type of source should comprise a compact high repetition-rate laser and a renewable target system capable of operating for prolonged periods of time. For a production line facility, there would need to be uninterrupted system operation for periods of approximately 3 months. That is, uninterrupted operation for some 10^8 shots. To make the irradiation system cost effective, current system cost scenarios indicate the unit shot material cost must be in the vicinity of 10^{-6} per shot. Target sources for laser plasma soft-x-ray projection lithography have encompassed several systems such as tape driven targets and solid targets and frozen gases which all have inherent problems.

U.S. Pat. No. 5,151,928 to Hirose discloses a system which uses film type tapes as a target source. However, tape driven targets are limited mass targets that are difficult to construct, prone to breakage and produce low velocity debris that can damage the other components such as the mirrors in the laser output system. Furthermore, using and replacing the tapes is generally cumbersome and costly.

Solid targets also have many problems. Known solid target sources include rotating solid wheels of Sn or tin, or copper or gold. These sources inherently can produce various ballistic particles types that can emanate from the plasma in various directions. When using tin as the target, the interaction of the laser light with the plasma, causes highly stripped, energetic ions to be formed by collision ionization. These ions can stream ballistically from the plasma region with velocities of between 10^6 and 10^7 centimeters per second. Furthermore, after the interaction of the plasma and the tin target, hot clumps or clusters of target material are boiled off of the target. This material has been determined to be another form of debris particles that can have velocities in the range of 200 to 2500 centimeters per second. The sizes of these particles range from less than 1 to greater than 200 micrometers. These larger particles can cause cold particle cratering on many of the components used to construct visible and x-ray optical components such as the mirrors and are capable of puncturing thin-film x-ray filters. All of these debris size particles can degrade the surface quality or the operating performance by overcoating the optical elements in the laser output system. Likewise, other solid targets besides tin can produce similar debris type particles.

Frozen gasses such as Krypton, Xenon, and Argon have also been tried as laser source targets, and also have problems. Besides the exorbitant cost required for containment costs, these gasses are also quite expensive and would be difficult to have a continuous high repetition rate that would cost significantly greater than 10^{-6}. Moreover, all previous embodiments of frozen gas targets have envisaged massive (continuous) large-mass pellets targets which produce particulate debris.

SUMMARY OF THE INVENTION

The first objective of the present invention is to provide an inexpensive, continuously sequencing target system as a laser plasma x-ray source.

The second objective of this invention is to provide a target system that produces nondamaging debris for a laser plasma x-ray source.

The third objective of this invention is to provide a laser plasma target source capable of producing x-rays in the region of 13 nm within a narrow bandwidth.

The fourth objective of this invention is to provide a laser plasma target source that can operate at a frequency of approximately 1000 Hz to 100 kHz.

The fifth objective of this invention is to provide a laser plasma target source that can operate continuously.

The sixth objective of this invention is to generate a narrow band EUV radiation source.

In a preferred embodiment, the target source system comprises a liquid tank source and freezer means which freezes microscopic particles into crystal shaped droplets which are projected by a nozzle jet on a high repetition rate liquid-droplet injector into the path of a flashing laser beam, which results in producing soft x-rays of approximately 13 nm. Uncollected and unshot target crystals are collected and reliquified by a heater source in order to be recycled back to the liquid tank source. Optionally an auxiliary source and detector system can be used to allow for instantaneous triggering of the laser beam.

Further objects and advantages of this invention will be apparent from the following detailed description of a presently preferred embodiment which is illustrated schematically in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an overview of an EUV Lithography system that uses the water laser x-ray plasma source.

FIG. 2 shows a preferred embodiment of the apparatus used as the laser target source in FIG. 1.

FIG. 3 shows comparative x-ray spectroscopic data from laser plasma targets.

FIG. 4 illustrates a modification for the embodiment of FIG. 2.

FIG. 5 shows exterior containers used for housing the components of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

FIG. 1 illustrates an overview of an EUV Lithography system 100 that uses the water laser x-ray plasma source 300 which will be discussed later in reference to FIG. 2. The components of the EUV Lithography system 100 will now be discussed. The laser beam source 101 used to irradiate the EUV target can be a high repetition rate Nd:Yag or KrF eximer laser. 200 indicates the vacuum enclosure for the laser plasma target. Element 300 refers to the apparatus that continuously creates replenishable target material 320 for each laser shot, such as ice droplets. Element 420 is a first
EUV collector mirror which can be spherical in overall shape or have a spherical surface. The surface of this mirror can be coated with special multilayer structures to provide high reflectivity at near-normal incidence at selected EUV wavelengths such as 7 nm, 13 nm, and so on. Element 450 is a second multilayered coated EUV collector mirror. Although not shown, alternatively a third or more multilayered coated EUV collector mirrors can be incorporated in the FIG. 1 system. 500 refers to a specially fabricated mask structure having reflecting surfaces comprising a structure pattern to be imaged onto the wafer. 700. Elements 610, 620, 630 and 640 refer to various other spherical reflective components well known to be used in an optical system of high precision that are capable of imaging reflected light passing through collector tube 350. Unused targets will liquefy on contact with the collector 330. Enhanced liquefaction can be introduced by heating the collector with an optional heating coil element 340. A pump within line 350 will suck the unused liquid to reservoir tank 304 or alternatively to a waste site.

The operation of apparatus 300 will now be discussed in reference to FIG. 2. Source tank 304 creates steam that feeds through line 305 and becomes frozen by freezer means 308. Alternatively, the vacuum space within chamber 302 can inherently cause the steam to freeze into crystal forms such as those having a snow flake shape. Nozzle jet 310 projects microparticle ice crystals 320 at a rate of up to 100 kHz into the path of flashing laser beam 102 which flashpumps a rate of approximately 200 Hz to 100,000 Hz. Collector system 330 which is in the path of crystals 320 collects the unused and unshot target crystals. Heater 340 reliquifies the crystals in order that the crystals can be recycled and pumped through line 350 back to tank source 304.

FIG. 3 shows comparative x-ray spectroscopic data from laser plasma targets. Two spectra are shown. One is of the typical radiance of an ice target laser plasma compared to the emission of conventional target plasma. Superimposed on the spectra of the conventional target (from a Sn target) is an example of the reflectivity of typical EUV mirrors as a function of EUV radiation wavelength. Line “a” shows a typical radiation pattern along 0 to 13.4 nm that comes from materials such as Sn, An, Cu, W, Xe, or Kr as laser target sources. Line “b” shows the narrow line emission emanating at a wavelength of 13 nm from using an ice target such as the crystal particle droplets 320 shown in FIG. 2. Line c shows the typical reflectivity function of a Mo/Si multilayer EUV mirror operating at 13 nm. As mentioned in the background section, for soft x-ray or EUV projection lithography there is a need for a high repetition-rate laser plasma source that can radiate at a specific wavelength of approximately 13 nm in the EUV part of the spectrum and capable of operating at approximately 1200 Hz. Thus, using ice crystals as a target source fulfills these needs.

FIG. 4 illustrates an auxiliary laser beam particle detection system 510, 511, 515, 516, 520, 521 for use with the embodiment 300 of FIG. 2. Element 102 refers to flashing focussed laser beam. The beam 102 is focussed to intensities on the ice target of 10¹⁴ to 10²⁴ w/cm², sufficient to create a plasma having a temperature high enough to ensure the copious production of Li-like oxygen ions. Elements 321 through 324 constitute the path of ice crystal droplets emanating from nozzle jet 310. Elements 515 and 516 refers to an electrostatic guidance system which causes the ice crystals to have an electrostatic charge. This electrostatic guidance system functions. The first function is an electrostatic charging by a device generating an charge or by a device that generates a miniature electron beam that causes the droplet to be charged. The second function of the system 515, 516 is as an array of charged electrodes which provide a variable electric field that can be manipulated to guide the trajectory of the charged droplets 322 to pass...
through the focus volume 323 of the high power laser beam 102. Electrostatic guidance systems of this type or systems that have these features are commonly incorporated into ink jet systems. Unshot and unused target droplets such as 324 are collected at 330. Element 420 in FIG. 4 is a high NA collector mirror (shown also in FIG. 1) made of high reflective multilayer EUV materials (such as Mo/Si) or some other form of efficient EUV light collector. Mirror 420 collects radiation from the source at 323 and passes the radiation via a second mirror 450 onto the reflection mask 500 as shown in FIG. 1. Items 5 to 10 and 520 comprise one embodiment of a particle detection system which verifies that the injected frozen droplet is in the focus of the laser beam, and commands the laser to fire. This detection system utilizes a continuous beam 511 from a low power laser 510 that is focussed through the focus volume of the high power pulsed laser beam 102. A photo detector 520 detects this continuous signal and the moment in time when a droplet 323 passing through the high power laser beam focuses and obscures the continuous laser beam 511. In operation, the detection of the electrostatic charged ice droplets 323 by particle flight detector 520 will trigger the instantaneous firing of laser 101 to flash beam 102 at ice crystal target 323 which in turn produces X-rays 400. The remaining components work in the same manner and operation as FIG. 2.

FIG. 5 shows exterior system 800 used for housing the components of FIG. 1. The compact high repetition rate laser source 101 can be housed within box 802. The exterior dimensions of the entire system 800 can fit into a space of approximately 1m x 0.5 m x 0.5 m. The total weight of all the components 800 is approximately 50 kgsms excluding electric power supplies and cooling systems. The collector mirrors 420 and 450 depicted in FIG. 1 can be housed in collector mirror housing 810 which can be readily removable from the rest of the system for replacement of parts and repairs. Referring to FIG. 5, pumping system 815 can be incorporated into the system 800 to ensure low pressure operation of approximately 1 x 10⁻³ torr or less within the chamber 817 as shown in FIG. 3. Chamber 817 connects all the other components together which allows EUV radiation to be generated. Target system container 820 can house the individual components shown in FIG. 2. EUV exposure vacuum chamber 840 in FIG. 5 can contain reflection mask 500 and collector/imaging optics 600 and wafer 700 of FIG. 1.

While the invention has been described as an x-ray source for x-ray lithography, the invention is not limited to this use. The invention can be used as an x-ray source for x-ray microscopy, x-ray imaging systems, x-ray spectroscopy, x-ray fluorescence absorption spectroscopy, x-ray diffraction, x-ray protein diffraction studies, and x-ray interferometry.

While the preferred embodiment refers to collecting unshot and unused crystal targets for recycling, optionally the unused droplet targets can be vaporized additionally by laser beams, microwaves or infrared radiation. Alternatively, the unshot droplets can be captured and vaporized by a heated surface.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

We claim:
1. A method of producing x-rays from a target source comprising the steps of:
 continuously feeding frozen water into a target source;
 irradiating the target source with a laser; and
 producing x-rays therefrom.
2. The method of producing x-rays of claim 1, further comprising the steps of: removing residual water particles after the step of irradiating.
3. The method of producing x-rays of claim 2, wherein the step of removing further includes: vaporizing the residual water particles.
4. The method of producing x-rays of claim 2, wherein the step of removing further includes: heating the residual water particles.
5. The method of producing x-rays of claim 2, wherein the step of removing further includes: collecting the residual water particles with a vacuum.
6. The method of producing x-rays of claim 1, wherein the step of feeding further includes: freezing the water particles into ice crystals.
7. The method of producing x-rays of claim 6, wherein the step of feeding further includes: projecting the frozen particles through a high repetition rate liquid-droplet injector.
8. The method of producing x-rays of claim 6, wherein the step of producing further includes: producing x-rays of approximately 13 nm.
9. The method of producing x-rays of claim 6, wherein the step of feeding the target source further includes:
 continuously feeding the target source at a frequency of approximately 1000 Hz.
10. The method of producing x-rays of claim 6, wherein the step of feeding the target source further includes:
 continuously feeding the target source in a noninterfering shot sequence approaching 2 x 10⁷ targets.
11. The method of producing x-rays of claim 6, wherein the step of feeding the target source further includes:
 continuously feeding the target source in a noninterfering shot sequence exceeding 2 x 10⁷ targets.
12. A method of producing 13 nm x-rays comprising the steps of:
 forming ice crystals; and
 irradiating the frozen ice crystals with a light source.
13. The method of producing 13 nm x-rays of claim 12, wherein the light source is a laser.
14. An apparatus for producing x-rays comprising:
 a supply of water;
 means for freezing the water into crystals;
 means for feeding the crystals into a target path;
 means for irradiating a laser beam into the target path creating x-rays; and
 means for collecting residual crystals.
15. The apparatus for producing x-rays of claim 14, wherein the means for feeding the crystals further includes:
 a high repetition rate liquid-droplet injector.
16. The apparatus for producing x-rays of claim 14, wherein the x-rays have an approximate wavelength of 13 nm.

* * * * *