Rf Low Pass Filter Design And Fabrication Using Integrated Passive Device Technology

2006

Heli Li

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Electrical and Computer Engineering Commons

STARS Citation

https://stars.library.ucf.edu/etd/957

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
RF LOW PASS FILTER DESIGN AND FABRICATION
USING INTEGRATED PASSIVE DEVICE TECHNOLOGY

by

HELI LI
B.S., Zhejiang University, Hangzhou, China, 2003

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Fall Term
2006
ABSTRACT

In this thesis, the whole process of design a low pass filter (LPF) for the wireless communication application has been presented. Integrated passive device technology based on GaAs substrate has been utilized to make the LPF. Schematic simulation and electromagnetic simulations are extensively used in the design process. EM simulation is used in the selection of layout design and processing parameters for design optimization of both the inductors and IPD harmonic filters. The effective use of EM simulation enables us to realize the successful development of high performance harmonic filters.

To make the optimization be more flexible and also for a deeper understanding of the optimization theory, optimization using genetic algorithm is also implemented. The weight of each targets are adjustable, and a non-uniformly distributed goal for the harmonic rejection range is introduced to achieve better optimization results.

The embedded LPF is built and measurement results show good agreement with the simulation data. This kind of very compact, high performance harmonic filters can be used in radio transceiver front-end modules. The realized harmonic filters have insertion loss less than 0.6 dB and harmonic rejections greater than 25 dB with a compact die size of 0.8 mm2.
ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Dr. Thomas X. Wu, for his guidance, advice and patience throughout this work. He is the best advisor and teacher I could have wished for. I am grateful for the opportunity to work with him.

I would also like to thank people from TriQuint. Kamran Cheema gave me this opportunity and management support to work with this project. Many people have been involved in this work also. Xiaomin Yang, Nicolas Layus, Arjun Ravindran, Riad Mahbub gave me a lot of technical support during this work. Without their expertise and additional comments, this work would not be so smooth.

I would also like to thank Dr. W. Linwood Jones, for his support as my committee member.

Finally, I would like to express my gratitude to my family. My husband gives me all his support to help me to overcome the difficulties. My parents always encourage me and guide me, supported each of my decision and advised me from time to time.
TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

CHAPTER ONE: INTRODUCTION ... 1
 1.1 Filter Integration ... 1
 1.2 Basic Filter Types ... 3
 1.3 Harmonic Filters ... 5
 1.4 Organization of Thesis .. 6

CHAPTER TWO: TOPOLOGY AND SCHEMATIC DESIGN ... 7
 2.1 LPF Specification .. 7
 2.2 LPF Topology ... 9
 2.3 Optimization in ADS .. 13
 2.4 Bondwire Sensitivity .. 15

CHAPTER THREE: OPTIMIZATION USING GENETIC ALGORITHMS 18
 3.1 Optimization Based on Genetic Algorithms (GA) .. 18
 3.2 Flow Chart of GA ... 19
 3.2.1 Selecting the Variables and the Cost Function .. 21
 3.2.2 Selection, Mating and Mutation ... 25
3.3 GA Optimization Results

CHAPTER FOUR: ON CHIP INDUCTOR DESIGN

4.1 Spiral Inductor Modeling

4.1.1 Inductance

4.1.2 Series Resistance

4.1.3 Parasitic Capacitance

4.1.4 Quality Factor

4.2 Inductor Design

4.2.1 Two Port Network Models of Inductor

4.2.2 Designed Inductor

CHAPTER FIVE: 3D ELECTROMAGNETIC MODELING

5.1 Coupling Effect in Real Circuit

5.2 3D Electromagnetic Simulation

CHAPTER SIX: LAYOUT AND FABRICATION

6.1 Advantage of GaAs Substrate

6.2 TriQuint TQRLC Technology

6.3 LPF Test Result

CHAPTER SEVEN: CONCLUSION

LIST OF REFERENCES
LIST OF FIGURES

Figure 1 A block diagram of the front-end module ... 3
Figure 2 General filter response (a) Low pass (b) High pass (c) Band pass (d) Band stop 4
Figure 3 The fundamental frequency and the harmonic frequencies .. 5
Figure 4 Circuit topology of the LPF ... 10
Figure 5 Circuit topology of the LPF with Bondwires .. 11
Figure 6 3D model of the wirebond connection .. 12
Figure 7 Electrical performance with the optimized lumped elements in ADS 15
Figure 8 Flowchart of a binary GA [10] ... 20
Figure 9 Optimization target .. 22
Figure 10 Optimization goal for the harmonics rejection range .. 23
Figure 11 S21 optimization results by genetic algorithm ... 26
Figure 12 Top view of a spiral inductor ... 28
Figure 13 3D view of inductor on the substrate with in parasitic capacitance highlighted 31
Figure 14 A practical inductor model ... 32
Figure 15 Electrical parameters of L1 ... 36
Figure 16 Electrical parameters of L2 ... 37
Figure 17 3D modeling of LPF in the HFSS .. 40
Figure 18 Interface of the HFSS simulation result connected into ADS 41
Figure 19 3D simulation results compare with circuit level simulation results 42
Figure 20 Optimized 3D simulation results ... 43
Figure 21 Cross section of Triquint’s TQRLC process technology ... 46
Figure 22 Fabricated Low Pass Filter ... 48
Figure 23 Test environment setup and simulation ... 49
Figure 24 Electrical performance of realized LPF .. 50
LIST OF TABLES

Table 1 Design specification of LPF for GSM/AMPS application ... 9
Table 2 Optimized value based on ADS simulation.. 14
Table 3 The sensitivity of bondwire inductance to the goals... 17
Table 4 The lumped element optimization using genetic algorithms .. 26
Table 5 Inductor geometric parameters ... 35
Table 6 Selected Properties of GaAs and Silicon .. 45
Table 7 TQRLC process details... 47
Table 8 Measurement results for the realized LPF ... 51
CHAPTER ONE: INTRODUCTION

Wireless communication has become increasingly important in the past several years. Despite this increase in complexity, both the size and cost of handsets have continued to decline significantly. This has been achieved by increasing levels of integration. Since the cellular phones are designed to meet the multi-band application instead of single band nowadays, highly integrated front-end modules are designed for this kind of purposes, which include filters and switch in a single module. For the size and cost limitation, high level of integration for filters are required.

1.1 Filter Integration

The trend of system’s size and cost reduction requires the filters to be integrated in the module. There are some obvious advantages if the filters can be integrated. While discrete filters take a large portion of printed circuit board space and increase the transceiver’s overall size, size can be reduced by integrating filters on RF modules. Besides the size reduction, the cost of the RF receiver can also be reduced because fewer external components will be required. Moreover, module solution provides the RF signal with the opportunity to travel on chip, so that the power
dissipation will be reduced. For the traditional one with discrete filter, RF signals need to travel off-chip through package pins to an external filter on the printed circuit board, which introduces the power loss [1].

Multi-chip module (MCM) is one of the solutions to do the integration. It is a structure consisting of two or more integrated circuits electrically connected to a common circuit base and interconnected by conductors in the base. MCM has more flexibility to tailor its characteristics to meet the needs of a specific RF chipset. In addition, it is much easier, faster, and cheaper, to add new functionality to a multi-chip solution than to a single dedicated die solution [2].

One filter integration application is used for the design of front-end module (FEM), which integrates the switching and transmits LPF function, as well as SAW filters. Figure 1 is a block diagram of a FEM. This kind of dual-band FEM contains a SP3T (single pole three throw) switch, diplexer, two integrated LPFs and two SAW filters. Signals come from the antenna to the SP3T switch, then to the diplexer where GSM900 and DCS 1800 are separated, and then to the two saw filters respectively. At the Tx path, the amplified signals travel through the LPF and transmitted to the antenna.

The whole FEM module is in a scale of several millimeters. To achieve cost and size reduction, high performance passive process technology for integrated passive devices (IPD) are used for the LPF fabrication. The small size LPF based on IPD technology are widely utilized in hand-
held RF module and system requiring low cost solution and strict volumetric efficiency, such as front end module.

![Figure 1 A block diagram of the front-end module](image)

1.2 Basic Filter Types

Filters are essential to the operation of most electronic circuits. In circuit theory, a filter is an electrical network that alters the amplitude and/or phase characteristics of a signal with respect to frequency. Ideally, a filter will not add new frequencies to the input signal, nor will it change the component frequencies of that signal, but it will change the relative amplitudes of the various frequency components and/or their phase relationships. Filters are often used in electronic systems to emphasize signals in certain frequency ranges and reject signals in other frequency ranges. Such a filter has a gain which is dependent on signal frequency [3]. Based on the
frequency domain responses, there are four filter types, named as low pass filter, high pass filter, band pass filter and band stop filter. Low pass filters (LPF) allow low frequencies to pass while rejecting the high frequencies which are higher than the cut off frequency. High pass filters have the opposite function to that of LPF. They allow the frequency above the cut off to pass with the minimal loss, and reject the signal in the low frequency. Band pass filters have upper and lower cut-off frequencies. The upper cut-off frequency determines the maximum frequency passed, while the lower cut-off frequency decides the minimum frequency to be passed. Band stop filters are the opposite to band pass designs. Figure 2 illustrate those kinds of filter types.

![Diagram of filter types](image)

Figure 2 General filter response (a) Low pass (b) High pass (c) Band pass (d) Band stop
1.3 Harmonic Filters

When signals are transmitted in the system, there are harmonic currents and voltages occurred, which means the currents and voltages that are continuous multiples of the fundamental frequency. Because harmonic currents provide power that cannot be used and also takes up electrical system capacity, they can lead to malfunctioning of the system, and result in downtime and increase in operating costs. For the improvement of the whole system, a harmonic filter is used to eliminate the harmonic distortion caused by appliances [4]. Figure 4 is the example of harmonic frequencies which accompany the fundamental frequency.

![Graph showing fundamental and harmonic frequencies](image)

Figure 3 The fundamental frequency and the harmonic frequencies
Harmonic Filters can be made in a passive way or in an active way. A passive harmonic filter is built using an array of capacitors, inductors, and resistors. There are two ways to eliminate the harmonics, one is to take the form of a simple line reactor, and another way is to use a series of parallel resonant filters. If the filter is placed in series with the load and uses parallel components, i.e., inductors and capacitors are in parallel, this filter is a current rejecter. If the filter is placed in parallel with the load and its components are built in series. This filter is a current acceptor.

1.4 Organization of Thesis

This thesis discusses the design procedure of on chip integrated filter design, including the characterization, design and fabrication of RF LPF using TQRLC technology on GaAs substrate.

Chapter 2 is focused on the topology and schematic design based on ADS simulation. Chapter 3 presents the Genetic Algorithm method for optimization. Chapter 4 introduces the on-chip spiral inductors design with HFSS. Chapter 5 is the 3D simulation procedure and result for the whole LPF. In Chapter 6, the realized filter and its measurement results are presented. And Chapter 7 is the conclusion.
CHAPTER TWO: TOPOLOGY AND SCHEMATIC DESIGN

Every circuit design comes from topology determination and schematic design. With circuit topology determination, a circuit level simulation and optimization based on the specification need to be performed. Schematic design establishes the general scope, conceptual design, scale and relationships among the components of the LPF.

2.1 LPF Specification

The LPF was built to cover the GSM/AMPS band from 824 MHz to 915 MHz, which can cover the Tx band for GSM850, GSM900 and AMPS band.

GSM represent for the Global System for Mobile Communication. GSM-850 is used in the United States, Canada and many other countries in the America. To send information from the mobile station to the base transceiver station, frequency range from 824 MHz to 849 MHz is used. Similarly, GSM-900 is used in most other parts of the world. It uses the frequency range from 890 MHz to 915 MHz to send information from the mobile station to the base transceiver
station. Except for this band of primary GSM (P-GSM), there is also Extended GSM (E-GSM) with Tx frequency range of 880 MHz to 915 MHz and Railways GSM (R-GSM) working at frequency form 876 MHz to 915 MHz.

The frequency band for Advanced Mobile Phone System (AMPS) is also covered. AMPS is one of the earliest commercial cellular systems. The frequencies allocated to AMPS by the FCC range between 824 to 849 MHz for mobile to base and 869 to 894 MHz for base to mobile. AMPS technology is currently deployed throughout North America and AMPS-derivative systems are deployed in a majority of worldwide cellular markets.

The specification of the LPF to be designed is listed in Table 1. There are several performance specifications used to represent a filter, including insertion loss, attenuation, return loss, ripple, etc. Insertion loss is the total RF transmission loss resulting from the inserting of a device in a transmission line. And it is the ratio of signal power at the output of the inserted device to the signal power at its input. Attenuation is the reduction in amplitude and intensity of a signal in the stop band. Attenuation in the frequency range of twice the passband is also called 2nd harmonic rejection. For the frequency range at three times of the passband, it is referred to as 3rd harmonic rejection. Return loss express the ratio at the junction of input port, of the amplitude of the reflected wave to the amplitude of the incident wave.
To design a harmonic rejection low-pass filter suitable for the application in the transmit pass of the front-end module, the insertion loss is required for less than 0.6 dB and the out of band rejection in the 2nd and 3rd harmonic frequency range is required to be more than 25 dB.

Table 1 Design specification of LPF for GSM/AMPS application

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency Range (MHz)</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>824 - 915</td>
<td>0.6 dB max</td>
</tr>
<tr>
<td>Return Loss</td>
<td>824 - 915</td>
<td>20 dB min</td>
</tr>
<tr>
<td>Attenuation</td>
<td>1648 - 1830</td>
<td>25 dB min</td>
</tr>
<tr>
<td>Attenuation</td>
<td>2472 - 2745</td>
<td>25 dB min</td>
</tr>
</tbody>
</table>

2.2 LPF Topology

Advanced Design System (ADS) is an electronic design automatic software system and it is used in our filter design. Figure 5 below shows the filter circuit topology. This five-element filter includes two embedded inductors and three capacitors. The inductor and capacitor pairs are designed for the harmonic rejection purpose.

Filter of this kind of topology can achieve high rejection at 2nd and 3rd harmonic frequencies and can hence be used for harmonic suppression in the FEM after power amplifier. The LC resonator L1/C1 and L2/C2 suppress the 3rd and 2nd harmonics, respectively. C3 functions as a blocking
capacitor, with the help the bondwire inductance, C3 and the bondwire can perform as another resonator.

Figure 4 Circuit topology of the LPF

When the LPF is combined in the module, there are bondwires used to connect the input and output pads with other ports. Bondwires are the dominant technique to connect an RFIC to the package, even though they have large self and mutual inductances. They are able to tolerate die thermal expansion and placement uncertainty. However, their inductance creates significant challenges for RFIC design, as well as some opportunities [6].
Because bondwires are made using gold with a diameter of 1 mil, there inductance cannot be neglected. It’s necessary to include the bondwire in the ADS schematic simulation. Figure 6 includes the bondwire inductance when the LPF is used in the module, where L_in, L_out and L_GND represent for the wire bond inductance.

The bondwire inductance is dependent on the length of the wire bond and the cross section area. The inductance and mutual inductance can be calculated using the Eq. (3.1) for straight wires [7], [8]

\[L \approx \frac{\mu_0 \cdot l}{2\pi} \cdot [\ln(\frac{2l}{r} - 0.75)] \]

(2.1)
where μ_0 is the permeability in free space, l is the wire length, and r is the radius of the wire.

The dominant technology in the industry nowadays is using the bondwire with the diameter of 1 mil. For the bondwire with 2 mm long, the formula can yield 2 nH for the inductance. So industry people estimate the inductor value of the bondwire by 1 nH/mm [9].

As long as the chip positions are fixed, the wire bond lengths are known. Except for the estimation based on the previous relationship, it is preferred to perform some HFSS simulation to simulate the inductance values for bondwires. Figure 7 shows the bondwire model in the HFSS simulation. The bondwire is used to connect one chip to another. GaAs substrate and BCB are set exactly as the thickness in the real chips.

![Figure 6 3D model of the wirebond connection](image)

Figure 6 3D model of the wirebond connection
After the simulation, we found that the inductance of the wire bond is approximately performed as 1 nH/mm at the 1 GHz, and the resistance is around 0.1 Ohm although it is also length dependent. To make things easier, we use the estimated value calculated with the relationship mentioned above.

In this design, the length of the wire bond connect to the input of LPF is 1.1 mm. For this one, we use an inductor with inductance of 1.1 nH and resistance of 0.1 Ohm to simulate in the circuit. Accordingly, the other two bondwires named as L_out and L_GND. We use 0.6 nH and 0.1 Ohm for both of them because they have the same length.

2.3 Optimization in ADS

After the circuit topology is determined, a circuit level simulation and optimization based on the specification including insertion loss and out-of-band rejection need to be conducted. There is an optimization tool available in the ADS, making it convenient to set up the optimization goals and then optimize the lumped elements. Here, the task is to design an LPF with the insertion loss less than 0.6 dB at 824 MHz to 915 MHz, and the out of band rejection in the 2nd and 3rd harmonic frequency range more than 25 dB. Usually the goals should be set more strictly than the specification to get good optimization.
The bondwire cannot be optimized because it is position dependent. When the position of the LPF is fixed, there is little room for the change of bondwire. However, there are two inductors named L1, L2 and three capacitors named C1, C2 and C3 that can be optimized to let the circuit perform well as the specifications are required. The values after optimization have been shown in Table 2.

Table 2 Optimized value based on ADS simulation

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>nH</td>
<td>5.05</td>
</tr>
<tr>
<td>L2</td>
<td>nH</td>
<td>4.6</td>
</tr>
<tr>
<td>C1</td>
<td>pF</td>
<td>0.76</td>
</tr>
<tr>
<td>C2</td>
<td>pF</td>
<td>1.89</td>
</tr>
<tr>
<td>C3</td>
<td>pF</td>
<td>2.91</td>
</tr>
</tbody>
</table>

L2 and C2 are used for the 2nd harmonic rejection, while L1 and C1 are for the 3rd harmonic rejection. The simulation results are shown in Figure 8. The realized insertion loss is less than 0.5 dB. Rejection of 2nd harmonic is greater than 25 dB, and the rejection of 3rd harmonic is greater than 32 dB.
Figure 7 Electrical performance with the optimized lumped elements in ADS

2.4 Bondwire Sensitivity

Although we know that the bondwires can influence the whole circuit performance, and they have to be simulated at the beginning of the circuit design. However, we don't want the circuit to be too sensitive with the bondwire length, unless the bondwire is initially designed with the purpose of substituting certain inductor. For our design, since the LPF is designed to embedded in a module, it’s better to let the circuit be stable, which means that the circuit is less dependent on the bondwire. So that the LPF is less position dependent, and can be utilized more flexibly.
In order to know how the parameters in the device model affect the whole circuit performance, we perform the sensitivity analysis for each bondwire. Sensitivity analysis is a fundamental element of gradient optimization methods. Sensitivity analysis comprises a single-point or infinitesimal sensitivity analysis of a design variable. For circuit design, it involves taking partial derivatives of the response with respect to a design variable of interest. It is thought that these numbers can help pinpoint variables that contribute disproportionately to performance variance. Sensitivities are approximated as follows:

$$S_{p_i} = \frac{\alpha R(P_i)}{\alpha P_i} = \frac{R(P_i^0) - R(P_i^+)}{P_i^0 - P_i^+}$$

(2.2)

where $R(P^0)$ is the response evaluated at the nominal point and $R(P^+)$ is the response due to a perturbation in the ith parameter.

Normalized sensitivities use the approximate gradient (single-point sensitivity) to predict the percentage change in the response due to a 1% change in the design variable. Normalized sensitivity is defined as

$$S_N - P_i = S_{p_{i}}[(P_i^0)/(R(P_i^0))] = \{(R(P_i^0) - R(P_i^+))/(R(P_i^0))\}/\{[P_i^0 - P_i^+] / P_i^0\}$$

(2.3)

The sensitivity of the bondwire has been analyzed, and the sensitivity is shown in Table 3.
Table 3 The sensitivity of bondwire inductance to the goals

<table>
<thead>
<tr>
<th>Optimization Goal</th>
<th>L_in</th>
<th>L_out</th>
<th>L_GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>insertion loss less than 0.5 dB</td>
<td>0.082</td>
<td>0.027</td>
<td>-0.036</td>
</tr>
<tr>
<td>2nd harmonic rejection larger than 25 dB</td>
<td>0.033</td>
<td>-0.006</td>
<td>0.109</td>
</tr>
<tr>
<td>3rd harmonic rejection larger than 25 dB</td>
<td>-0.008</td>
<td>-0.026</td>
<td>0.256</td>
</tr>
</tbody>
</table>

In the insertion loss point of view, the bondwire connected from the input pad to the module plays a more important role compared with other two bondwires. While consider the harmonic rejection, the L_GND is more sensitive. This gives the engineers with the idea that L_GND needs to be bonded in the module carefully to yield a good performance.
Optimization is the process of making things better. ADS provides with us a tool to optimize directly by choosing the optimization goal and optimization type. That is a convenience way to make things done quickly. However, it’s a black box and we don't know the detail in the code. Writing our own optimization code can make the optimization be more flexible. There are many types of optimization methods, like random, gradient, Newton, etc. Genetic algorithm is chosen for its advantage of producing stunning results when traditional optimization approaches fail sometimes.

3.1 Optimization Based on Genetic Algorithms (GA)

Genetic algorithms were formally introduced in the 1970s by John Holland at University of Michigan. It is an optimization and search technique based on the principles of genetics and natural selection which allows a population composed of many individuals to evolve under specified selection rules to a state that maximizes the fitness. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as
inheritance, mutation, selection, and crossover (also called recombination). Some of the advantages of a GA include that it [10]

- Optimizes with continuous or discrete variables
- Doesn’t require deviation information
- Simultaneously searches from a wide sampling of the cost surface
- Deals with a large number of variables
- Is well suited for parallel computers
- Optimizes variables with extremely complex cost surface
- Provides a list of optimum variables, not just a single solution
- May encode the variables so that the optimization is done with the encoded variables and
- Works with numerically generated data, experimental data, or analytical functions.

3.2 Flow Chart of GA

The GA begins by defining the optimization variables, the cost function, and the cost. It ends by testing for convergence. In between, a path through the components of the GA is shown as a flowchart in Figure 9.
Define cost function, cost, and variables
Select GA parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Mating

Mutation

Convergence check

Done

Figure 8 Flowchart of a binary GA [10]
3.2.1 Selecting the Variables and the Cost Function

The GA begins by defining a chromosome or an array of variable values to be optimized. The chromosome for this LPF optimization has 5 variables, for L1, L2, C1, C2 and C3. Then the chromosome is written as a 5 element row vector.

\[chromosome = [L1, L2, C1, C2, C3] \] \hspace{1cm} (3.1)

Each chromosome has a cost found by evaluating the cost function, \(f \), at L1, L2, C1, C2, C3.

\[Cost = f(chromosome) = f(L1, L2, C1, C2, C3) \] \hspace{1cm} (3.2)

The cost function is defined based on the optimization goal we desire. In the harmonic rejection LPF design, the topology with 2 inductors and 3 capacitors are used to pass the signal in the frequency range of 824 MHz and to 915 MHz, and have a high rejection especially for the 2\(^{nd}\) and 3\(^{rd}\) harmonic frequency range. Cost function including the low insertion loss and high harmonic rejection should be defined.

Cost function is based on the S21 parameter and the purpose to make the points in the passband close to zero and the points in the harmonic frequency range close to or less than -30dB, as illustrate in Figure 10.
N points evenly distributed in pass band have been chosen. Each point has a value. For the representation of S_{21} in the passband close to zero, it is defined in the cost function as the sum of those n values equals to zero.

$$\text{Cost}_{PB} = \sum_{1}^{N} S_{21}(n)$$ \hspace{1cm} (3.3)
For the representation of S21 in the harmonic frequency band less than -30 dB, the cost cannot simply add those S21 values together, since the S21 in the harmonic frequency range is not uniformly distributed. It’s necessary to use the sum of the difference between S21 and some target rejection value.

Figure 11 shows an enlarged harmonic frequency range of Figure 10. It shows that the lowest S21 in harmonic frequency range can be obtained approximately in the middle of the each frequency range. And the highest S21 is happened at the left and right edges of each rejection band. With this feature, an adjusted goal has been made, to fit the S21 in the middle deeper than what they are in the left and right edges, as shown in Figure 11.

![Figure 10 Optimization goal for the harmonics rejection range](image-url)
If we choose M points for the rejection band, m for each point, the points’ values in the dash line can be expressed as

\[G(m) = \text{lower}_\text{goal} + \left| \frac{M}{2} - m \right| \cdot \frac{2(\text{upper}_\text{goal} - \text{lower}_\text{goal})}{M} \] \hspace{1cm} (3.4)

The cost of those M points in the harmonic rejection band can be described as

\[\text{Cost}_HR = \sum_{i=1}^{M} (|S21(m)| - G(m)) \] \hspace{1cm} (3.5)

The total cost is the combination of the cost in the passband and the cost in the 2\text{nd} and 3\text{rd} harmonic rejection band. So the total cost is

\[\text{Cost}_\text{total} = \alpha \cdot \text{Cost}_\text{PB} + \beta \cdot \text{Cost}_HR2 + \gamma \cdot \text{Cost}_HR3 \] \hspace{1cm} (3.6)

Here, \text{Cost}_HR2 represent the cost for the 2\text{nd} harmonic rejection, while \text{Cost}_HR3 stand for the cost in the 3\text{rd} harmonic rejection region. \text{Cost}_\text{total} achieves to zero when specification is met. And \(\alpha \), \(\beta \) and \(\gamma \) are for the weight change. They are adjustable according to the importance of the application.
3.2.2 Selection, Mating and Mutation

The chromosomes are first selected randomly by the computer. Those who have lower costs will survive while those with higher costs are discarded. The selection rate can be adjusted, and is the fraction of the population that survives for the next step of mating.

Then two chromosomes are selected from the mating pools of survivors to produce two new offspring. After the parents have been chosen, a crossover point is randomly selected between the first and last bit of the parents’ chromosomes. And the four parts from the parents switch with each other internally. Those offspring are born to replace the discarded chromosomes.

Mutation is the second way of GA explores a cost surface. It can introduce traits not in the original populations and keeps the GA from converging too fast before sampling the entire cost surface. Simple point mutation changes from a 1 to a 0 or a 0 to a 1 have been chosen in our GA.

3.3 GA Optimization Results

Figure 12 is the optimization results using GA in MATLAB. The optimized value for L1, L2, C1, C2, C3 are listed in Table 4. The insertion loss is less than 0.41 dB, harmonic rejection is more than 30 dB for both 2nd and 3rd harmonic rejection band.
Table 4 The lumped element optimization using genetic algorithms

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>5.594</td>
</tr>
<tr>
<td>L2</td>
<td>4.8173</td>
</tr>
<tr>
<td>C1</td>
<td>0.80444</td>
</tr>
<tr>
<td>C2</td>
<td>1.8082</td>
</tr>
<tr>
<td>C3</td>
<td>3.2538</td>
</tr>
</tbody>
</table>

Figure 11 S21 optimization results by genetic algorithm
During the past decade, there is emergence of the portable and low cost consumer applications. Inductor is one of the most important circuit elements, especially for RF application. It can be not only used for filtering RF signals, but also included in low noise amplifiers, oscillators, etc. For low frequency applications, passive devices can be connected externally, but as frequency increases, the characteristics of the passive device would be overwhelmed by parasitic effects [11]. As a result, on chip passive components are commonly used in RF applications. The spiral inductor has established itself as a standard passive component in RF chip design. There is a great incentive to design, optimize and model spiral inductors.

4.1 Spiral Inductor Modeling

Spiral inductors are implemented in the integrated circuits by winding metal lines into spiral on a planar surface as shown in Figure 13. Although there are other shapes of spiral inductors used for particular purpose, a rectangular shaped inductor is the most traditional and classic one. The parameters of a rectangular inductor to describe its geometry are outer dimension as L1 and L2, number of turns, width and space.
4.1.1 Inductance

Inductance is the most important parameter to describe an inductor. It is an effect which results from the magnetic field that forms around a current carrying conductor. The magnetic flux is proportional to the current when electric current goes through the conductor. Current change will create a change in the magnetic flux and in turn generate an electromotive force that acts to
oppose this change in current. The larger the generated electromotive force is for a unit change in current, the larger the inductance.

4.1.2 Series Resistance

No inductor is perfect. There are losses in the inductor. The losses cannot be neglected since they can affect the whole circuit performance. In this case, series resistance is another major parameter to be considered.

The series resistance is the combination of the metal loss and the eddy current effect. Due to the finite conductivity of the metal trace, there is metal loss. When frequency increases, the current density becomes non-uniform and conductor is subjected to time varying magnetic fields. This introduces the formation of eddy current. Eddy current manifests itself as skin and proximity effects, and produces its own magnetic fields to oppose the original field. It can be either induced by the time varying current flow in itself, or by the time varying current produced by a nearby conductor. Eddy currents reduce the net current flow in the conductor and hence increase the ac resistance. Because spiral inductors being used are based on a multi-conductor structure, eddy currents are caused by both proximity and skin effects [12].
4.1.3 Parasitic Capacitance

Figure 14 shows a 3D view of an inductor modeled in a substrate with mold on it. When inductors are used on the RF chips, they are fabricated on the substrate. The bulk substrate can be made of different materials like Si or GaAs. This introduces the parasitic capacitances.

4.1.4 Quality Factor

The quality factor describes how good an inductor can work as an energy-storage element. The most fundamental definition for Q is defined as energy stored over the energy lost, as listed in Eq. (4.1). Because the only desirable source of storage energy is magnetic field and hence any source of storing electric energy such as capacitances is considered as a parasitic.

\[
Q = \frac{\text{Energy Stored}}{\text{Energy Loss}} \tag{4.1}
\]

4.2 Inductor Design

There are some empirical formulas based on experimental results for the inductance and Q value estimation. However, due to the dramatic improvement of the computer speed, people now tend to use numerical simulators to calculate the electromagnetic field distribution and then extract
the parameters like inductance and quality factor. Simulation tools like ADS momentum, IE3D, sonnet and HFSS are popular software being used recently. We choose HFSS for its 3D full wave calculation characteristic.

The inductor model set in the HFSS is shown in Figure 14. HFSS will calculate it as a two port network and the inductance, resistance and quality factor values can be extracted according to that.

![Image of inductor model set in HFSS](image)

Figure 13 3D view of inductor on the substrate with parasitic capacitance highlighted.
4.2.1 Two Port Network Models of Inductor

HFSS can calculate the Y parameters, and the value of each parameter can be extracted according to the Y matrix based on the network theory. A typical model of inductor in a two port network is shown in Figure 15. The series inductance and the series resistance are extracted with conventional π model.

![A practical inductor model](image)

Figure 14 A practical inductor model

Series inductance value can be extracted from data at low frequency below resonance frequency, expressed with the measured \(Y_{12} \) admittance parameter as
Parasitic capacitance C_s and series resistance R_s are crucial factors for the inductor performance and quality factor. Parasitic capacitance from metal trace can be extracted from the high frequency data as

$$L_s = \frac{1}{2\pi \cdot \text{freq} \cdot \text{imag} \left(\frac{Y_{12} + Y_{21}}{2} \right)} .$$

Parasitic capacitance C_s can be obtained using

$$C_s = \frac{1}{2\pi \cdot \text{freq} \cdot \text{imag} \left(\frac{2}{Y_{12} + Y_{21}} \right)} .$$

Series resistance can be obtained using

$$R_s = \text{real} \left(\frac{-2}{Y_{12} + Y_{21}} \right) .$$

by extracting data at low frequencies before resonance frequency.

Substrate parameters can also been extracted from the conventional π model. For substrate loss calculation,

$$R_{sub1} = \text{real} \left(\frac{1}{Y_{11} + \left(\frac{Y_{12} + Y_{21}}{2} \right)} \right) .$$
For parasitic capacitances, they are extracted from the high frequency data, using the following equations as

\[
C_{sub1} = \frac{-1}{2\pi \cdot \text{freq} \cdot \text{imag} \left(\frac{1}{Y_{12} + \frac{Y_{21}}{2}} \right)} .
\]

(4.6)

\(R_{sub2}\) and \(C_{sub2}\) can be obtained similarly by symmetry property.

The quality factor is defined as the energy stored over energy lost, and it can be expressed as

\[
Q = \frac{\text{im} \left(\frac{1}{Y_{11}} \right)}{\text{re} \left(\frac{1}{Y_{11}} \right)}
\]

(4.7)

Those equations can be used to extract the parameters directly from the Y matrix. Instead of outputting Y matrix directly, some software can only output the S parameter. In this case, a conversion from S matrix to Y matrix needs to be done.
4.2.2 Designed Inductor

The die size of the LPF is 1.15 mm in length and 0.7 mm in width, including two inductors and necessary traces. With the help of HFSS, the two inductors for the replacement of L1 and L2 in the circuit topology have been designed. With the size limitation considered together, the two inductors have scales listed below. N, W and S represent the number of turns, the metal width, and the conductor spacing, respectively.

<table>
<thead>
<tr>
<th>Inductor</th>
<th>Area (μm²)</th>
<th>N</th>
<th>W (μm)</th>
<th>S(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>310x310</td>
<td>3.25</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>L2</td>
<td>330x330</td>
<td>3.25</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

HFSS simulation provides the two port simulation results. To get the inductance, series resistance and quality factor, an additional parameter extraction is conducted. Electrical parameters for the two inductors are listed in Figure 16 and Figure 17. L1 has a quality factor better than 23, and L2 has a quality factor better than 22.
Figure 15 Electrical parameters of L1
Figure 16 Electrical parameters of L2
CHAPTER FIVE: 3D ELECTROMAGNETIC MODELING

With the compact placement of components to achieve size and cost reduction, the couplings among those components become significant. By using the circuit simulation software alone, the coupling effect cannot be included. To simulate the filter circuit performance accurately, extensive EM simulations have been used to optimize the value of each component and the performance of the filter.

5.1 Coupling Effect in Real Circuit

Due to the size limitation, the components are placed close to each other. With the RF operating frequency, the wavelengths of the signals become comparable to the interconnection length. Whenever a signal is driven along a wire, a magnetic field is developed around that wire. If two wires are placed adjacent to each other, it is possible that the two magnetic fields will interact with each other; causing a cross-coupling of energy between signals. Coupling effects include magnetic coupling of adjacent interconnects and planar spiral inductors, substrate coupling due to stray electric currents in a conductive substrate, and full-wave electromagnetic radiation [14].
5.2 3D Electromagnetic Simulation

Coupling effect is hard to be included in the primary circuit level simulation. In the circuit level simulation for this LPF, near field coupling effects have not yet been considered in the previous steps. For the LPF, 3D full wave simulation and layout optimization have been done to accommodate interconnect and component-to-component interaction.

Figure 18 is the 3D model of the LPF in HFSS. In the previous chapter, we have chosen the embedded inductors with appropriate value and size. Here, the whole circuit has been constructed with all the components. Traces are used to connect all the ports with components. Embedded inductor and traces with interconnect effects are considered. The choice for the position of MIM capacitor and the embedded inductor within the whole chip is dictated by the performance and size requirement.

Three lumped ports named port 1, port 2, and port 3 are set at the input pad, output pad and ground pad, respectively. Excitation to the simulator is defined by this way. Another three ports are set to replace the capacitors, so that it’s easier to make an adjustment to the capacitors according to the electric performance got from 3D EM simulation. This allows optimization to include variable changes not pre-computed in the original circuit simulation.
After the whole circuit is solved using full wave EM simulator, the S-parameter results are available as a reduced order model in a data file. ADS is used to co-simulate the circuit response as shown in Figure 19. The LPF circuit is replaced with a black box that is attached to the EM simulation data file. Two ports with 50 Ohm resistance are used to terminate the input and output ports of the LPF with bondwire inductance in between. For the GND pad which is intentionally connect to ground, an estimated inductance caused by the bondwire is also included. The capacitors are separated from the 3D simulation for an easier adjustment and optimization.
Figure 18 Interface of the HFSS simulation result connected into ADS

3D simulation has captured the interactions between components and the results have taken the parasitic capacitance and other coupling into consideration, where the results are more close to the reality. As expected, those coupling effects influence the filter’s performance. Figure 20 compares the results of the 3D simulation with those of the circuit level simulation. The shifting of the resonant frequencies can be found.
The shift of resonant frequency will lower the harmonic rejection level. It’s necessary to shift those resonant frequencies back to the middle of the harmonic rejection band to provide the best suppression for the whole harmonic frequency range. The capacitors are set to be adjustable because they are relatively easier to be changed in the layout step. The results after capacitor adjustment is shown in Figure 20. When attenuations at the beginning of each rejection band are almost the same as the attenuation at the end of that rejection band, the attenuation for the whole harmonic rejection frequency band is optimized.
Figure 20 Optimized 3D simulation results
CHAPTER SIX: LAYOUT AND FABRICATION

In order to obtain a reliable and high performance RF design, layout is another issue to pay attention to. The LPF is laid out for fabrication using TriQuint’s TQRLC IPD technology, utilizing the GaAs substrate with 4 metal layers of gold and MIM capacitors.

6.1 Advantage of GaAs Substrate

GaAs substrate is used as starting material. The advantage of GaAs over Silicon wafer lies in the fact that at low electric field, GaAs transistors can switch several times faster than Si transistors due to its higher electron mobility. Also, pure GaAs has resistivity in the order of 10^9, Therefore, GaAs behaves more like a semi-insulator rather than a semi-conductor as in the case of Si. Even though there are activities being done on Si technology either to form a high resistivity substrate, or to use silicon-on-insulator. The latter technique has been used for years in silicon-on-sapphire, which is expensive. Table 6 lists some selected properties of GaAs and Silicon [15].
Table 6 Selected Properties of GaAs and Silicon

<table>
<thead>
<tr>
<th>Property</th>
<th>GaAs</th>
<th>Silicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Band Gap (eV)</td>
<td>1.43</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>Low Field Mobility of Electron</td>
<td>4000 - 9000</td>
<td>500 - 1200</td>
</tr>
<tr>
<td>(cm²/V-s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Field Mobility of Hole</td>
<td>400</td>
<td>480</td>
</tr>
<tr>
<td>(cm²/V-s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated Electron Velocity</td>
<td>1.3 x 10⁷</td>
<td>9 x 10⁶</td>
</tr>
<tr>
<td>(cm/s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td>10⁹</td>
<td>10⁵</td>
</tr>
<tr>
<td>(Ω-cm)</td>
<td>Semi-insulator</td>
<td>Semi-conductor</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>12.93</td>
<td>11.7</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.46</td>
<td>1.45</td>
</tr>
<tr>
<td>(W/cm-°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2 TriQuint TQRLC Technology

TriQuint GaAs IPD technology is used to fabricate this LPF. TriQuint’s TQRLC is a pure passives process. It is targeted at high performance, small size passive-only circuits and utilizes over 9 μm of gold metal. High density interconnections are accomplished with three thick global and one surface metal interconnect layers. Figure 23 (a)-(b) shows TriQuint Semiconductor’s TQRLC advanced pure passive’s process. This thin film passive process combines inductors, capacitors and resistors on GaAs wafer.
Figure 21 Cross section of Triquint’s TQRLC process technology
The four metal layers are encapsulated in a high performance, low dielectric constant material that allows wiring flexibility and plastic packaging simplicity. Precision NiCr resistors, inductors, and high value MIM capacitors are available. The TQRLC process is available on 150-mm (6 inch) wafers [16].

Four layers of plated Au with thickness of 0.4 um, 2 um, 2 um, 5.5 um, respectively, are used as metal 0 to metal 3, for the design of transmission lines and inductors. MIM capacitors are located between metal 0 and metal 1, which have value of 600 pF/mm2, and the capacitor breakdown voltage is 40 V, BCB dielectric with nominal thickness of ILD1=1 um and ILD2&3=3.2 um has been used. Table 7 list some key point of the TQRLC process details.

Table 7 TQRLC process details

<table>
<thead>
<tr>
<th>Element</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnects</td>
<td>Metal Layers</td>
<td>Four: 0.4, 2, 2.5, 5.5</td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td>Space Width</td>
<td>Met3= 5, Met1&2= 3</td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td>Trace Width</td>
<td>Met3= 5, Met1&2= 2</td>
<td>μm</td>
</tr>
<tr>
<td>BCB Dielectric</td>
<td>Nom. Thickness</td>
<td>ILD1= 1 +/- 0.1; ILD2&3= 3.2 +/- 0.2</td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td>Dielectric Constant</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>MIM Caps</td>
<td>Values</td>
<td>600</td>
<td>pF/mm2</td>
</tr>
<tr>
<td>Resistors</td>
<td>NiCr</td>
<td>50 +/- 3</td>
<td>Ohms/sq</td>
</tr>
<tr>
<td>Vias</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask Layers</td>
<td>No Vias</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
6.3 LPF Test Result

The TQRLC technology can be used for the circuit requiring high-Q passive elements. Its application includes passive components like transformers, couplers, matching circuits, etc. It is suited for transmit LPFs, which allows a complete filtering network to be integrated onto a small wire bond or flip-chip GaAs die for replacement onto a laminated substrate. Our LPF is fabricated using TriQuint TQRLC technology. A photograph of the harmonic rejection LPF is shown in Figure 23.

![Fabricated Low Pass Filter](image)

Figure 22 Fabricated Low Pass Filter
The size of the GSM/AMPS LPF is $1.15\text{mm} \times 0.7\text{mm}$. LPF consists of two embedded inductors and three MIM capacitors. The choice for MIM capacitors and embedded inductors is followed by the 3D HFSS simulation.

For the testing of this LPF, it need to be put on certain test substrate first with the input, output and ground pad connected properly to the substrate. Due to the coupling issue from the newly added board, the electrical performance will be different. Figure 24 illustrate the difference between 3D simulation result (_3D_sim) without the testing board influence and 3D EM simulation result (measurement_setup) with the test board simulated together. The difference is caused by the coupling issue between the LPF and the newly added testing board.

![Figure 23 Test environment setup and simulation](image)
The measurement results of the designed LPF are compared with LPF simulation results including the testing board in Figure 25. The red line is for the measurement while the green line is for the 3D HFSS simulation with the testing board included. The measurement of the realized filter meets well with its simulation result.

Figure 24 Electrical performance of realized LPF

Table 8 lists the measurement results for this fabricated LPF. The insertion loss is less than 0.6 dB, the rejection in the second and third harmonic frequencies are greater than 25 dB and the return loss is better than 24 dB.
Table 8 Measurement results for the realized LPF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency Range (MHz)</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>824 — 915</td>
<td>0.568 dB</td>
</tr>
<tr>
<td>Return Loss</td>
<td>824 — 915</td>
<td>24.48 dB</td>
</tr>
<tr>
<td>2nd Harmonic Rejection</td>
<td>1648 — 1830</td>
<td>25.386 dB</td>
</tr>
<tr>
<td>3rd Harmonic Rejection</td>
<td>2472 — 2745</td>
<td>25.788 dB</td>
</tr>
</tbody>
</table>
CHAPTER SEVEN: CONCLUSION

A compact harmonic rejection low pass filter for the GSM/AMPS wireless handset application is
designed and fabricated. The whole process to design an LPF based on in-band insertion loss and
out of band rejection requirements have been presented. With circuit topology determination, a
circuit level simulation and optimization with finite value of inductors and capacitors need to be
performed. After the schematic simulation, 3D electromagnetic simulations are used in the
design process. EM simulations are used in the selection of layout design and processing
parameters for design optimization of both the inductors and IPD harmonic filters. The effective
use of EM simulation enables us to accommodate interconnect and interaction between
components, thus realize the successful development of high performance harmonic filters. This
LPF is fabricated based on GaAs substrate with TQRLC process which is an integrated passive
device technology.

An additional optimization with genetic algorithm is also carried out with our own code, which
takes the non-uniform distribution of S21 in harmonic rejection frequency band into
consideration.
This kind of very compact, high performance harmonic filters can be used in radio transceiver front-end modules. The realized harmonic filters have insertion loss of less than 0.6 dB and harmonic rejections of greater than 25 dB. The filter has a die size of 1.15 mm in length and 0.7 mm in width.
LIST OF REFERENCES

[16] TQRLC advanced passive foundry service, TriQuint semiconductor.

