Cardiac Computed Tomography Methods and Systems Using Fast Exact / Quasi Exact Filtered Back Projection Algorithms

Alexander Katsevich
Yang Lu
Virginia Tech University

Ge Wang
Virginia Tech University

Hengyong Yu
Virginia Tech University

Jun Zhao
Shanghai Jiao Tong University

Find similar works at: https://stars.library.ucf.edu/patents
University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
Katsevich, Alexander; Lu, Yang; Wang, Ge; Yu, Hengyong; and Zhao, Jun, "Cardiac Computed Tomography Methods and Systems Using Fast Exact / Quasi Exact Filtered Back Projection Algorithms" (2013). UCF Patents. 671.
https://stars.library.ucf.edu/patents/671
The present invention provides systems, methods, and devices for improved computed tomography (CT). More specifically, the present invention includes methods for improved cone-beam computed tomography (CBCT) resolution using improved filtered back projection (FBP) algorithms, which can be used for cardiac tomography and across other tomographic modalities. Embodiments provide methods, systems, and devices for reconstructing an image from projection data provided by a computed tomography scanner using the algorithms disclosed herein to generate an image with improved temporal resolution.
US 8,483,351 B2

Page 2

OTHER PUBLICATIONS

Defrise M et al. Truncated Hilbert transform and image reconstruction from limited tomographic data. Inverse Problems 2006; 22(3):1037-1053.

* cited by examiner
FIGS. 1A-B
FIG. 4
FIGS. 5A-D
FIG. 6
FIG. 8
FIGS. 9A-D
FIG. 10
FIGS. 11A-C
\[\dot{y}(s) \]

\[A \]

\[a_0^- \quad a_0^+ \quad \phi^- = (-1) \cdot 1 \]

\[\phi^+ = (+1) \cdot 0 \]

\[\hat{x} \]

\[B \]

\[L_i \]

\[\dot{y}(s) \]

\[a_0^- \quad a_0^+ \quad \phi^- = (+1) \cdot 0 \]

\[\phi^+ = (+1) \cdot 1 \]

FIGS. 12A-B
FIG. 14
FIG. 18
FIGS. 19A-C
FIG. 21
FIGS. 22A-B
CARDIOVASCULAR DISEASES (CVDs) are pervasive (American Heart Association 2004). CVD is the number one killer in the United States, costing $368.4 billion. Heart failure, stroke and congenital cardiovascular defects, as well as to develop effective prevention and treatment strategies. CT scanners are now considered instrumental for development of CT scanners for cardiac CT studies, the efforts are generally limited to regular heartbeats. When applying traditional CT algorithms for cardiac CT reconstruction, the cardiac images may be inaccurate or useless based on substantial motion blurring, especially seen in patients who have high and irregular heartbeats due to the fact that the projection sector covers a projection angular range of a substantial length. Within such an angular range, the heart moves appreciably, especially when it is not in a relative stationary phase. As a benchmark, a 0.3 mm spatial resolution is routinely achieved in spiral CT of the temporal bone where the motion magnitude is much less than that of the heart (see M. Vannier and G. Wang. Spiral CT refines imaging of temporal bone disorders, Diagnostic imaging, vol. 15, p. 116-121, 1993 and G. Wang, et al., Design, analysis and simulation for development of the first clinical micro-CT scanner1. Academic Radiology, vol. 12, pp. 511-525, 2005, which is incorporated by reference herein in its entirety). Spatial resolution with cardiac CT is at best in the millimeter domain.
in many cardiac and other CT investigations wherein the motion magnitude is increased.

SUMMARY OF THE INVENTION

The numerous limitations inherent in the scanning systems described above provide great incentive for new, better systems and methods capable of accounting for one or more of these issues. If CTs are to be seen as an accurate, reliable therapeutic answer, then improved methods for reconstructing an image should be developed that can more accurately predict the image with improved temporal resolution and less artifacts.

The primary limitation to the above-mentioned system is its need to provide good temporal resolution and image reconstruction when movement is involved. However, as more complex applications for scanning are encountered, reconstruction of key subject areas such as the heart, lung, head and neck is cumbersome at best and may be inadequate to develop reliable diagnosis and therapies. Therefore, a more-advanced reconstruction system would be ideal. This allows for the adaptation of exact and quasi-exact algorithms to provide better images.

Accordingly, embodiments of the invention provide methods, systems, and devices for reconstructing an image from projection data provided by a computed tomography scanner comprising: scanning an object in a cone-beam imaging geometry following a general triple helix path wherein projection data is generated; reconstructing the image, wherein the reconstructing comprises performing a filtered back-projection; using a fast exact or quasi-exact filtered back projection algorithm to generate the backprojected data; and using the backprojected data to generate an image with improved temporal resolution. Preferably, embodiments of the invention provide images with less than about 500 ms temporal resolution or less, such as about 100 ms temporal resolution or less, such as about 80 ms or less, or about 60 ms or less, or about 50 ms or less, or about 30 ms or less, or even about 10 ms or less, and so forth.

In the context of this disclosure, exact or quasi-exact means that the algorithm is theoretically exact for a good portion of voxels in the object or theoretically exact if a practically insignificant portion of data could be handled in a more complicated fashion. Said another way, quasi-exact means that the algorithm is derived from an exact three-dimensional reconstruction approach, in which deviations from exactness are introduced which are sufficiently small and lead to minor artifacts, but result in a numerically efficient algorithm. By way of example, these deviations may lead to inexact weighting of a small percentage of Radon planes at every voxel.

In preferred embodiments, the temporal resolution may be in the range of about 100 ms to less than about 10 ms.

The present invention includes a computed tomography (CT) imaging system comprising: a multi-source helical cone-beam computed tomography (CBCT) scanner operably configured for scanning an object to acquire projection data relating to the object; a processing module operably configured for reconstructing the scanned portion of the object into an image by performing a filtered backprojection (FBP) with a fast exact or quasi-exact FBP algorithm to generate image data; and a processor for executing the processing module. Such systems can include software and hardware operably configured for performing the functions of the processing module.

Embodiments of the present invention provide for reconstructing the image using a fast exact or quasi-exact algorithm developed by defining the weight function, determining filtering directions, calculating the backprojection coefficients, and reconstructing the object with, for example:

\[f(x) = \frac{1}{4\pi^2} \int \sum_{n} \tilde{c}_n(x, \xi) \times \left(\int \frac{\partial}{\partial q} D(q, \cos \beta(s, x) + \sin \gamma^{-1}(s, x, \theta)) \right) dy \left(s, y \right) ds \]

Such methods, systems, and devices can further be characterized in having the fast exact or quasi-exact algorithm implemented by differentiating each projection with respect to variable s, for each y(s), i={1, 2, 3}, performing the Hilbert transform of derivative data along the given filtering directions on the corresponding detector plane; and backprojecting the filtered data on the inter-PI segments to reconstruct the object.

The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.

FIGS. 1A-1B are schematic diagrams showing geometry of multi-source helical CBCT. Three x-ray sources are rotated around the x₁-axis along the helices y₁(s), y₂(s) and y₃(s), respectively. The y₁(s), y₂(s) and y₃(s) are on a cylinder of radius R. An object to be reconstructed is confined within a cylinder of radius r, where r<R. Parameter h denotes the pitch of each helix. The inter-helix distance along the x₁-axis is h/3.

FIG. 2 is an illustration of the Zhao window bounded by solid lines Γ⁺ and the Tam-Danielson window bounded by dashed lines Γ⁻. The detector plane is represented by the Cartesian coordinate system (u, v).

FIG. 3 is a schematic diagram of inter-PI arcs (thick solid curve-arcs).

FIG. 4 is a schematic diagram of the decomposition of the Zhao window into the regions G₁, G₂, G₃, L₁, and L₂, respectively.
FIG. 5A is a graphical representation allowing for the visualization of the domains delimited by the A-curves and T-curves on the surface of the unit sphere in spherical coordinates for \(x = (0.1, 0, 0) \).

FIGS. 5B, C, and D are graphical representations of the zoom-in versions of the areas bounded by the bottom left, bottom right, and top circles shown in FIG. 5A, respectively.

FIG. 6 is an illustration of the osculating plane \(\pi_u \).

FIGS. 7A and B are graphical representations of the close-up views of the diagram for \(x = (0, -0.15, 0) \) for 7A and \(x = (0, -0.3, 0) \) for 7B.

FIG. 8 is a graphical illustration of \(L \)-curves in the spherical coordinates \(\theta_1, \theta_2 \).

FIG. 9A is a graphical representation of the full diagram showing different regions split by \(A, T \) and \(L \)-curves for \(L \)-curves in \(x = (0.2, -0.3, 0) \) for 7B.

FIG. 9B, C, and D are graphical representations of the zoom-in versions of the regions bounded by the upper, bottom right, and bottom left circles shown in FIG. 9A.

FIG. 10 is a graphical representation of domains on the detector plane.

FIG. 11A is a graphical representation of the \(B \)-curve being tangent to a \(T \)-curve in \(D_1 \) for the source on \(y_1(s) \).

FIG. 11B is a graphical representation of the \(B \)-curve being tangent to a \(T \)-curve in \(D_5 \) for the source on \(y_1(s) \).

FIG. 11C is a graphical representation of the \(B \)-curve passing across the second \(T \)-curve for the source on \(y_1(s) \).

FIG. 12A is a graphical representation of the determination of \(c_0 \).

FIG. 12B is a graphical representation of the determination of \(c_1 \).

FIGS. 13A-B are respectively graphical representations of filtering lines in the case of \(x \in G_2 \cup G_3 \) and \(x \in G_5 \) for the first fast FBP algorithm.

FIG. 14 is a graphical representation showing that the required detector area is bounded by \(L_{min} \) and \(L_{max} \) for the first algorithm, and by \(\Gamma \), \(\Gamma \), \(L_{max} \), and \(L_{min} \) for the second algorithm.

FIG. 15 is a graphical representation of filtering lines for two fast FBP algorithms when \(x \) is above where \(L_{max} \) and \(L_{min} \) are for the first and second algorithms, respectively.

FIGS. 16A and 16B are graphical representations illustrating the second fast FBP algorithm.

FIG. 17A is a reconstructed image of the Clock phantom with \(r = 375 \) mm using the first fast FBP algorithm.

FIG. 17B is a reconstructed image of the Clock phantom with \(r = 375 \) mm using the second fast FBP algorithm.

FIGS. 17C and D are images illustrating the differences between the reconstructed images in FIGS. 17A and 17B and the ground truth respectively in the display window \([-0.5, 0.5]\).

FIG. 18 is a graphical representation showing projected inter-PI lines on the detector plane, where the thick curve segments denote the inter-PI arcs.

FIG. 19A is a graphical representation of a plot of EQUATION 20 with \(r_0 = 0.495 \) R.

FIG. 19B is a graphical representation of a plot of \(\Phi \) over a range of \(\Omega \).

FIG. 19C is a graphical representation of a plot of \(\psi(s) \) over a range of \(0 \leq s_2 \leq 2\pi, 0 \leq s_3 \leq 4.1773 \).

FIG. 20 is a graphical representation for possible locations of the “critical event” for Case 4.

FIG. 21 is a graphical representation illustrating regions \(G_3 \) and \(G_5 \).

FIG. 22A is a graphical representation of the relationship among the inter-PI line \(L_{\alpha}, L_{\gamma} \) and \(L_{\gamma} \) and inflection line \(L_{\gamma} \) (\(L_{\gamma} \)) for \(\alpha \) in \(G_2 \) and above \(s_\alpha \).

FIG. 22B is a graphical representation of the relationship between the \(L \)-line and \(L \)-line, \(L \), and inflection line \(L_{\gamma} \) (\(L_{\gamma} \)) for \(\xi \) in \(G_2 \) and above \(s_\alpha \).

FIG. 23 is a schematic representation of the angular transformation from a spherical coordinate system to a detector.

DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

In accordance with embodiments of the present invention, a method of the present invention may comprise introducing two fast FBP algorithms for use with conventional cardiac CT technologies in order to obtain better reconstruction images. One of the many potential advantages of the methods of the present invention, only some of which are discussed herein, is that images with less blurring and improved temporal resolution may be obtained even when there is movement in the object being scanned. The current invention may provide benefits to various types of interior tomography including, but not limited to, cardiac, lung, head and neck tomography. In the medical field and in biomedical science, the methods disclosed herein may greatly reduce the production of unusable images and thereby potentially allow increased early detection of diseases, reduced amount of radioactive contrast used on the patients, and/or reduced costs associated with CTs. Better temporal resolution in the images may provide a cost savings by reducing the number of images needed to conclude a finding. This type of scanning may likewise provide more flexibility in designing experiments in small animals in order to better study these diseases and develop effective treatments.

Another potential advantage is that the two fast FBP proposed algorithms utilize the inter-PI line and inter-PI arcs, and have a shift-invariant filtering structure. Unlike our slow-FBP algorithm performing filtration spatial-variantly line by line, the proposed fast-FBP algorithms filter projection data spatial-invariantly by view, representing a significant computational benefit. Since triple-source helical CBCT may triple temporal resolution, it seems a promising mode for cardiac CT and other CT applications, and our proposed algorithms may find applications in this context. The methods of the present invention allow for temporal resolution in the range of about 100 ms to less than about 10 ms.

Geometry of Triple-Source Helical CBCT.

In particular embodiments, the geometry of the triple-source helical CBCT may be measured by allowing \(f(x) \) be an object function to be reconstructed. In embodiments where this function is smooth and vanishes outside the object cylinder, EQUATION 1 may be applied as described below:

\[
\Omega = \{ x = (x_1, x_2, x_3) | x_1^2 + x_2^2 + x_3^2 \leq r_0^2, x_3 \geq -s_3 \} \quad (\text{EQUATION 1})
\]

where \(r \) is the radius of the object cylinder and \(R \) the radius of the scanning trajectory cylinder on which a scanning trajectory resides. In embodiments with the Cartesian coordinate system \((x_1, x_2, x_3)\), the triple-helix trajectories can be expressed as shown in EQUATION 2 below:

\[
\begin{align*}
\{ y_1(s) &= \left[R \cos(s) + R \sin(s) - \frac{r}{2\pi} \right] \\
\{ y_2(s) &= \left[R \cos(s) + R \sin(s) + \frac{r}{2\pi} \right] \\
\{ y_3(s) &= \left[R \cos(s) + R \sin(s) + \frac{r}{2\pi} \right]
\end{align*}
\quad (\text{EQUATION 2})
\]
where h>0 is the pitch of each helix, and s∈R is the rotation angle. FIG. 1 illustrates the triple-source helical CBCT geometry.

Previously, the inter-helix PL-lines were defined and extended the traditional Tam-Danielsson window to the Zhao window in the case of three helices. The terms inter-helix PL-lines and inter-PL lines are the same and are used interchangeably throughout. Specifically, for each source position y(s), j∈{1, 2, 3}, the corresponding Zhao window is the region on the surface of the scanning cylinder bounded by the nearest helix turn of y_{mod,j=1}(s) and the nearest helix turn of y_{mod,j=2}(s), j∈{1, 2, 3}. In FIG. 2, Γ^1 and Γ^2 denote the boundaries of the Zhao window and the Tam-Danielsson window on the detector plane, respectively. In certain embodiments, the algorithms described herein are designed for flat-panel detectors. However, in embodiments with detectors of other shapes, the arbitrary-shaped detector may be rebinned to a virtual flat-panel detector in a preprocessing step so that the algorithms of the current disclosure may be used.

The properties of the inter-PL lines and inter-PL arcs may be determined by recalling that an inter-PL line for y(s) and y_{mod,j=2}(s), j∈{1, 2, 3}, is the line that (1) intersects y(s) at one point and y_{mod,j=2}(s) at another point; and (2) the absolute difference between the angular parameter values at the two intersection points is less than 2π. The existence and uniqueness of the inter-PL line is shown in Theorem 1 below.

Theorem 1 states that through any fixed x∈Ω, there exists one and only one inter-PL line for any pair of the three helices defined by EQUATION 2. In the triple-helix case, there are three inter-PL lines for a fixed x∈Ω and corresponding inter-helix PL-arc whose end points may be along the corresponding helices and share the intersection points of the inter-PL lines. In some embodiments, the three inter-PL arcs represent the source trajectory arcs along which the sources illuminate the point x as shown in FIG. 3.

In 2003, Katsevich proposed a general scheme for constructing inversion algorithms for CBCT. It can be stated as follows in EQUATIONS 3-8:

\[f(x) = \frac{-1}{4\pi^2} \int_{\Omega} \frac{c_w(x, x) \times \int_0^{2\pi} \frac{\partial}{\partial y} \psi_f(y, \cos y, s, x) + \sin y \psi_f(y, x, x_{th})}{|x-y(s)|} \right|_{s=b}^{s=a} \frac{dy}{dy} \left. ds \right|_{s=a}^{s=b} \quad (EQUATION 3) \]

\[\beta(s, x) := \frac{x-y(s)}{|x-y(s)|} \quad (EQUATION 4) \]

\[\alpha^+(s, x, \theta) := \beta(s, x) \times \alpha(s, x, \theta) \quad (EQUATION 5) \]

\[c_w(x, x) := \lim_{\epsilon \to 0} \left(\psi_f(\delta(s, x, \theta, +\epsilon) - \psi_f(s, x, \theta, -\epsilon) \right) \quad (EQUATION 6) \]

\[\phi(s, x, \theta) := \text{sgn}(\alpha^+(s, x, \theta)) \quad \mbox{sign}(\alpha^+(s, x, \theta)) \quad (EQUATION 7) \]

\[l := \bigcup_{s \in L} [a, b] \to \mathbb{R}^3, \quad l \ni s \to y(s) \in \mathbb{R}^3, \quad |\theta| \neq 0 \quad (EQUATION 8) \]

where \(\psi_f(y, \beta) \) is the cone-beam transform of \(f, \theta \) the polar angle in the plane perpendicular to \(\beta(s, x) \), \(\alpha(s, x, \theta) \) a unit vector perpendicular to \(\beta(s, x), 0 \) a point where \(\phi(s, x, \theta) \) is discontinuous, \(n(s, x, \alpha) \) a weight function, \(C \) a finite union of \(C^2 \) curves in \(\mathbb{R}^3 \), \(-\infty<a,b<\infty\), and \(\gamma(s) := \text{dy}/\text{ds} \).

The aforementioned general inversion formula can be applied to any trajectory that satisfies Tuy’s condition, but only when the weight function \(n(s, x, \alpha) \) is well designed can the inversion formula have a shift-invariant filtering structure. To derive fast exact FBP algorithms for triple-source helical CBCT, our general approach involves the following key concepts of and analyses on the inflection line, \(A_-, T_-, I_-, B_-\), and curves.

Inflection line. On the detector plane, the boundaries of the Zhao window may be expressed as EQUATION 9 below:

\[a(s) = \frac{D \sin s}{1-\cos s}, \quad r(s) = \frac{D h}{2\pi R} \frac{s+\Delta s}{1-\cos s} \quad (EQUATION 9) \]

where \(D \) is the distance between the detector and the source, \(s \) is the angular parameter relative to the corresponding source position, \(\Delta s = -2/3\pi \) and \(-4/3\pi \) are for the top and bottom boundaries respectively. Then, EQUATIONS 10-14 can be used.

\[r(s) = \frac{D \sin s}{1-\cos s} \quad (EQUATION 10) \]

\[s(s) = \frac{D \sin s}{(1-\cos s)} \quad (EQUATION 11) \]

\[\phi(s) = \frac{D h}{2\pi R} \frac{1-\cos s + s + \Delta s \sin s}{1-\cos s} \quad (EQUATION 13) \]

\[\phi(s) = \frac{D h}{2\pi R} \frac{1-\cos s + s + \Delta s \sin s}{1-\cos s} \quad (EQUATION 14) \]

The inflection point exists when

\[\frac{d^2 \phi}{ds^2} = 0 \quad (EQUATION 15) \]

Thus, we obtain \(s_{inf} = 2.6053 \) and \(s_{inf} = 3.6779 \) when \(\Delta s = -2/3\pi \) and \(-4/3\pi \). The slope of the tangent line at \(s \) can be computed as shown in EQUATION 15 below:

\[\frac{d^2 \phi}{ds^2} = \frac{h}{2\pi R} \frac{1-\cos s + s + \Delta s \sin s}{1-\cos s} \quad (EQUATION 15) \]

Because \(\cos s_{inf} = 0.8596 \), the slope is the same (-0.1368 h/R) at both inflection points. For practical medical applications, it is common that \(r_{FOV} = 0.5 \) R, and a boundary limitation \(x_y^2 + x_x^2 \leq r^2 \) (r=0.495 R) may be included, which is
shown as the vertical lines Γ_1 and Γ_3 in FIG. 4. Now, the inflection lines (the tangent lines at s_j and $s_
u$, where s_j and $s_
u$ are the projection of $y/(s_1, s_2, s_3)$ and $y/(s_1, s_2, s_3)$ on the detector plane and the boundary lines split the Zhao window into the following three regions: G_1, G_2 and G_3. Only the points in G_1 and G_3 can have tangent lines with Γ^\pm.

A-Curve and T-Curve.

To construct an appropriate weight function, the understanding of how Radon planes intersect with the trajectories is important. The number of intersection points only changes when a Radon plane is tangent to the trajectory or contains one P1 line/inter-PI line. Hence, if we find all such Radon planes, we can determine the distribution of the intersection points. Since each plane is uniquely determined by its normal vector, in the following sections we use unit vectors instead of vectors in \mathbb{R}^3 on the detector plane. When a Radon plane is tangent to the trajectory or contains one trajectory, the number of IPs only changes when a Radon plane is tangent to the trajectory or contains one P1 line/inter-PI line. Therefore, we first pick a vector $a(s)$ and rotate around one direction, the normal vector to that plane. The A-curve consists of all unit vectors orthogonal to an inter-PI line. The T-curve consists of all unit vectors in \mathbb{R}^3 on the detector plane.

$\alpha(s) = \frac{(x-y(s)) \times \hat{a}(s)}{|(x-y(s)) \times \hat{a}(s)|}$

where s belongs to an inter-PI arc. Actually, the A-curve represents all Radon planes containing one inter-PI line, and the T-curve represents all Radon planes tangent to the trajectory. Since there are three inter-PI lines and three inter-PI arcs for a fixed x, there are accordingly three A-curves and three T-curves. The use of spherical coordinates ϕ, θ to describe vectors on the unit sphere is shown in EQUATION 17:

$\alpha = (\cos \theta \sin \phi, \sin \phi \cos \phi, \cos \theta)$ for $0 \leq \theta \leq \pi$.

With the identification $(\theta_1, \theta_2) = ((\theta_1 + \pi) \mod 2\pi, \pi - \theta_2)$, each α corresponds to a unique plane through x with the normal vector α.

As an example, the A-curves and T-curves of point $x = (0, 0, 0)$ are illustrated in FIG. 5, where $r = 1$, $h = 2\pi$. T_1, T_2 and T_3 stand for the T-curves corresponding to the inter-PI arcs $S_1 S_2$, $S_2 S_3$, and $S_3 S_1$ respectively. Similarly, A_1, A_2 and A_3 are for the A-curves corresponding to the inter-PI lines $S_1 S_2$, $S_2 S_3$, and $S_3 S_1$ respectively.

The A-curves and T-curves may divide the surface of the unit sphere into several connected domains, in each of which all the planes through x have the same number of intersection points (IPs) with the inter-PI arcs of x. Given an object point and one trajectory, the number of IPs only changes when a Radon plane is tangent to the trajectory or contains the endpoints of the trajectory. The A-curve represents all planes containing the endpoints of the trajectory, and the T-curve represents all planes tangent to the trajectory. Any Radon plane is chosen and rotated around one direction, the normal vector of this plane forms a curve on the unit sphere. Clearly, only when this curve intersects with the A-curve or T-curve does the number of IPs change. Thus, the A-curve and T-curve define the boundaries of different domains in which the number of IPs is constant. The distribution of IPs over the inter-PI arcs is listed in Table I. To determine the distribution of IPs, we first pick a vector $\alpha(\theta_1, \theta_2)$ in each domain, and then generate the plane through x and perpendicular to $\alpha(\theta_1, \theta_2)$, and compute numerically the number of IPs.

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>D_2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>D_3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>D_4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D_5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D_6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D_7</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>D_8</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>D_9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D_{10}</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>D_{11}</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>D_{12}</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>D_{13}</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

By construction, a T-curve always starts from an A-curve and ends on another A-curve. It can be seen from FIG. 5 that a T-curve may not be smooth at some point a_n but the limits of unit tangent vectors at a_1 and a_2 are equal, such a point a_n is defined herein as a "cusp". The term cusp indicates that the two vectors determine the same plane, and a_n is the normal vector to that plane. It has been proved in the cases that the cusp is equivalent to the osculating plane that the point x on the surface is defined herein as a "critical event". The term "critical event" may happen in the following seven cases:

1. Three A-curves intersect at one point;
2. Three T-curves intersect at one point;
3. Two A-curves and one T-curve intersect at one point;
4. One A-curve and two T-curves intersect at one point;
5. A T-curve becomes tangent to an A-curve at a point of non-smoothness (i.e., cusp);
6. When the order of tangency (i.e., the zero derivatives of this order) at the beginning of the T-curve is increased, the T-curve re-emerges on the other side of the A-curve;
7. T-curve develops a smooth dent and becomes-tangent to an A-curve.

From Lemmas 2-3 described below in the Examples section, it is shown that Cases 1, 2, 4, 6, 7 do not occur for $r = 0.495$ R, and Case 5 does not occur for $r = 0.265$ R. In some embodiments, Case 3 is possible. In embodiments where Case 3 takes place, the tangency of T-curve and A-curve will move across another A-curve, then one domain disappears. For example, when $x = (0.1, 0, 0)$, in this case the tangency of T_1 and A_2 will move across A_3 and D_{10} disappears (see FIG. 7A). In other embodiments, Case 5 is possible for $r \leq 0.265$ R. In these embodiments, a T-curve will only intersect A-curves at the endpoints. That is, the cusp of that T-curve and one domain disappear (see FIG. 7B).

L-Curve.

The L-curve may be used to split the domain D_0, into subdomains, making the weight function a continuous across all the A-curves. The region is defined as the key requirement, which may allow...
for the development of efficient reconstruction algorithms. Thus, the L-curve should not go across an A-curve. In embodiments where \(x \) is fixed and \(s \) is run over the three inter-PI arcs, \(x \) forms a trajectory on the detector plane. Because at the endpoint of the inter-PI arc the line connecting \(y, (s) \) and \(x \) happens to be an inter-PI line, \(x \) always starts from one endpoint of the inter-PI arc on the boundary of the Zhao window, and ends at the other endpoint. Hence, whatever the trajectory of \(x \) is, part of the trajectory is in \(G_2 \). In other words, \(x \) will run across one inflection line, then move in \(G_2 \), and finally cross the other inflection line. Note that \(x \) on the inflection line indicates \(s = s_{0} \) as containing the inflection line \(A_{0} \), i.e., a cusp in one T-curve. From Lemma 3 described in the Example section below, the cusps always belong to the boundary of domain \(D_{2} \). Thus, they can be used as the endpoints of the L-curve. A family of L-curves is formed as follows. Run \(s \) over the three inter-PI arcs of \(x \). If \(x \) is in \(G_2 \) and above \(\tilde{s}_{x} \), where \(\Gamma_{x}^{+} \) intersects \(I_{x} \) (FIG. 4), find the plane through \(x \) and \(\tilde{s}_{x} \). If \(x \) is in \(G_2 \) and below \(\tilde{s}_{x} \), where \(\Gamma_{x}^{-} \) intersects \(I_{x} \), find the plane through \(x \) and \(\tilde{s}_{x} \). If \(x \) is in \(G_2 \) and between \(\tilde{s}_{x} \) and \(s_{0} \), find the plane through \(x \) and parallel to the u-axis. A plot of all the normal unit vectors of these planes in the spherical coordinates \((\theta_{u}, \varphi_{u})\) may then be constructed. This gives us three L-curves. The corresponding lines on the detector plane are called L-lines. FIG. 8 shows the L-curves on the diagram in spherical coordinates \((\theta_{u}, \varphi_{u})\), where \(L_{1}, L_{2} \) and \(L_{3} \) denote the L-curves corresponding to the inter-PI arcs \(SS_{S}, SS_{S}, \) and \(SS_{S} \) respectively. As is seen from the above construction, the L-curve always starts and ends on the cusps, and not defined for those parameter values when \(x \) is not in \(G_2 \).

For \(r \geq 0.265 \) R, one or more cusps will disappear if "critical event Case 5" occurs, then the L-curve may start from the intersection of L-curve and A-curve, and end at one A-curve. Also, the L-curve may start from one cusp and end at one A-curve or start from the intersection of T-curve and A-curve, and end at one A-curve. For example, see FIG. 9. \(L_{1} \) starts from the intersection of \(T_{1} \) and \(A_{1} \), and ends at the intersection of \(T_{1} \) and \(A_{2} \). \(L_{2} \) starts from one point on \(A_{2} \), and ends at the cusp of \(\Gamma_{1} \); \(L_{3} \) starts from the cusp of \(T_{1} \), and ends at one point on \(A_{2} \).

Whatever the endpoints of L-curves are, the L-curves intersect at one point, for example, in some embodiments, \(\theta_{u} = \pi \) or 0 in the spherical coordinates (which corresponds to the plane containing \(x \) and parallel to the \(x_{2}, x_{3} \) plane). Then \(D_{2} \) is split into several sub-domains. If the endpoints of L-curves are cusps, by Lemma 5, each sub-domain contains only one A-curve. If not, small "line segments" on A-curves may appear and the sub-domains may contain more than one A-curve (see FIG. 9B).

A B\(_{2}\)-curve may consist of all unit vectors perpendicular to \(x_{-}y(s) \), \(s \in \{0, 2, 3\} \). Each intersection of \(B_{2} \) and A-curves corresponds to a plane containing an inter-PI line and \(y(s) \). Each intersection of \(B_{2} \) and T-curves corresponds to a plane tangent to an inter-PI arc and containing \(y(s) \). For example, in certain embodiments, one may choose \(\alpha(s, \theta_{0}) \tilde{s}_{x} \), where \(\Delta_{0} \) is the projection of the helical tangent at the current position. If \(\theta(s) = \theta_{0} \) (FIG. 10), then \(\theta(s) \) increases, \(\alpha(s, \theta_{0}) \tilde{s}_{x} \) rotates clockwise on \(\theta_{0} \), and the following sequence of events takes place. First, \(\Pi(\alpha(s, \theta_{0})) \) intersects \(\tilde{s}_{x} \tilde{s}_{x} \), and a pair of IPs is born. On the unit sphere, this is seen as an intersection of \(B_{3} \) and \(A_{1} \), after which \(B_{3} \) enters \(D_{4} \) (FIG. 11B). Second, \(\Pi(\alpha(s, \theta_{0})) \) intersects \(\tilde{s}_{x} \tilde{s}_{x} \), and another pair of IPs is born. On the unit sphere, this is seen as an intersection of \(B_{3} \) and \(A_{1} \), after which \(B_{3} \) enters \(D_{4} \). Third, a swap of two IPs takes place. On \(\Pi(s) \), this happens when \(0 = \theta_{0} \), \(\Pi(s) \) is parallel to the helical tangent. On the unit sphere, this means that \(B_{3} \) is tangent to \(T_{1} \) at \(\alpha(s, \theta_{0}) \). Fourth, \(B_{3} \) enters \(D_{4} \) by intersecting \(T_{1} \). On \(\Pi(s) \), this takes place when \(L(\theta) \) is tangent to \(T_{1} \). Finally, \(\Pi(\alpha(s, \theta_{0})) \) intersects the L-line. This will not change the number of IPs but it will be useful for construction of the weight function. On the unit sphere, this is seen as an intersection of \(B_{3} \) and \(L_{1} \).

The jumps across an A-curve can only be of two types: from a 1-1P domain to a 3-IP domain and from a 3-IP domain to a 5-IP domain. Note that the B\(_{2}\)-curve is tangent from the inside to \(T_{1} \) which means a swap of two intersection points at \(\alpha, \alpha \), where \(\text{sgn}(\alpha(s), \theta) = 0 \) (see [15]). For a fixed \(s \), if \(x \) is allowed to change slightly inside the Zhao window, the tangency point will move from \(D_{1} \) to \(D_{4} \) across \(A_{2} \) (or from \(D_{1} \) to \(D_{3} \) across \(A_{3} \)) (FIGS. 12-13). If \(y(s) \) enters \(G_{2} \) or \(G_{3} \), the B\(_{2}\)-curve will pass not only through \(D_{4} \) (or \(D_{5} \)) but also through \(D_{3} \) and \(D_{4} \) (FIG. 14). The similar results can be obtained if the source is on \(y(s) \) or \(y(s) \).

Two filtered-backprojection algorithms for triple-source helical cone-beam CT can be used to obtain images having higher temporal resolution. The first exemplary algorithm uses two families of filtering lines, which are parallel to the tangent of the scanning trajectory and the so-called L lines. The second algorithm uses two families of filtering lines tangent to the boundaries of the Zhao window and L lines, respectively, but it eliminates the filtering paths along the tangent of the scanning trajectory, thus reducing the detector size greatly. Additional information concerning these algorithms can be found in Lu, Yang, et al., "Fast Exact/Quasi-Exact FBP Algorithms for Triple-Source Helical Cone-Beam CT," IEEE Transactions on Medical Imaging, Vol. 29, No. 3, March 2010, which is incorporated by references herein in its entirety.

First Fast FBP Algorithm.

In order to design an algorithm for triple-source helical CBCT useful in cardiac CTs and other CTs where movement exists, the weight function \(n(s, x, \alpha) \) must be specified. The filtering directions by the discontinuities of \(\phi(s, x, x) = \text{sgn}(\alpha(s), \theta) \) must also be determined. Following the determination of the filtering directions, the backprojection coefficients can be calculated according to EQUATION 6. Once the filtering lines and the backprojection coefficients are determined, EQUATION 3 may be used to reconstruct the object.

In order to construct the weight function \(n(s, x, \alpha) \) one should know the following. In certain embodiments, in order to have an efficient FBP structure, the weight function \(n(s, x, \alpha) \) should be continuous across all A-curves. Thus, the weight function can be defined as shown in Table II. The values in Table II are the weights assigned to IPs. For example, in the \(D_{3} \) domain the Radon plane has only one IP on the inter-PI segment \(\tilde{s}_{x} \). Accordingly, a weight of 1 may be assigned to this IP and a dash used to indicate that there is no IP on the inter-PI segments \(\tilde{s}_{x} \) and \(\tilde{s}_{x} \). In the \(D_{3} \) domain the Radon plane has three IPs on \(\tilde{s}_{x} \), one IP on \(\tilde{s}_{x} \) and one IP on \(\tilde{s}_{x} \). Thus, a weight of -1 may be assigned to two IPs on \(\tilde{s}_{x} \) and a weight of 1 to all other IPs.
the backprojection coefficients discussed above. In these fig-
tion n is continuous across all inter-PI lines. A discontinuity 35
of the helical tangent at \(y(s) \). The swap of two IPs changes
the B

of \(x \).

position is zero. Hence, when the Bs-curve passes through a
point in each area is selected in order to determine the dis­
continuity of \(n \) may only occur when a Bs-curve passes through a

In certain-embodiments, by construction, the weight func­

\[c_1 = c_p^+ - c_p^- = (+1)(0) - (-1)(1) = 1 \] (FIG. 12A).

In certain-embodiments, by construction, the weight func­

\[\text{TABLE II} \]

<table>
<thead>
<tr>
<th>(\mathcal{S}^S)</th>
<th>(\mathcal{S}^S)</th>
<th>(\mathcal{S}^S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1)</td>
<td>+1</td>
<td>—</td>
</tr>
<tr>
<td>(D_2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(D_3)</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>(D_3)</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>(D_4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(D_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(D_6)</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

To find the backprojection coefficients, a representative

To find the backprojection coefficients, a representative

discontinuity of \(n \) may only occur when a Bs-curve passes through an
L-curve. Without loss of generality or wishing to be limited
by theory, choosing \(y_1(s_0) \) on \(\mathcal{S}^S \).

For \(\mathcal{S}^S \), after the swap mentioned in the above paragraph the weight at the current
position is zero. Hence, when the Bs-curve passes through a
T-curve, i.e., from \(D_1 \) to \(D_2 \) or \(D_2 \) to \(D_1 \), the Bs-curve will not enter \(D_2 \). Instead, it passes through a second T-curve twice, i.e., from \(D_3 \) to \(D_4 \) and from \(D_4 \) to \(D_3 \). From Table II, the jumps of \(n \) may only occur in the latter
intersection. On the detector plane, this occurs when \(L(0) \) overlaps the L-line of \(k \). Then, the backprojection coefficients may be computed as

\[c_1 = \phi^+ - \phi^- = (+1)(1) - (-1)(0) = 1 \] (FIG. 16).

For \(\mathcal{S}^S \), the Bs-curve will not enter \(D_2 \). Instead, it passes through a second T-curve twice, i.e., from \(D_3 \) to \(D_4 \) and from \(D_4 \) to \(D_3 \). From Table II, the jumps of \(n \) may only occur in the latter
intersection. On the detector plane, this occurs when \(L(0) \) overlaps the L-line of \(k \). Then, the backprojection coefficients may be computed as

\[c_1 = \phi^+ - \phi^- = (+1)(1) - (-1)(0) = 1 \] (FIG. 15).

FIG. 13A and FIG. 13B summarize the filtering lines and
the backprojection coefficients discussed above. In these figures,
\(L^0 \) is the line parallel to \(L_0 \), and \(L^1 \) denotes the L-line. To implement the proposed algorithm, the filtering lines cannot be truncated. Thus, the detector size should be large enough to cover the area bounded by \(\Gamma_1, \Gamma_2, \Gamma_{\text{max}}, \text{ and } \Gamma_{\text{min}} \). Where \(\Gamma_{\text{max}} \) and \(\Gamma_{\text{min}} \) are the lines across the intersections of \((1) \Gamma_1 \) and \(\Gamma^+ \) and \((2) \Gamma_1 \) and \(\Gamma^- \) respectively, and parallel to \(L_{\text{min}} \) (FIG. 14).

In certain embodiments, the required detector area can be determined by two factors: (1) the ratio of the pitch \(h \) and the scanning radius \(R \) and (2) the ratio of the object support radius \(r \) and the scanning radius \(R \). IFR is fixed, the required detector area grows as \(h \) or \(r \) increases.

Second Fast FBP Algorithm.

Again, the design of the second fast FBP algorithm starts with specifying new weights (Table III). By construction, \(n(s, x, \alpha) \) is continuous across all inter-PI lines. More importantly, a swap of two IPs takes place when a Bs-curve becomes tangent to a T-curve, and \(n(s, x, \alpha) \) changes from +1 to -1. The discontinuity of \(\text{sgn}(\alpha \gamma(s)) \) appears only when a Bs-curve is tangent to a T-curve from inside. Since both \(n(s, x, \alpha) \) and \(\text{sgn}(\alpha \gamma(s)) \) are discontinuous at that point, the function \(\phi(s, x, \alpha) = \text{sgn}(\alpha \gamma(s))n(s, x, \alpha) \) is continuous. Thus, the filtering operation along the tangent of the scanning trajectory is eliminated.

\[\text{TABLE III} \]

<table>
<thead>
<tr>
<th>(\mathcal{S}^S)</th>
<th>(\mathcal{S}^S)</th>
<th>(\mathcal{S}^S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1)</td>
<td>+1</td>
<td>—</td>
</tr>
<tr>
<td>(D_2)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(D_3)</td>
<td>+1, -1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_4)</td>
<td>+1, -1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_5)</td>
<td>+1, -1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_6)</td>
<td>+1, -1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_7)</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_8)</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>(D_9)</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>

A discontinuity of \(n \) can occur only when a Bs-curve intersects a T-curve or an L-curve. Follow the discussion in Section IV, jumps of \(n \) may occur when \(n \) has \((1) \) a Bs-curve passes through a T-curve, i.e., from \(D_1 \) to \(D_2 \) or from \(D_2 \) to \(D_1 \) in FIGS. 11A and 11C, and \((2) \) a Bs-curve passes through an
L-curve, i.e., from \(D_{12} \) to \(D_{1} \) or from \(D_{13} \) to \(D_{1} \) in FIG. 8. On the detector plane, this gives two families of filtering lines: the lines tangent to \(\Gamma^{+} \) or \(\Gamma^{-} \) and the L-lines. Note that the filtering lines tangent to \(\gamma^{+} \) are different from those for our first fast FBP algorithm (FIG. 15), because the discontinuity of \(n(s, x, \alpha) \) occurs on the different side of the cusp. Then, the backprojection coefficients can be calculated as \(c_1 = \phi^+ - \phi^- = (+1)(1) - (-1)(0) = 1 \) and \(c_1 = \phi^+ - \phi^- = (+1)(1) - (-1)(0) = 1 \).

The reconstruction formula for the second algorithm is the same as that for the first algorithm. The only difference lies in the selection of the filtering lines. For clarity, our second fast FBP algorithm is illustrated in FIGS. 16A-B. Because the filtering paths along the tangent of the scanning trajectory are eliminated, the required detector area is reduced by at least 30% (FIG. 14). By Lemma 3 described below in the Examples section, there are two types of “line segments” according to different critical events. First, let us consider the “line segment” related to a critical event in Case 3. Recall that before entering \(D_2 \), the Bs-curve will be tangent to a T-curve. For the first algorithm, at the tangency the weight \(n \) changes from 1 to 0, then it does not change whether the Bs-curve enters \(D_0 \) across an A-curve or a T-curve. For the second algorithm, if the weight \(n \) changes from 1 to -1 at the tangency, then it will jump from -1 to 0 when the Bs-curve enters \(D_2 \). If the Bs-curve enters \(D_2 \) across an A-curve (i.e., the “line segment”; see FIG. 7), the FBP structure is ruined. Thus, the critical event in Case 3 will only affect the second algorithm, without damaging the FBP structure of the first algorithm. Then, let us consider the “line segment” related to a critical event in Case 5, which only
occur when $r \geq 0.265$ R. From the discussion in Section III.D such a “line segment” is the boundary of the one-IP and three-IP domains. Hence, for both the algorithms the weight n will jump from 1 to 0 if the B_3 curve enters D_a across the “line segment”, and the FBP structure is ruined. Consequently, the first algorithm is theoretically exact for $r = 0.265$ R and not exact for $0.495 \leq r \leq 0.265$ R, and the second algorithm is not exact for $r \leq 0.495$ R.

Since the algorithms are not always exact, it may be important to estimate what percentage of the Radon planes is incorrectly calculated. If the Radon planes with approximate weighting only have a small percentage, the algorithms can be considered quasi-exact, and we can still reconstruct with high image quality.

First, one must consider the incorrectly weighting planes caused by the critical event in Case 3. It appears in the area $r < 0.495$ R. Let us fix x for $r < 0.495$ R, denote the intersection of the Radon plane and the detector plane as $L(0), \theta(x[0, 2\pi]),$ run s over the three inter-PI arcs, and see what happens with x and $L(0)$. Based on the discussion in Section III. E, for x in G_2, if the critical event occurs, the B_3 curve will first intersect a T-curve, and then go across an A-curve. For example, in Fig. 12 the B_3 curve will first intersect T_3, then enter D_a across A_3. On the detector plane, this corresponds to that $L(0)$ intersects the tangent of $\pi/2$ before the inter-PI line $S_a S_3$ while $L(0)$ is rotated clockwise. Therefore, the Radon planes between the tangent of $\pi/2$ and $S_a S_3$ are not exactly weighted. Because the slope of $S_a S_3$ is positive and the slope of the tangent of $\pi/2$ is less than $h/2\pi R$, the percentage of the incorrectly weighted Radon planes is less than

$$\rho = \frac{1}{A}, \text{ where } \alpha < \beta < 2\tan\left(\frac{a}{\sqrt{3}}\right), \alpha = \tan\left(\frac{h}{2\pi R}\right).$$

(See Appendix). It is common that $h/R < 0.2$ in practical applications, hence $\beta < 1.17\%$. For x in $G_1 (G_3)$, if the critical event occurs, the B_3 curve will first go across an A-curve, and then over a T-curve. On the detector plane, this corresponds to the case when $L(0)$ intersects the tangent to $\pi/2$ before the inter-PI line $S_a S_3$ while $L(0)$ is rotated clockwise. Hence, the Radon planes between the tangent of $\pi/2$ and $S_a S_3$ are not exactly weighted. Because the slope of $S_a S_3$ is negative and the slope of the tangent of $\pi/2$ is more than $-0.35 h/R$, the percentage of the incorrectly weighted Radon planes is less than $\rho = 2.57\%$ for $h/R < 0.2$.

Then, one must further consider the incorrectly weighting planes caused by the critical event in Case 5. Recall that the L-curves are used to split the domain D_a into sub-domains, making the weight function n continuous across all the A-curves, and the cusps are the starting and ending points of the L-curves. If the endpoints of the L-curves are not the cusps, there will be small fractions (or “line segments”) on the A-curves, making the weight function n discontinuous across them and ruining the FBP structure of our algorithms. It possibly occurs for $r \leq 0.265$ R. As discussed above, the B-curve will first enter a 1-IP domain from a 3-IP domain across the “line segment”, and then pass through an L-curve. On the detector plane, this corresponds to that $L(0)$ intersects the inter-PI line $S_a S_3$ before the L-line while $L(0)$ is rotated clockwise. Recall that if the cusp is not in D_a S_3 is possibly to the left of S_a or S_3 is to the right of S_a. Thus, the slope of $S_a S_3$ is always more than $-0.35 h/R$.

Because the slope of the line-curve is never positive, the percentage of the incorrectly weighted Radon planes is less than $\rho = 2.57\%$ for $h/R < 0.2$. On the other hand, based on the discussion on Lemma 3, one or more cusps may possibly remain even when $r \leq 0.265$ R, which means that less “line segments” related to critical events will appear in Case 5, and in fact more Radon planes may be correctly weighted.

The implementation of these algorithms consists of one or more, and preferably all, of the following steps: Step 1) Differentiate each projection with respect to variable s; Step 2) For each $y_i(s), i \{1, 2, 3\},$ perform the Hilbert transform of derivative data along the given filtering directions on the corresponding detector plane; Step 3) Backproject the filtered data on the inter-PI segments to reconstruct the object point. Differences between the algorithms described herein and some of the ones previously described include, but are not limited to, differences in triple-helices geometry the filtered data are backprojected on inter-PI segments and that there are two families of filtering lines for each algorithm so that each point on the detector plane will be filtered twice. Also, since the algorithms described herein allow shift-invariant filtration, all results are in Cartesian coordinates directly, and there is no coordinate transform necessary similar to what was used in the slow-FBP algorithm or BPF algorithm.

Previously published BPF algorithms for triple-source helical CBCT can indeed produce excellent image quality, FBP algorithms (either “slow” or “fast”) are computationally desirable for several reasons, such as being amendable for parallel processing. In particular, while the computational structures of our BPF algorithm and FBP algorithms are quite similar, the FBP algorithms avoid densely sampled intermediate reconstruction in the PI-line-based coordinate system, and more importantly they can reconstruct a region of interest (ROI) or volume of interest (VOI) much more efficiently than the BPF counterpart. Note that ROI/VOI reconstruction is very common in medical imaging. A related technology called “interior tomography” is being actively developed to target this type of problems. Then, an interesting possibility would be to develop triple-source interior CBCT.

The inventive fast exact/quasi-exact FBP algorithms for triple-source helical CBCT have their advantages and disadvantages. From the perspective of exact reconstruction, the first algorithm is more desirable than the second algorithm because it is not affected by critical events in Case 3. However, in terms of efficient data acquisition, it may require a larger detector area than the second algorithm. In the medical CT field, the rectangular detector shape is most popular, and the helical pitch may be varied case by case. Therefore, it is practically possible to have projection data for reconstruction using either or both of the two fast FBP algorithms.

The methods disclosed herein have applications in the CT system. An example of a CT system and apparatus capable of implementing the methods is provided is an electron beam CT. In that framework, a curvilinear tungsten material or target can be arranged along a non-standard curve to be traced by an electro-magnetically driven electron-beam for formation of an X-ray source and collection of cone-beam data.

An exemplary electron beam CT comprises a vacuum chamber having an exterior surface, an underlying interior surface, and defines an enclosed space. At least a portion of the exterior surface can define or surround a subject cavity. The subject cavity is adapted to receive a subject. The subject cavity can be adapted to receive a human, a mouse, or a rat, e.g.

The apparatus can further comprise a charged particle beam generator having a proximal and a spaced distal end. The electron beam generator can generate a flat or curved electron sheet. The electron beam generator can have a scan-
nning speed from about 25 Hz to about 50 Hz. The apparatus can comprise a single electron beam generator or a plurality of electron beam generators.

The apparatus can include a focusing mechanism adapted to selectively focus charged particles generated by the charged particle beam generator and a target adapted to generate X-rays upon receipt of charged particles from the charged particle beam generator. If a plurality of electron beam generators are used, the apparatus may comprise a plurality of focusing mechanisms.

The apparatus further comprises a detector or a series of detectors surrounding the target. There are a large variety of detectors that can be used in the disclosed apparatuses, systems and methods. Two representative types are a) thin-film transistors (TFT, α-Si:H) and b) mono-crystalline silicon CCD/CMOS detectors. Although their quantum efficiency is high, the readout speed of TFT detectors is generally less than 30 frames per second, reaching only 100 frames per second. On the other hand, the readout speed of CCD/CMOS detectors can be extremely high, such as 10,000-30,000 frames per second, and are coupled with fiber-optical tapers, resulting in low quantum efficiency. For example, the 1000 Series camera from Spectral Instruments (Tucson, Ariz.), can be used. This camera is compact, measuring 92 by 92 by 168 mm. Two, three, and four-phase architecture CCDs from Fairchild Imaging (Milpitas, Calif.), E2V (Elmsford, N.Y.), and Atmel (San Jose, Calif.) can be placed in the selected camera. The readout and digitization can use 16-bit digitizer. The pixel readout rate can be varied from 50 kilHz to 1 MHz. The gain of the analog processor can be modified under computer control to compensate for the gain change of the dual slope integrator at different clocks. The pixel readout rate can be set to a detector plane, the slopes of the projected inter-PI lines were found as shown in FIG. 3. Then, a source position was selected to be (x_0, y_0). By construction, $x_0 \in [0, 1)$ and $y_0 \in [0, 1)$. Hence, the projections of $y_0(s)$, $y_0 \in [1, 2, 3]$ on a detector plane is denoted by S_{y_0}. Clearly, x_0 could reach its highest value, and the source position was selected as the intersection of $y_0(s)$, $y_0 \in [1, 2, 3]$ and the inter-PI lines project onto the corresponding detector plane was determined. For simplicity, in this disclosure the projection of $y_0(s)$, $y_0 \in [1, 2, 3]$ on a detector plane is denoted by S_{y_0}.

Lemma 1.

On a detector plane, the slopes of the projected inter-PI lines $S_{y_0}/S_{j+k=0,1}^{mod 3} + 1$ and $S_{j+k=0,1}^{mod 3} + 1$ are always positive, and that the inter-PI line $S_{y_0}/S_{j+k=0,1}^{mod 3} + 1$, $j \in \{1, 2, 3\}$ is always negative.

Proof of Lemma 1.

Without loss of generality or wishing to be limited by theory, the source position was selected to be $y_0(s_0)$, $s_0 \in (s_1, s_2)$. By construction, $s_0 = s_1 < 2\pi$, $s_0 = s_2 < 2\pi$ and $s_0 = s_2 > 0$. Hence, the projections of s_1, s_2, and s_0 were always to the left of those of s_1, s_2, and s_0 respectively (FIG. 18). When $s_0(s_1, s_2)$ changed, the point x_0, i.e., the projection of x onto the detector plane, was moved into the region $G_1 \cup G_2 \cup G_3$. Clearly, x_0 could reach its highest value in the vertical direction when x_0 was at the intersection of G_1, and G_1^{-1} (respectively, of G_1 and G_1^{-1}). Also, the vertical coordinates at these points are

$$v_{min} = 1.3794 - \frac{2\pi R}{D}, \quad v_{max} = 1.3794 + \frac{2\pi R}{D}.$$
respectively. Moreover, the lowest point on \(\Gamma_1 \) and the highest point on \(\Gamma_2 \) are

\[
\begin{align*}
\phi_1' &= 1.3801 \frac{Dh}{2\sqrt{R}} \\
\phi_2' &= -1.3801 \frac{Dh}{2\sqrt{R}}
\end{align*}
\]

respectively. Evidently, \(\phi_1'' \equiv \phi_2'' \) and \(\phi_1''' \equiv \phi_2''' \). Since \(\delta_1 \) and \(\delta_2 \) were to the left of \(s_3 \) and \(s_1 \), the slopes of the inter-PI lines \(\delta_3 \delta_2 \) and \(\delta_3 \delta_1 \) were positive for all \(s \) in \(G \).

The inter-PI line \(\delta_3 \delta_2 \) was satisfied by EQUATION 18 below:

\[
\begin{align*}
x_1 &= R \cos \mu_0 + R(1 - \cos \phi) \\
x_2 &= R \sin \mu_0 + R(1 - \phi) \\
x_3 &= \frac{h}{2} \left(\frac{s}{3} - \frac{2 \phi}{3} \right) + \frac{h}{2} \left(1 - \phi \right) \left(\frac{s}{3} - \frac{4 \phi}{3} \right)
\end{align*}
\]

where \(\mu \in [0, 1] \) and \(s_1, s_3, e(s_0, s_0 + 2\pi) \).

By allowing

\[
\begin{align*}
x_1 &= r_1 \cos \mu_0 \\
x_2 &= r_1 \sin \mu_0
\end{align*}
\]

where \(r, \mu \in [0, 0.495] \) and \(\mu, e \in [0, 2\pi] \).

The following was left:

\[
\frac{\cos \left(s_3 - s_2 \right)}{2} = \frac{r_1 \sin(\mu_0 - \phi)}{\sqrt{R^2 + r_1^2 - 2Rr_1 \cos(\mu_0 - \phi)}}
\]

then, EQUATION 20 was rewritten as EQUATION 21 below:

\[
\cos \frac{s_3 - s_2}{2} = \frac{\sin(\mu_0 - \phi)}{\sqrt{\left(\frac{R}{r_1} \cos(\mu_0 - \phi) \right)^2 + \sin^2(\mu_0 - \phi)}}
\]

When \(r_1 = s_2 - s_1 \) was fixed and \(r_0 \) was reduced,

\[
\left| \cos \frac{s_3 - s_2}{2} \right|
\]

decreased. Therefore, the right side of EQUATION 21 reached its maximum or minimum when \(r_0 \) was maximized, i.e. at \(r_0 = 0.495 \). The maximum and minimum values were numerically calculated (FIG. 19A), and shown below in EQUATIONS 22 and 23:

\[
-0.4949 \leq \cos \frac{s_3 - s_2}{2} \leq 0.4949
\]

or \(2.1062 < s_3 - s_2 < 4.1770 \)

Next, it was shown that \(0 \leq s_2 - s_0 \leq 4.1773 \) implied

\[
v_3(s_3 - s_2) = v_3(s_2 - s_0) = 0,
\]

where

\[
v_1(s_3 - s_0) = \frac{Dh \cos \phi}{2\sqrt{R}} \left(s_3 - s_0 \right)^2
\]

and

\[
v_2(s_2 - s_0) = \frac{Dh \cos \phi}{2\sqrt{R}} \left(s_2 - s_0 \right)^2
\]

FIG. 19B shows the function \(\Phi(s = 1 - \cos s(0, 4.3\pi)) \), demonstrating that \(v_1(s) \) was always positive. Hence, \(v_1(s_3 - s_0) \) was monotonically increasing. \(s_3 = s_2 + 2 + 2.1062 \) was fixed and the function \(\Psi(s_3 - s_0) = v_3(s_3 - s_0) \) was plotted in FIG. 19C. Clearly, this function was always positive in the range \(0 \leq s_3 - s_0 \leq 4.1773 \). Note that \(s = 4.1773 + s_0 \) was the intersection of \(\Gamma_1 \) and \(\Gamma_{11} \), and \(s_3 \) could not be to the left of this point (otherwise, \(x \) is outside \(G \)).

EQUATION 24 indicated that \(s_3 \) was always greater than \(s_2 \) in the vertical direction. Since \(s_2 \) was to the right of \(s_1 \), the slope of the inter-PI lines \(s_3 s_2 \) was always positive. Due to symmetry, the other two cases \(s_3, s_2 \) and \(s_3, s_1 \) were handled similarly. This finishes the proof.

Lemma 2.

A T-curve cannot be tangent to an A-curve at an interior point of \(T \).

Proof of Lemma 2.

The interior point of T-curve can be any point of the T-curve except an endpoint. It has been proved previously that a T-curve is smooth everywhere, except possibly at a cusp. When \(s_3 \), \(\mu \in \{1, 2, 3\} \), where \(\mu \) is chosen to be the point where the cusp occurs. It was assumed that a T-curve was tangent to an A-curve at \(\alpha(s) \). If \(s = s_3 \), \(e(s_3, s_3') \), where \(s_3, s_3' \) were the endpoints of the T-curve, then the osculating plane \(\Pi_e(x) \) intersected the helix \(y_1(s) \) at only one point and it contained one inter-PI line. By construction, \(\Pi_e(x) \) intersected the detector plane at the asymptote of the Tam-Danielson window boundary and \(x \) belonged to the asymptote. Connecting \(x \) and \(s_3, s_3' \) and \(s_3 \) we detected two inter-PI lines. Clearly, \(\Pi_e(x) \) could not contain any of them. By Lemma 1, the third inter-PI line had a negative slope, thus it would not overlap the asymptote. Hence, \(\Pi_e(x) \) could not contain it. Consequently, a negative T-curve was smooth in a neighborhood of \(\alpha(s) \).

If \(0 \) was chosen to be the polar angle for the great circle \((x - y_1(s')) \), \(e(x, y_1(s')) \), \(\mu \in \{1, 2, 3\} \), then the A-curve could consist of all the unit vectors \(\alpha_1(0)(x - y_1(s')) \). Clearly, \(\alpha_1(0) \) could be perpendicular to \(\alpha_1(0)(x - y_1(s')) \). By construction, the T-curve was tangent to the A-curve at \(\alpha(s) \). Hence, \(\alpha(s) \) was parallel to \(\alpha_1(0) \). That is, \(\alpha(s) \) was perpendicular to \(\alpha_1(0) \) (and \(x - y_1(s') \)). Because \(\alpha(s) \) was also perpendicular to \((x - y_1(s')) \), \(s_3'(s_3, s_3') \), \((x - y_1(s')) \) was parallel to \((x - y_1(s')) \) and \(s_3' = s_3 \), which contradicted the assumption that \(s' \) is an inner point of the T-curve. This finishes the proof.

Lemma 3.

Case 1, 2, 4, 6, 7 do not occur for \(r < 0.495 \) and Case 5 does not occur for \(r < 0.265 \).

Proof of Lemma 3.

Cases 1 and 2 were impossible because they mean that there can be a plane containing three inter-PI lines or tangent to three inter-PI arcs. In Case 4, there can be one plane containing one inter-PI line and tangent to two inter-PI arcs. If one assumes this inter-PI line is \(s_1 \), \(s_2 \), \(s_3' \), one chooses a point \(s_3 \) on \(y_1(s) \) and denotes \(L = \Pi \cap \text{plane} \), then by construction, on the detector plane \(x \) is on \(\Gamma_1 \) and it overlaps \(s_3' \). Then, \(L \) may intersect \(\Gamma_1 \) and \(\Gamma_{11} \) or \(\Gamma_{21} \) and \(\Gamma_{22} \), see FIG. 20. Because the points of tangency are on the inter-PI arcs, the endpoint \(s_3' \) is to the left of the tangency for case A and \(s_2 \) was to the right of the tangency for case B. Connecting \(s_3' \) and \(X = \frac{s_2}{s_2} \) we find that the slope of the inter-PI line \(s_2 s_3' \) could be negative. By Lemma 1, these two cases were impossible.
In Case 5, there was one plane containing one inter-PI line and tangent to one inter-PI arc at the inflection point. Thus, the inter-PI line on the detector overlapped the inflection line, i.e., \(\overrightarrow{s_2s_3} \) overlapped \(\overrightarrow{L_\theta} \), when \(s_2 = s_3 = s_4 = -2s_\mu \) where \(s_\mu \) is the difference between \(s_2^* \) and \(s_3^* \). When looking at EQUATION 21 and \(s_\mu = s_3 - s_2 \) is fixed, the absolute value of \[
\frac{\text{cov}(s_2^* - s_3^*)}{2}
\] was monotonically decreasing when \(r_\theta \) was reduced. Then, the range of \(s_2^* - s_3^* \) was narrowed. In other words, the difference between \(s_2^* \) and \(s_3^* \), became closer to \(\pi \). Case 5 occurred when \(s_2^* - s_3^* = s_\mu \). If order to exclude Case 5, the range of \(s_2^* - s_3^* \) could not cover the value \(s_\mu = 2.6053 \). Hence, the minimum range of \(s_2^* - s_3^* \) is \(2.6053 < s_2^* - s_3^* / 2 \pi = 2.6053 \). That is, \[
-0.2649 < \frac{x_0 - x_1}{2} < 0.2649 \text{ and } \cos \left(\frac{x_0 - x_1}{2} \right) = 0.2649
\] reached its extreme when \(r_\theta = 0.265 \). From EQUATIONS 21 and 22 we have \(s_2^* - s_3^* = s_\mu \), only for \(r_\theta = 0.265 \) thereby contradicting our condition. Hence, Case 5 is impossible for \(r_\theta = 0.265 \).

In Case 6, a T-curve will intersect one A-curve twice before meeting a cusp. Suppose this took place at inter-PI arc \(L_\pi \). A point \(s = s_\pi^* \) on \(y_3(s) \) was chosen and observations of what happens on the detector plane when s moves were taken. By construction, the plane \(\Pi \) containing \(y_3(s) \) and \(x \) intersected the detector plane at the line \(L_\theta \) which was parallel to the helix tangent across \(x \). At \(s = s_\pi^* \), \(x \) was on \(x = s_\pi^* \) and \(\Pi \) contained inter-PI line \(\overrightarrow{s_\pi^*s_\pi^*} \). As s moved along \(y_3(s) \), \(x \) moved downwards. Notice that \(L_\theta \) was parallel to the asymptote of the Tam-Dennison window, so it would not intersect \(\Pi \) provided that \(x \) moved across the asymptote, at where the cusp occurred. Hence, \(\Pi \) would not contain the inter-PI line \(\overrightarrow{s_\pi^*s_\pi^*} \) and Case 6 was impossible. By Lemma 2, Case 7 is impossible. This finishes the proof.

Lemma 4.

The inflection point \(\overrightarrow{s_\pi(s_\pi)} \) is inside the inter-PI arc when \(x \) is in \(G_{21} \) (\(G_{22} \)).

Proof of Lemma 4.

By Lemma 3, any point in the area \(r_\theta = 0.265 \) had three cusps in the diagram. Note that there was only one IP in each inter-PI arc within \(G_\pi \). Since all three cusps were in \(D_\pi \), an osculating plane of one inter-PI arc intersected two other inter-PI arcs exactly once at one point. Assuming that this osculating plane \(\Pi_\pi \) contained \(x \) and considering \(\Pi_\pi \) of the second inter-PI arc (i.e., \(y_3(s) \)), \(s_\pi^* \) was set to be the point where it intersected the first inter-PI arc (i.e., \(y_3(s) \)). \(s \) was moved along the first inter-PI arc and the results were observed with \(x \) on the detector when \(s = s_\pi^* \), \(x \) entered the Zhao window through \(\Gamma \), and when \(s = s_\pi^* \), \(x \) belongs to \(L_\mu \).

As follows from the diagram, the point \(s_\pi^* \) must be inside the second inter-PI arc, i.e., between \(s_\pi^* \) and \(s_\pi^* \). As the point \(s \) moved further, the difference \(s_\pi^* - s_\pi^* \) became smaller, and the point \(s_\pi^* \) moved to the right of \(s_\pi^* \) along \(\Gamma \). The inter-PI line \(\overrightarrow{s_\pi^*s_\pi^*} \) had a positive slope. Thus, as long as \(x \) was inside \(G_{21} \), the point \(s_\pi^* \) was always to the left of \(s_\pi^* \) and the case where \(x \) was in \(G_{22} \) can be similarly treated. This proves Lemma 4.
the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles "a" or "an," as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.

Throughout this application, various publications are referenced. The disclosures of these publications in their entirety are hereby incorporated by reference into this application in order to more fully describe the features of the invention and/or the state of the art to which this pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the portion of this disclosure in which the reference is relied upon.

The invention claimed is:

1. A computed tomography (CT) imaging method comprising:
 (a) collecting cone beam data from three detectors during a scan of an object;
 (b) identifying two families of lines on a detector plane DP(s) corresponding to a source position s and containing the corresponding detector and intersecting the cone beam, and two families of lines include:
 i. a first family of lines parallel to 10, where 10 is the projection of the helical tangent at current source position;
 ii. a second family of lines tangent to Γ+1 and Γ−1, or parallel to the horizontal axis of the plane DP(s), where Γ+1 is the projection of the helical turn φm=φs+2π onto the plane DP(s);
 (c) a parameter q along the scan path which describes the point being projected;
 (d) performing Hilbert transform of the derivative of the cone beam data with respect to the source position;
 (e) back projecting said filtered data to form a precursor of said image; and
 (f) repeating steps (a), (b), (c), (d) and (e) to obtain an image.

2. The method of claim 1 further comprising:
 (a) collecting cone beam data from three detectors during a scan of an object;
 (b) performing a computationally efficient filtered backprojection (FBP) and theoretically exact/quasi-exact algorithm to generate image data.

3. A method of computing images derived from triple-source spiral computed tomography scan with three detectors, comprising the steps of:
 (a) collecting cone beam data from three detectors during a scan of an object;
 (b) identifying two families of lines on a detector plane DP(s) corresponding to a source position s and containing the corresponding detector and intersecting the cone beam, and two families of lines include:
 i. a first family of lines parallel to 10, where 10 is the projection of the helical tangent at current source position;
 ii. a second family of lines tangent to Γ+1 and Γ−1, or parallel to the horizontal axis of the plane DP(s), where Γ+1 is the projection of the helical turn φm=φs+2π onto the plane DP(s);
 (c) a parameter q along the scan path which describes the point being projected;
 (d) performing Hilbert transform of the derivative of the cone beam data with respect to the source position;
 (e) back projecting said filtered data to form a precursor of said image; and
 (f) repeating steps (a), (b), (c), (d) and (e) to obtain an image.

4. The method of claim 3, wherein identifying the second family of lines includes:
 (a) collecting cone beam data from three detectors during a scan of an object;
 (b) performing a computationally efficient filtered backprojection (FBP) and theoretically exact/quasi-exact algorithm to generate image data.

5. A method of computing images derived from triple-source spiral computed tomography scan with three detectors, comprising the steps of:
 (a) collecting cone beam data from three detectors during a scan of an object;
 (b) identifying two families of lines on a detector plane DP(s) corresponding to a source position s and containing the corresponding detector and intersecting the cone beam, and two families of lines include:
 i. a first family of lines parallel to 10, where 10 is the projection of the helical tangent at current source position;
 ii. a second family of lines tangent to Γ+1 and Γ−1, or parallel to the horizontal axis of the plane DP(s), where Γ+1 is the projection of the helical turn φm=φs+2π onto the plane DP(s);
 (c) a parameter q along the scan path which describes the point being projected;
 (d) performing Hilbert transform of the derivative of the cone beam data with respect to the source position;
 (e) back projecting said filtered data to form a precursor of said image; and
 (f) repeating steps (a), (b), (c), (d) and (e) to obtain an image.
the lines parallel to the horizontal axis of the plane DP(s), when the projection of x onto DP(s) is located in the area bounded by Γ_{q}, Γ_{r}, L_{r}, L_{0}, Γ_{r+1} and Γ_{r+1}', where
\begin{align*}
\Gamma_{q} & \text{ and } \Gamma_{r} \text{ are the projections of the object support limitation } \ \gamma = 0.495 \ R \text{ onto DP(s);} \\
L_{r} & \text{ is the inflection line of } \Gamma_{r-1}; \\
L_{0} & \text{ is the inflection line of } \Gamma_{r+1}; \\
r & \text{ is the radius of the object support, and} \\
R & \text{ is the radius of the scanning trajectory.}
\end{align*}

5. The method of claim 3, wherein the back projection step(e) includes:

(i) fixing a reconstruction point x, which represents a point inside the object being scanned where it is required to reconstruct the image;

(ii) determining the three inter-PI arcs for x;

(iii) finding the projection \hat{x} of x onto a detector plane DP(s);

(iv) identifying lines from the two families of lines and points on the said lines that are passing through the said projection \hat{x};

(v) computing contribution from filtered cone beam data to the image being reconstructed at the point x by multiplying
\begin{equation}
\frac{1}{4\pi|x-y|^{3}}
\end{equation}

where
\begin{equation}
\begin{align*}
|L_{r}^{s}| & \text{ is the projection of the helical tangent at current source position } \ \gamma + 1; \\
|L_{0}^{s}| & \text{ is the projection of the helical tangent at current source position } \ \gamma + 1; \\
r & \text{ is the radius of the object support, and} \\
R & \text{ is the radius of the scanning trajectory.}
\end{align*}
\end{equation}

6. The method of claim 5, wherein the three inter-PI arcs for x are determined according to the following rules:

-the endpoints of the inter-PI arc on a first helical turn $y_{1}(s)$ are $s=s_{1}$ and $s=s_{1}^{+}$, $y_{1}(s_{2})>y_{1}(s_{1})$;

-the endpoints of the inter-PI arc on a second helical turn $y_{2}(s)$ are $s=s_{2}$ and $s=s_{2}^{+}$, $y_{2}(s_{2})>y_{2}(s_{1})$;

-the endpoints of the inter-PI arc on a third helical turn $y_{3}(s)$ are $s=s_{3}$ and $s=s_{3}^{+}$, $y_{3}(s_{3})>y_{3}(s_{1})$;

where
\begin{equation}
\begin{align*}
L_{r}^{s} & \text{ is the projection of the current helical turn defined by } s<q<s+2\gamma \text{ onto the plane DP(s);} \\
L_{0}^{s} & \text{ is the projection of the helical turn defined by } s<q<s+2\gamma \text{ onto the plane DP(s);} \\
L_{r}^{s} & \text{ is the inflection line of } \Gamma_{r-1}; \\
L_{0}^{s} & \text{ is the inflection line of } \Gamma_{r+1}; \\
r & \text{ is the radius of the object support, and} \\
R & \text{ is the radius of the scanning trajectory.}
\end{align*}
\end{equation}

7. A method of computing images derived from triple-source spiral computed tomography scan with three detectors, comprising the steps of:

(a) collecting cone beam data from three detectors during a scan of an object;

(b) for each source position $y_{j}(s)$, let $j \in \{1, 2, 3\}$, identifying two families of lines on a detector plane DP(s) corresponding to a source position s and containing the corresponding detector and intersecting the cone beam, and two families of lines include:

(i) a first family of lines tangent to Γ^{2} and Γ^{2}, where Γ^{2} is the projection of the current helical turn defined by $s<q<s+2\gamma$ onto the plane DP(s);

(ii) a second family of lines tangent to Γ^{+1} and Γ^{+1}, or parallel to the horizontal axis of the plane DP(s), where Γ^{+1} is the projection of the helical turn defined by $s<q<s+2\gamma$ onto the plane DP(s);

(c) computing the derivative of the cone beam data with respect to the source position;

(d) performing the Hilbert transform of the derivative of the cone beam data along the two families of lines, where the Hilbert transform is a convolution between the derivative of the cone beam data and a kernel function $h(t)=1/\pi t$;

(e) back projecting said filtered data to form a precursor of said image; and

(f) repeating steps a, b, c, d and e until an image of the object is completed.

8. The method of claim 7, wherein identifying the first family of lines includes:

the lines tangent to Γ^{2}, when the projection of x onto DP(s) is located above L_{r}^{s}, the lines tangent to Γ^{2}, when the projection of x onto DP(s) is located below L_{r}^{s},

where L_{r}^{s} is the projection of the helical tangent at current source position.

9. The method of claim 7, wherein identifying the second family of lines includes:

the lines tangent to Γ^{+1}, when the projection of x onto DP(s) is located in the area bounded by Γ_{q}, Γ_{r}, and Γ^{+1}; the lines tangent to Γ^{+1}, when the projection of x onto DP(s) is located in the area bounded by Γ_{r}, L_{r}, and Γ^{+1}; the lines parallel to the horizontal axis of the plane DP(s), when the projection of x onto DP(s) is located in the area bounded by Γ_{r}, Γ_{r}, L_{r}, L_{r}, Γ^{+1} and Γ^{+1}, where Γ_{q} and Γ_{r} are the projections of the object support limitation $\gamma = 0.495 \ R$ onto DP(s);

L_{r} is the inflection line of Γ^{+1};

L_{0} is the inflection line of Γ^{+1};

r is the radius of the object support, and

R is the radius of the scanning trajectory.

10. The method of claim 7, wherein the back projection step(e) includes:

(i) fixing a reconstruction point x, which represents a point inside the object being scanned where it is required to reconstruct the image;

(ii) determining the three inter-PI arcs for x;

(iii) finding the projection \hat{x} of x onto a detector plane DP(s);

(iv) identifying lines from the two families of lines and points on the said lines that are passing through the said projection \hat{x};

(v) computing contribution from filtered cone beam data to the image being reconstructed at the point x by multiplying
\begin{equation}
\frac{1}{4\pi|x-y|^{3}}
\end{equation}

where
\begin{equation}
\begin{align*}
|L_{r}^{s}| & \text{ is the projection of the helical tangent at current source position } \ \gamma + 1; \\
|L_{0}^{s}| & \text{ is the projection of the helical tangent at current source position } \ \gamma + 1; \\
r & \text{ is the radius of the object support, and} \\
R & \text{ is the radius of the scanning trajectory.}
\end{align*}
\end{equation}
11. The method of claim 7, wherein the three inter-PI arcs for x are determined according to the following rules:

the endpoints of the inter-PI arc on a first helical turn \(y_1(s) \) are \(s=s_1^e \) and \(s=s_1^e \); \(s_1^e>s_1^f \);
the endpoints of the inter-PI arc on a second helical turn \(y_2(s) \) are \(s=s_2^e \) and \(s=s_2^e \); \(s_2^e>s_2^f \);
the endpoints of the inter-PI arc on a third helical turn \(y_3(s) \) are \(s=s_3^e \) and \(s=s_3^e \); \(s_3^e>s_3^f \);

\(\theta_2-y_1(s_1^e) = 2\alpha \);
\(\theta_2-y_2(s_2^e) = 2\alpha \);
\(\theta_2-y_3(s_3^e) = 2\alpha \);

the line connecting \(y_2(s_2^e) \) and \(y_3(s_3^e) \) passes through x;
the line connecting \(y_2(s_2^e) \) and \(y_1(s_1^e) \) passes through x;
the line connecting \(y_3(s_3^e) \) and \(y_2(s_2^e) \) passes through x.