Ablative Material Removal with a preset Removal Rate or Volume or Depth

5-6-2008

Peter Delfyett
Richard Stoltz

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Delfyett, Peter and Stoltz, Richard, "Ablative Material Removal with a preset Removal Rate or Volume or Depth" (2008). UCF Patents. 661.
https://stars.library.ucf.edu/patents/661

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
ABLATIVE MATERIAL REMOVAL WITH A PRESET REMOVAL RATE OR VOLUME OR DEPTH

Inventors: Richard Stoltz, Plano, TX (US); Peter J. Delfyett, Oviedo, FL (US)

Assignee: Raydiance, Inc., Orlando, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 628 days.

Prior Publication Data

Field of Classification Search 606/3–12; 606/3–12; 607/88, 89; 128/898; 216/65, 66, 87; 359/333, 359/342–349

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
3,808,549 A 4/1974 Maurea
4,824,598 A 4/1989 Stokowski
4,829,529 A 5/1989 Kafka
4,913,520 A 4/1990 Kafka
5,162,643 A 11/1992 Currie
5,166,818 A 11/1992 Chase et al.
5,313,262 A 5/1994 Leonard
5,400,335 A* 3/1995 Galvanauskas ...
5,414,725 A 5/1995 Ferrmann et al.
5,430,572 A 7/1995 DiGiovanni et al.
5,440,573 A 8/1995 Ferrmann
5,450,427 A 9/1995 Ferrmann et al.

FOREIGN PATENT DOCUMENTS
JP 2003181661 A 7/2003

OTHER PUBLICATIONS

ABSTRACT

The present invention includes a method of surgical material removal from a body by optical-ablation with controlled pulse energy from an amplifier including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; controlling the energy of a pulse and the pulse repetition rate and by knowing the type of material being removed, the system can control the removal to predetermined rate and, thus knowing the removal rate, it can know how long to run to stop at the predetermined volume.

16 Claims, No Drawings
U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,774,869 B2</td>
<td>8/2004</td>
<td>Biocca et al.</td>
</tr>
<tr>
<td>6,782,207 B1</td>
<td>8/2004</td>
<td>Efimov</td>
</tr>
<tr>
<td>6,787,734 B2</td>
<td>9/2004</td>
<td>Liu</td>
</tr>
<tr>
<td>6,801,551 B1*</td>
<td>10/2004</td>
<td>Delfyett et al.</td>
</tr>
<tr>
<td>6,804,574 B2</td>
<td>10/2004</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>6,807,375 B2</td>
<td>10/2004</td>
<td>Dogaru</td>
</tr>
<tr>
<td>6,815,638 B2</td>
<td>11/2004</td>
<td>Liu</td>
</tr>
<tr>
<td>6,897,405 B2</td>
<td>5/2005</td>
<td>Cheng et al.</td>
</tr>
<tr>
<td>6,928,490 B1</td>
<td>8/2005</td>
<td>Buchholz et al.</td>
</tr>
<tr>
<td>7,022,119 B2</td>
<td>4/2006</td>
<td>Höhla</td>
</tr>
<tr>
<td>7,143,769 B2*</td>
<td>12/2006</td>
<td>Stoltz et al.</td>
</tr>
<tr>
<td>2005/0035907 A1</td>
<td>2/2005</td>
<td>Stoltz</td>
</tr>
</tbody>
</table>

FOREIGN PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Application Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005/018060 A2</td>
<td>2/2005</td>
<td>Stoltz</td>
</tr>
<tr>
<td>WO 2005/018061 A2</td>
<td>2/2005</td>
<td>Stoltz</td>
</tr>
<tr>
<td>WO 2005/018062 A2</td>
<td>2/2005</td>
<td>Stoltz</td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

* cited by examiner
ABLATIVE MATERIAL REMOVAL WITH A PRESET REMOVAL RATE OR VOLUME OR DEPTH

CROSS-REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of light amplification and, more particularly to the ablative material removal using a preset removal rate or volume or depth.

BACKGROUND OF THE INVENTION

Ablative material removal is especially useful for medical purposes, either in-vivo or on the outside surface (e.g., skin or tooth), as it is essentially non-thermal and generally painless. Ablative removal of material is generally done with a short optical pulse that is stretched, amplified and then compressed. A number of types of laser amplifiers have been used for the amplification.

Laser machining can remove ablatively material by dissociating the surface atoms and melting the material. Laser ablation is done efficiently with a beam of short pulses (generally a pulse-duration of three picoseconds or less). Techniques for generating these ultra-short pulses (USP) are described, e.g., in a book entitled “Femtosecond Laser Pulses” (C. Rulliere, editor), published 1998, Springer-Verlag Berlin Heidelberg New York. Generally large systems, such as Ti:Sapphire, are used for generating ultra-short pulses (USP).

USP phenomenon was first observed in the 1970’s, when it was discovered that mode-locking a broad-spectrum laser could produce ultra-short pulses. The minimum pulse duration attainable is limited by the bandwidth of the gain medium, which is inversely proportional to this minimal or Fourier-transform-limited pulse duration. Mode-locked pulses are typically very short and will spread (i.e., undergo temporal dispersion) as they traverse any medium. Subsequent pulse-compression techniques are often used to obtain USP’s. Pulse dispersion can occur within the laser cavity so that compression techniques are sometimes added in cavities. When high-power pulses are desired, they are intentionally lengthened before amplification to avoid internal component optical damage. This is referred to as “Chirped Pulse Amplification” (CPA). The pulse is subsequently compressed to obtain a high peak power (pulse-energy amplification and pulse-duration compression).

SUMMARY OF THE INVENTION

Ablative material removal with a short optical pulse is essentially useful for medical purposes and can be done either in-vivo or on the body surface (e.g., skin or tooth), as it is essentially non-thermal and generally painless. One embodiment, the removal volume or depth for ablative material removal is preset. In one embodiment, the pulse energy density applied to the body is between 2.5 and 3.6 times ablation-threshold of the body portion being ablated, whereby a relatively constant removal per pulse is accomplished. In one embodiment, the pulse energy density is controlled by controlling pulse energy, whereby it is much more convenient than changing the ablation spot size. In one embodiment, material removal at a predetermined rate and/or stop at a predetermined volume or depth is accomplished by controlling the energy of a pulse and the pulse repetition rate for the type of material being removed.

In one embodiment, the total volume to be removed is known. In other embodiments a certain volume is removed and inspect before proceeding. In either case it is convenient to have a system that removes a predetermined volume. In one embodiment, the control of pulse energy allows a reasonably accurate volume removal per pulse, other embodiment may combine this with a controlled repetition rate allowing a reasonably accurate volume removal per unit of time. One embodiment, the invention controls the removal of material to predetermined rate through controlling the energy of a pulse and the pulse repetition rate, e.g., as described above, and by knowing the type of material being removed, thus, knowing the removal rate, it can know how long to run to stop at the predetermined volume.

Materials are most efficiently removed at pulse energy densities about three times the materials ablation threshold, and as materials ablate at different thresholds, efficient operation requires control of the pulse energy density. Typically in surgery, the ablation has a threshold of less than 1 Joule per square centimeter, but occasionally surgical removal, especially of foreign material, may require dealing with an ablation threshold of up to about 2 Joules per square centimeter. In one embodiment, the pulse energy densities are controlled at three times the materials ablation threshold. Control of pulse energy also allows reasonably accurate volume removal per pulse, which combined with a controlled repetition rate, allows reasonably accurate volume removal per unit of time. Pulse energy density can be controlled through controlling the pulse energy. In one embodiment, controlling pulse repetition rate of a fiber amplifiers operating at high repetition rates can be controlled by optical pumping power or pulse energy. In one embodiment, the invention is fine-tuning by controlling optical pumping power.

In one embodiment, the ablation rate is controllable independent of pulse energy. The use of two or more amplifier in parallel a train mode (pulses from one amplifier being delayed to arrive one or more nanoseconds after those from another amplifier) allows step-wise control of ablation rate independent of pulse energy density. In one embodiment, step-wise control of ablation rate independent of pulse energy density is accomplished using two or more amplifier in parallel a train mode. At lower desired ablation rates, one or more amplifiers can be shut down. The use of parallel amplifiers in a train-mode in either type of system provides faster ablation, while providing greater cooling surface area to minimize thermal problems. In one embodiment, one or more of the parallel amplifiers can be shut down.

One embodiment of the present invention is a method of the material removal from a body by optical-ablation with controlled pulse energy from a fiber amplifier, including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; utilizing an optical oscillator in the generation of a series of wavelength-swept-with-time pulses; primarily controlling pulse energy based on the ablation-threshold-pulse-energy-for-material-being-ablated signal by either selecting pulses from the oscillator generated series of wavelength-swept-with-time pulses, wherein the fraction of pulses selected can be controllably varied to

One embodiment of the present invention is a method of the material removal from a body by optical-ablation with controlled pulse energy from a fiber amplifier, including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; utilizing an optical oscillator in the generation of a series of wavelength-swept-with-time pulses; primarily controlling pulse energy based on the ablation-threshold-pulse-energy-for-material-being-ablated signal by either selecting pulses from the oscillator generated series of wavelength-swept-with-time pulses, wherein the fraction of pulses selected can be controllably varied to
give a selected pulse repetition rate that is a fraction of the
oscillator repetition rate, or passing electrical current through
at least one pump diode to generate pumping light,
optically pumping the fiber amplifier with the pumping light,
and controlling pump diode current; amplifying the wave
length-swept-with-time pulse with the fiber-amplifier; time
compressing the amplified pulse and illuminating a portion
of the body with the time-compressed optical pulse,
whereby the volumetric removal rate can be determined
from the pulse energy and the ablation-threshold-pulse
energy-for-material-being-ablated signal.

In one embodiment, the volume of material to be ablated
is inputted and ablation is performed for a length of time to
remove that volume. In another embodiment, the depth of
material to be ablated is inputted and ablation is performed
for a length of time to remove material to that depth at the
determined volumetric removal rate.

One embodiment uses a fiber-amplifier or other optical
amplifier (e.g., a Cr:YAG amplifier) and air-path between
gratings compressor, e.g., with the amplified pulses between
ten picoseconds and one nanosecond.

In one embodiment, one or more parallel optical amplifiers is preferably
used in parallel, or two or more semiconductor
amplifiers in train mode (pulses from one amplifier being
delayed to arrive one or more nanoseconds after those from
another amplifier) to step-wise control the ablation rate
independent of pulse energy. In embodiments desiring lower
desired ablation rates, one or more amplifiers are shut off
(e.g., the optical pumping to the fiber amplifier shut off), and
there will be fewer pulses per train. In one embodiment, 20
amplifiers produce a maximum of 20 pulses in a train, and
in other embodiments three or four amplifiers are used to
produce three or four pulses per train. Alternately, while
continuous wave (CW) operation might generally be used in
operating amplifiers, amplifiers might be run in a staggered
fashion, e.g., on for a first period and then turned off for one
second period, and a first period dormant amplifier turned on
during the second period, and so forth, to spread the heat
load. In one embodiment, two or more amplifiers are con
figured to run in a staggered fashion. In one embodiment
having a known type of material being removed, the removal
to predetermined rate is accomplished by controlling the
energy of a pulse and the pulse repetition rate, whereby
knowing the removal rate the system can automatically stop
when the predetermined volume is removed. If the area of
removal is fixed during the ablation and the removal rate is
known, the system can automatically stop when material has
been removed to a predetermined depth.

One embodiment includes a fiber-amplifier and a com
pressor allowing the invention to be man-portable. As used
herein, the term “man-portable” can mean capable of being
moved reasonably easily by one person, e.g., as wheeling a
wheeled cart from room to room or possibly even being
carried in a backpack.

One embodiment includes the removal of material from a
body by optical-ablution with controlled pulse energy from
a fiber amplifier, including inputting an ablation-threshold
pulse-energy-for-material-being-ablated signal; utilizing an
optical oscillator in the generation of a series of wavelength
swept-with-time pulses; primarily controlling pulse energy
based on the ablation-threshold-pulse-energy-for-material
being-ablated signal by either selecting pulses from the
oscillator generated series of wavelength-swept-with-time
pulses, wherein the fraction of pulses selected can be con
trably varied to give a selected pulse repetition rate that is
a fraction of the oscillator repetition rate, or passing elec
trical current through at least one pump diode to generate
pumping light, optically pumping the fiber amplifier with the
pumping light, and controlling pump diode current; using an
ablation spot-size sensor to measure the ablation spot size
and dynamically adjusting either the fraction of pulses
selected or the pump diode current for changes in ablation
spot size from the nominal spot size; amplifying the wave
length-swept-with-time pulse with the fiber-amplifier, time
compressing the amplified pulse and illuminating a portion of the body with the time-compressed optical pulse, whereby controlling the pulse selection and/or the pump diode controls the pulse energy; and determining a volumetric removal rate from the pulse energy and the ablation-threshold-pulse-energy-for-material-being-ablated signal. Preferably, a volume of material to be ablated is inputted and ablation is performed for a length of time to remove that volume at the volumetric removal rate.

In one embodiment, the inputting of an ablation-threshold-pulse-energy-for-material-being-ablated signal is by a selector switch, whereby the selector switch is used to directly or indirectly select a volume removal per pulse level. In one embodiment, the average pulse energy is between about 2.5 and about 3.6 times the ablation threshold. Another embodiment uses a multi-position selector switch to indicate classes of materials, whereby setting the switch to one of those classes results in the selection. In one embodiment, the volume removed per pulse is related to the ablation threshold. In one embodiment an indexed switch is used to select one of two or more levels of volume removed per pulse.

In one embodiment, the ablation probe is mounted on an x-y-z-positioner. In another embodiment, the probe is moved in the z-direction to follow surfaces. One embodiment, scans an ablation area by moving the beam without moving the probe. Another embodiment scans a larger area by moving the beam over a first area, and then stepping the probe to second portion of the large area and then scanning the beam over the second area, and so on.

In one embodiment, the initial pulse is amplified by a fiber-amplifier (e.g., a erbium-doped fiber amplifier or EDFA) and compressed by an air-pump between gratings compressor (e.g., a Tracey grating compressor), with the compression creating a sub-picosecond ablation pulse to produce a initial pulses of about 10 picoseconds and about one nanosecond. Another embodiment uses a semiconductor optical amplifier (SOA) and with a chirped fiber compressor. Generally, a semiconductor optical amplifier produces a pulse of between about 1 and 20 nanoseconds during amplification. One embodiment uses a semiconductor-generated initial pulse and a SOA preamplifier to amplify the initial pulse before introduction into the fiber amplifier.

While the compressors in either type of system can be run with inputs from more than one amplifier, reflections from the parallel amplifiers can cause a loss of efficiency, and thus should be minimized. The loss is especially important if the amplifiers are amplifying signals at the same time, as is the case with the SOAs. In one embodiment each of the parallel SOAs has its own compressor, whereby the amplified pulses may be put into a single fiber after the compressors, reducing greatly the reflections from the joining (e.g., in a star connector). Fiber amplifiers allow a nanosecond spacing of sub-nanosecond pulses minimizes amplifying of multiple signals at the same time, and a single compressor is used. In one embodiment multiple fiber amplifiers are used with a single compressor.

Fiber amplifiers have a storage lifetime of about 100 to 300 microseconds and for ablations purposes, fiber amplifiers have generally been operated with a time between pulses of equal to or greater than the storage lifetime, and thus are generally run a repetition rate of less than 3-10 kHz. Fiber amplifiers are available with average power of 30 W or more. In one embodiment a moderate-power 5 W average power fiber amplifiers is operated to produce a pulses of 500 or more microjoules. In one embodiment, energy densities above the ablation threshold are needed for non-thermal ablation, and increasing the energy in such a system, increases the ablation rate in either depth or allows larger areas of ablation or both. One embodiment, run a fiber amplifier with a time between pulses of a fraction (e.g., one-half or less) of the storage lifetime and use a smaller ablation spot. In one embodiment, the spot is about 50 microns or less in diameter, and other embodiments allow a smaller spot to be scanned to get a larger effective ablation area.

One embodiment increases the ablation rate by increasing the effective repetition rate using parallel fiber amplifiers to generate a train of pulses, wherein thermal problems are avoided and controlling the ablation rate using a lesser number of operating fiber amplifiers. One embodiment uses a SOA preamplifier to amplify the initial pulse before splitting to drive multiple parallel fiber amplifiers and another SOA before the introduction of the signal into each fiber amplifier, whereby individual fiber amplifiers can be shut down rapidly.

One embodiment uses a 1 ns pulse with a fiber amplifier and air-optical-compressor (e.g., a Tracey grating compressor) giving a compression with ~40% losses. At less than 1 ns, the losses in a Tracey grating compressor are generally lower. If the other-than-compression losses are about 10%, 2 nanojoules are needed from the amplifier to get 1 nanojoule on the target. The use of greater than 1 ns pulses in an air optical-compressor presents two problems; the difference in path length for the extremes of long and short wavelengths needs to be about three cm or more and thus the compressor is large and expensive, and the losses increase with a greater degree of compression.

In another embodiment, a semiconductor optical amplifier (SOA) and a chirped fiber compressor, with pulses of between about 1 and about 20 nanosecond during amplification are run at repetition rates with a time between pulses of the semiconductor storage lifetime or more. In one embodiment, a semiconductor generated initial pulses and a SOA preamplifier is used to amplify the initial pulse before splitting to drive multiple SOAs. In one embodiment, a smaller ablation spot is scanned to increase the effective ablation area. One embodiment uses parallel SOAs to generate a train of pulses to increase the ablation rate by further increasing the effective repetition rate, wherein thermal problems are avoided and ablation rate is controlled by the use of a lesser number of operating SOAs. One embodiment operates with pulse energy densities at about three times the ablation threshold.

Ablative material removal is especially useful for medical purposes either "in-vivo" or on the body surface and typically has an ablation threshold of less than 1 Joule per square centimeter, but may occasionally require surgical removal of foreign material with an ablation threshold of up to about 2 Joules per square centimeter. One embodiment uses two or more amplifiers in parallel train mode, whereby many pulses from one amplifier being delayed to arrive one or more nanoseconds after those from another amplifier. At lower desired powers, one or more amplifiers can be shut off (e.g., the optical pumping to a fiber amplifier), and there will be fewer pulses per train. One embodiment includes 20 amplifiers producing a maximum of 20 pulses in a train, however other embodiments can use three or four amplifiers and produce three or four pulses per train.

Generally, the fiber amplifiers are optically-pumped continuous wave (CW) (and are amplifying perhaps 100,000 times per second in 1 nanosecond pulses). Alternately, non-CW-pumping might be used in operating amplifiers, with amplifiers run in a staggered fashion, e.g., one on for a
first half-second period and then turned off for a second half-second period, and another amplifier, dormant during the first-period, turned on during the second period, and so forth, to spread the heat load. In one embodiment, the amplifiers are non-CW-pumped. In other embodiments, the amplifiers are non-CW-pumped.

One embodiment controls the input optical signal power, optical pumping power of fiber amplifiers, timing of input pulses, length of input pulses, and timing between start of optical pumping and start of optical signals to control pulse power, and average degree of energy storage in fiber.

In one embodiment, the oscillator, amplifier and compressor are within a man-portable system, and/or the compression is done in an air-path between gratings to compressor. In one embodiment, the compressed optical pulse has a sub-picosecond duration, and the oscillator pulse has a duration between about 10 picoseconds and about one nanosecond. In one embodiment, ablation is performed from an outside surface of the body and another embodiment ablation is done inside the body. In some embodiments, one or more amplifiers are used in a mode where amplified pulses from one amplifier are delayed to arrive one or more nanoseconds after those from any other amplifier, to allow control of ablation rate independent of pulse energy. In one embodiment, the pulse energy applied to the body is between about 2.5 and 3.6 times ablation threshold of the body portion being ablated, whereby a relatively constant removal per pulse is achieved. Preset removal rate, as used herein includes controlling the removal per pulse by controlling the pulse energy to give a pulse energy density between 2.5 and 3.6 times ablation threshold for the spot size.

One embodiment uses a fiber amplifiers have a maximum power of 4 MW, and thus a 10-microjoule ablation pulse could be as short as 2 ps. Thus a 10 ps, 10 microjoule pulse, at 500 kHz (or 50 microjoule with 100 kHz). In one embodiment, two or more amplifiers are operated in a train mode and switching fiber amplifiers. In one embodiment, the running of ten fiber amplifiers are rotated such that only five are operating at any one time (e.g., each on for 1/10th of a second and off for 1/10th of a second). One embodiment has ten fiber amplifiers with time spaced inputs, e.g., by 1 ns, to give a train of one to 10 pulses. In one embodiment, 5 W amplifiers operating at 100 kHz and e.g., 50 microjoules are stepped between 100 kHz and 1 MHz. With 50% post-amplifier optical efficiency and 100 microjoules, to get 6 J/sq. cm on the target, the spot size would be about 20 microns.

Another embodiment has 20 fiber amplifiers with time spaced inputs, by 1 ns, to give a train of one to 20 pulses. With 5 W amplifiers operating at 50 kHz (and e.g., 100 microjoules) this could step between 50 kHz and 1 MHz. With 50% post-amplifier optical efficiency and 100 microjoules, to get 6 J/sq. cm on the target, the spot size would be about 33 microns. In one embodiment, the amplified pulse is about 50 to about 100 picoseconds long. Another embodiment having 10 fiber amplifiers can step between 50 kHz and 500 kHz.

Another embodiment has 5 W amplifiers operating at 20 kHz (and e.g., 250 microjoules) with 10 fiber amplifiers and can step between 20 kHz and 200 kHz. With 50% post-amplifier optical efficiency and 250 microjoules, to get 6 J/sq. cm on the target, the spot size would be about 50 microns. The amplified pulse is about 100 to about 125 picoseconds long. Another embodiment having 30 fiber amplifiers can step between 20 kHz and 600 kHz.

Generally, the pulse generator controls the input repetition rate of the fiber amplifiers to tune energy per pulse to about three times threshold per pulse. In one embodiment, the pulse generator controls the input repetition rate of the fiber amplifiers. Another embodiment generates a sub-picosecond pulse and time-stretching the pulse within semiconductor pulse generator to give the initial wavelength-swept-with-time initial pulse.

One embodiment measures light leakage from the delivery fiber to get a feedback proportional to pulse power and/or energy for control purposes. One embodiment measures the spot size with a video camera. In one embodiment, the measurement is with a stationary spot, and another embodiment uses a linear scan.

In one embodiment a camera is used (see “Camera Containing Medical Tool” provisional application No. 60/472,071; filed May 20, 2003; which is incorporated by reference herein) including an optical fiber in a probe to convey an image back to a vidicon-containing remote camera body. In one embodiment, the camera is used “in vivo.” One embodiment uses a handheld beam-emitting probe.

Smaller ablation areas may be scanned by moving the beam without moving the probe. Larger areas may be scanned by moving the beam over a first area, and then stepping the probe to second portion of the large area and then scanning the beam over the second area, and so on. One embodiment scans the beam over an area without moving the probe. One embodiment scans the beam over a first area, and then stepping the probe to second portion of the large area and then scanning the beam over the second area. One embodiment includes a beam deflecting mirrors mounted on piezoelectric actuators (see “Scanned Small Spot Ablation With A High-Rep-Rate” U.S. Provisional Patent Applications, Ser. No. 60/471,972, filed May 20, 2003; which is incorporated by reference herein). In one embodiment, the actuators scan over a larger region but with the ablation beam only enabled to ablate portions having the defined color and/or area. One embodiment allows evaluation after a prescribed time through a combination of preset time and, area and/or colors.

Information of such a system and other information on ablation systems are given in co-pending provisional applications listed in the following paragraphs (which are also at least partially co-owned by, or exclusively licensed to, the owners hereof) and are hereby incorporated by reference herein (provisional applications listed by docket number, title and provisional number):

“Quasi-Continuous Current In Optical Pulse Amplifier Systems” U.S. Provisional Patent Applications, Ser. No. 60/520,425 and “Optical Pulse Stretching And Compressing” U.S. Provisional Patent Applications, Ser. No. 60/529,443, were both filed Dec. 12, 2003;

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. The body, for example, can be of any material, including metal or diamond. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification, but only by the claims.

What is claimed is:

1. A method of surgical material removal from a body by optical- ablation with controlled pulse energy from a fiber amplifier, comprising:

 inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal;

2. The method of claim 1, wherein a volume of material to be ablated is inputted and ablation is performed for a length of time to remove that volume at the volumetric removal rate.

3. The method of claim 1, wherein the ablation-threshold-pulse-energy-for-material-being-ablated signal is inputted by a multi-position selector switch indicating classes of materials, which is set to one of the classes and directly or indirectly selects a volume removal per pulse by an average pulse having an energy in the range of between about 2.5 and about 3.6 times ablation threshold for the selected class.

4. The method of claim 1, wherein the oscillator, amplifier and compressor are within a man-portable system.

5. The method of claim 1, wherein the compression is done in an air-path between gratings compressor.

6. The method of claim 1, wherein the compressed optical pulse has a sub-picosecond duration.

7. The method of claim 1, wherein the oscillator pulse has a duration between about 10 picoseconds and about one nanosecond.

8. The method of claim 1, wherein the ablation is from an outside surface of the body.

9. The method of claim 1, wherein the ablation is done inside of the body.

10. The method of claim 1, wherein more than one amplifiers are used in a mode where amplified pulses from one amplifier are delayed to arrive one or more nanoseconds after those from any other amplifier, to allow control of ablation rate independent of pulse energy.

11. The method of claim 1, wherein the pulse energy applied to the body is between about 2.5 and about 3.6 times ablation threshold of the body portion being ablated.

12. The method of claim 1, wherein a depth of material to be ablated is inputted and ablation is performed for a length of time to remove material to that depth from an area being ablated at the volumetric removal rate.

13. A method of material removal from a body by optical- ablation with controlled pulse energy from an optical amplifier, comprising:

 inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal;

 generating a series of wavelength-swept-with-time pulses using an optical oscillator;

 controlling pulse energy based on the ablation-threshold-pulse-energy-for-material-being-ablated signal either by selecting pulses from the oscillator generated series of wavelength-swept-with-time pulses, wherein the fraction of pulses selected can be controllably varied to give a selected pulse repetition rate that is a fraction of the oscillator repetition rate, or by passing electrical current through at least one pump diode to generate pumping light, optically pumping the fiber amplifier with the pumping light, and controlling pump diode current;

 amplifying the wavelength-swept-with-time pulse with the fiber-amplifier;

 time-compressing the amplified pulse and illuminating a portion of the body with the time-compressed optical pulse, whereby controlling the pulse selection and/or the pump diode current controls the pulse energy; and determining a volumetric removal rate from the pulse energy and the threshold-pulse-energy-for-material-being-ablated signal.

7. The method of claim 1, wherein the pulse energy applied to the body is between about 2.5 and about 3.6 times ablation threshold.
determining a volumetric removal rate from the pulse energy and the pulse-energy-for-material-being-ablated signal.

14. The method of claim 13, wherein a volume of material to be ablated is inputted and ablation is performed for a length of time to remove that volume at the volumetric removal rate.

15. The method of claim 13, wherein the ablation-threshold-pulse-energy-for-material-being-ablated signal is inputted by a multi-position selector switch indicating classes of materials, which is set to one of the classes and directly or indirectly selects a volume removal per pulse by an average pulse having an energy in the range of about 2.5 and about 3.6 times ablation threshold for the selected class.

16. The method of claim 13, wherein a depth of material to be ablated is inputted and ablation is performed for a length of time to remove material to that depth from an area being ablated at the volumetric removal rate.