








roughly similarly in other parts of the world - with the necessary adaptations for the cultural

specifics). The checkpoint is manned by a sergeant (S), a private (P) and a robot (R). A

street vendor (V) takes advantage of the traffic slowdown by positioning its cart near the

checkpoint at one of the four feasible locations L1-L4 (see Figure 3.1, at increasing distance

from the checkpoint, our modeling will be concerned with the interactions between these

actors over the course of several weeks. Let us now informally describe the various values,

considerations and possible actions which are at stake at this scenario.

Figure 3.1: The private P is interacting with vendor V, with the sergeant S and robot R in

the background.

Soldiers on peacekeeping missions need to balance their own security and military

objectives with the need to maintain a friendly relationship with the local population. Our
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work is an attempt a quantitative, operational model of the ways in which various actions

taken by the soldiers (and in the near future, robots) as well as the members of the local

population impact their respective cultural values and perceptios of each other. Some of the

obvious challenges in this work include:

• The difficulty to assign numerical metrics and calculations to values dependent on

social, cultural and personal perception.

• The need to consider the interaction between multiple players, some of them individual

(soldiers, members of the local population, the robot) but some of them groups of

people (e.g. the participants in a crowd).

• The need to consider the evolution of values over a longer amount of time. The

evolution of certain values, such as gaining of trust can not take place over a single

interaction. On the other hand, single interactions must be considered, as certain

gestures might have a long lasting impact.

Although the literature on cultural interactions is vast, most of the research done

in the humanities do not generate an operational model. Even when explicit numerical

values are given (such as in Hofstede’s models [12]) the values are averaged over the general

population, and they can not be used to characterize individual behavior.

In contrast our objective is to develop a system that allows automated analysis of

a specific scenario, with actors who are members of their respective cultures, but are also

identifiable individuals with a high degree of freedom in their choice of actions.
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Such an system can be used immediately as a training or assessment tool. It can also

serve as a modeling tool to aid policy making, and, in the future, a component of the robot

behavior agent.

The POV of the checkpoint team: the efficiency of the checkpoint and their personal

security require maintaining a free and uncluttered area around the checkpoint. On days with

a high alert level the perceived security is lower, and due to the more thorough inspections

the traffic through the checkpoint slows down. The presence and location of the food vendor

affects the security risks. Security threats can come from the street vendor itself, from

creating additional crowding near the checkpoint, and from blocking lines of sight (either

directly, or through the crowding).

The checkpoint team considers desirable to maintain good relations with the local

population (in general), and the food vendor (in particular). Friendly interaction (informal

conversations, exchange of gifts) increase friendship and trust. Unfriendly actions (such as

ordering around or threatening) negatively impact the relations.

The POV of the street vendor: it is in the financial interest of the vendor to position its

cart closely to the checkpoint. He will try to maintain friendly relations with the members

of the checkpoint team, and will remember past interactions with the individual soldiers,

appropriately reciprocating friendly or unfriendly behavior. He is aware of factors such as

high alarm level (which can mitigate a specific intransigence from the checkpoint team). On

the other hand, impolite behavior from a soldier which is considered a friend is perceived

more negatively than, for instance, impolite behavior from the robot. The vendor will follow
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his cultural norms in his behavior - for instance, it is not acceptable to refuse a polite request

from a friend.

3.2 CSSM for the Checkpoint Scenario

3.2.1 The Choice of CSSMs

Let us now analyse and model out scenario using the CSSM model. We shall use the following

collection of metrics:

• Financial worth (V): the income of the seller. It is dependent on the location, scaled

by the traffic of the given day, and limited by the maximum amount of clients the seller

can handle. It is measured in the local currency. It is only relevant to the client.

• Perceived security level (S, P, R): is a metric of the level of threat as perceived

by the soldiers. It depends on the alarm level, on the level of traffic, and the crowd

created by the vendor.

• Dignity (S, P, V). The perception of the personal dignity by the soldiers and the

vendor, for the sake of simplicity we shall call both of them dignity, but the two parties

apply different evaluation algorithms. The soldiers use a generic Western cultural

model adapted to their status as soldiers (being defied on an open order decreases

dignity). The seller uses its own cultural model - for the actions of this scenario, for
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instance involves that being ordered around decreases dignity. Similarly the refusal of

an offered gift is an offense to the vendor.

• Politeness (S,P, V) The perceived politeness metric is evaluated according to culture

specific algorithms by the vendor and the soldiers.

3.2.2 Action Repertoire

We model the possible scenarios using a series of possible actions. An action is performed

either by a single actor (e.g. the vendor V moving from L1 to L3) or is the interaction

between an actor and a recipient (the vendor V giving a gift to sergeant S). From the point

of view of our model, the actions are fully described by their impact on the values of the

actor and (if applicable) the recipient. Our modeling approach here is to define a relatively

small number of actions, but to characterize them with detail variables which describe, for

instance, the destination of a movement or the verbal style in which a request or command

is delivered. These actions are listed in Table 3.1.

3.2.3 Case Study of an AIF

One of the most critical and interesting actions is A6, where the the representative of the

soldiers (S, P or R) requests the vendor V to move the cart to a farther location. This

25



Table 3.1: Possible actions for the participants in the Market Patrol scenario (with specific

possibilities for actor and target)

Action Actors Targets Parameters

A1 moves V Location

A2 declines-to-search V Offensiveness

A3 offers-gift V S, P

A4 initiates-conversation V, S, P V, S, P

A5 accepts-conversation V, S, P

A6 orders-to-search S, P, R V Offensiveness

A7 passes-order S, P P, R

A8 accepts-gift S, P V

A9 declines-gift S, P V Offensiveness

A10 order-to-move S, P, R V Loudness

A11 overnight S, P, R, V

requests goes against the financial interests of the vendor. What we need to investigate is

how this request (and the response to it) affect the values of the participants.
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First of all, we need to discuss the detail variables of the action A6. This request can

be made at various levels of politeness. To find a numerical metric of the politeness level

of a request, we will use the mitigation level of the order - according to the classification

recently popularized by Malcolm Gladwell [58]1. To the six mitigation levels discussed by

Gladwell, which culminate in command, we add three more levels which model the threat of

and actual physical actions, respectively.

Note that the robot is not expected to know the subtleties of polite conversation, thus

its use of direct command mode carries less offense - and its own politeness is irrelevant and

not measured.

This fact opens interesting possibilities for action strategies from the point of view of

the team.

Note that the values in the table are calculated from a Middle Eastern perspective.

Certain cultures such as Korean or Japanese, would put a significantly higher penalty on

unmitigated speech. On the other hand, Northern European cultures would not put virtually

any penalty on direct speech (and high level of mitigation would probably be incomprehen-

sible).

Similar considerations apply for the action of the refusal by the vendor to move to

the suggested location (which can be also be done with different levels of mitigation).

The values in the table can also be modeled in an equation form using a combination

of signum, heaviside, exponential and other simple mathematical functions:

1Note however, that similar ideas are present in the literature for a long time - e.g. in Brown and
Levinson’s politeness model[8]
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F (s5, a6)s,p = sgn(5− x)

[
|5− x|+ sgn(5− x)

y + z

]
(3.1)

F (s3, a6)v = −H(x− 4) · ex/3

where, x is the level of mitigated speech, y and z are the loudness and offensiveness re-

spectively. In Equation 3.1, the function sgn is the signum function, whereas H(x) is the

Heaviside’s function. In Chapter 4.1, we provide the genetic learning procedure through

which one is able to formulate CSSM AIF’s.
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Table 3.2: The impact of action A6 on the politeness of soldiers S or P and the dignity of

the vendor using various levels of mitigated speech

Name Example P S/P DV

L1: Hint Seems like you have got new stuff in your

bag to sell in market today.

1.0 1.0

L2: Preference I like the stuff you sell, and would love to

share my opinion about your new items

(in the bag)

0.81 1.0

L3: Query Won’t you show me the new stuff that

you’re going to sell today?

0.68 1.0

L4: Suggestion I would suggest that you let me search the

bag, as the security alert is high today

0.56 0.91

L5: Obligation statement I’m sorry i need to do this, but my boss

insists that you show me your bag

0.44 0.73

L6: Command Show me your bag! 0.36 0.63

L7: Threat of physical action Show me your bag or i’ll have to arrest

you!

0.22 0.49

L8: Minor physical action Pushing and snatching the bag, after-

wards going through bag without consent

of vendor

0.11 0.28

L9: Major physical action Taking the vendor in custody 0 0
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Table 3.3: The impact of actions on the values of the vendor and the soldiers

The actions of the solider

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

T
h
e

so
ci

al
va

lu
es

of
th

e
ve

n
d
or

S1 F(s1, a1)v 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 F(s3, a6)v 0 10 F(s3, a9)v 0

S4 10 F(s4, a2)v 15 5 5 0 0 0 0 0

S5 F(s5, a1)v F(s5, a2)v 10 F(s5, a4)v 5 F(s5, a6)v 0 0 0 0

S6 0 -10 0 0 F(s6, a5)v 0 0 0 0 -15

S7 5 -20 0 0 0 0 0 0 0 0

S8 0 -10 0 0 F(s8, a5)v F(s8, a6)v 0 0 -5 0
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Table 3.4: The impact of actions on the values of the sergant and private

The actions of the solider

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
T

h
e

so
ci

al
va

lu
es

of
th

e
se

rg
an

t
an

d
p
ri

va
te S1 0 0 0 0 0 0 0 0 0 0

S2 F(s2, a1)s,p F(s2, a2)s,p 0 0 0 0 0 0 0 0

S3 0 F(s3, a2)s,p 0 0 0 0 0 0 0 0

S4 0 0 0 5 5 F(s4, a6)s,p 0 10 F(s4, a9)s,p -20

S5 0 -10 0 F(s5, a4)s,p 5 F(s5, a6)s,p 0 5 0 0

S6 F(s6, a1)s,p -10 5 0 F(s6, a5)s,p 0 0 10 0 0

S7 10 -10 0 0 0 0 0 0 0 0

S8 0 -10 0 0 F(s8, a5)s,p 0 -10 10 F(s8, a9)s,p -20
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3.2.4 Beliefs and Public Perception

The impact of an action on a culture sanctioned value is modulated by the beliefs of the agent

about specific aspects of the current context. A culture requires its members to maintain

these beliefs as accurate as possible - the correctness of beliefs are necessary for the culture to

operate as expected. Nevertheless, it is quite possible for an agent to have incorrect beliefs,

especially in inter-cultural exchanges, when the agent might mis-interpret the social signals

(computers are especially bad at this, see Vinciarelli et al. [13]). Even when incorrect,

beliefs are important, because the agents will act and calculate CSSMs according to the

beliefs, whether they are correct or not. If an agent considers another one a friend, it will

act accordingly and judge the actions of the other agent in this context, irregardless if the

friendship is mutual or not.

In the agent literature, the beliefs of the agent are frequently considered to be a “model

of the world”. Creating such a model, for human players, is clearly impossible. We argue,

however, that the careful choice of a small number of numerical belief values are sufficient to

model the influence of beliefs on the values and as a determinant on action choice. Similarly

to CSSMs, beliefs can be perceived from the self, peer or public perspective.

Beliefs are higher level conscious judgments, and we posit that they are less subjected

to the phenomena psychological adaptation [59] than the values. For instance values such as

politeness or dignity perception will tend to return to their average values over timespans

of days. Beliefs, however, evolve more slowly, and they do not have natural trends towards
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average values. This does not mean, however, that beliefs are not affected by timespans

without other actions - for instance, the perception of friendship might diminish in the

presence of long spans of time without actions reconfirming this friendship.

We model the agent’s beliefs using the Dempster-Shafer theory of evidence[60, 61] in

the following way:

• the agent’s current beliefs are fully encoded in the mass function - no previous evidences

are remembered

• incoming evidence can be weighted by significance

• at every incoming evidence, the belief is updated using the standard Dempster’s rule

of combination (conjunctive merge).

• the value for the positive belief is used as the indicator of the belief.

Although, in general, the semantics of the Dempster-Shafer model is controversial,

the results obtained with this model represent a good match to our intuitive understanding

of the scene – which, in fact, is what it is exactly what our objective was. We do not want

the real probabilities of the events, rather to simulate the algorithms used by humans to

maintain their beliefs.

We will use the following beliefs in the modeling of the checkpoint scenario:

BSPR
threat the soldiers belief that the vendor itself represents a threat (this does not include the

belief that the congestion created by the vendor’s presence can represent a threat).
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The perceived threat level starts up at a constant value, dependent on the soldier’s

training and personal perception. In general, the passing of time and human interac-

tions decrease this belief. This belief affects the soldier’s judgment of the security level

function of the vendor location.

BV→x
unappr the vendor’s belief that the soldier x is unapproachable, i.e. it will not participate

in social behavior. This belief starts at a level dependent of the vendor’s personal

experience, and is decreased by social interaction. This belief affects the vendor’s

behavior and judgment of possible outcomes of social actions.

BV→x
friend the vendor’s belief that the soldier x is a friend. Friendly actions (casual conversation,

exchange of gifts, requests delivered with high mitigation level, lenience in accepting

reactions to commands) increase the friendship belief. Actions which are considered

rude (unmitigated commands, refusal of gifts) decrease the belief of friendship. The

belief also decreases (albeit more slowly) in the absence of friendship maintenance

actions (e.g. casual conversation).

BV→x
pubfrnd the public’s belief in the friendship between soldier x and the friend. This belief echoes

the vendor’s own beliefs but it is updated more slowly, as information propagates from

the vendor.
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3.3 Experimental Evaluation of CSSM

The proposed model has been implemented using the YAES [62] environment, and a collec-

tion of third party visualization tool and the OpenWonderLand 3D virtual environment.

For experiment, we trace five different scenarios, distinguished by different strategies

taken by the soldiers at the checkpoint. Each scenario traces the evolution of beliefs and

CSSMs over the course of 14 days. These days also model the existence of external factors

beyond the control of the soldiers and population: we assume that a medium (orange) alert

happens on day 8 and high (red) alert on day 12. In the model we also include action

A11 (overnight), that would shift the peer politeness and dignity back to the normal value.

We assume that over the weekend, action A11 happens which justifies the rational that a

person’s dignity is less affected as an accumulative results of bygone days. But the belief is

still affected and it maintains the value over the course of interaction.

1. Rude checkpoint members. In this scenario, the soldiers of the checkpoint enact a

commanding behavior which, due to the use of unmitigated command language and

lack of human interaction is perceived as rude by the vendor. This perception is

propagated to the beliefs of the general population. The positive side of this scenario

is that the perceived security level remains high. However, the perceived politeness is

low, the vendor is offended in his dignity, and the public belief is that the soldier and

the vendor are not friends. The vendor is incurring some level of financial losses as it

will regularly need to occupy unfavorable locations.
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Figure 3.2: Scenario 1 - Dignity (S3) of seller gradually decrease with time due to harsh

action (A6, L7) taken by checkpoint members

2. Overly friendly checkpoint members. This scenario in contrast with the first scenario

has entirely opposite model, representing too friendly behavior of the checkpoint mem-

bers.

For instance, when performing action A6 (requiring the vendor to move to a more

distant location), the soldiers use highly mitigated speech. At this mitigation level,

the seller is free to ignore the command and never moves his cart (even on the high

alert days). The scenario is financially advantageous to the seller, maintains a public

perception that the vendor and the soldiers are friends. It leads, however to a low level

of perceived security.
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Figure 3.3: Scenario 2 - The peer politeness (S5) rapidly evolves due to extremely polite

actions (A6, L1) of checkpoint members

3. Abrupt changes in behavior. In this scenario the members of the checkpoint alternative

between maximally friendly behavior on days without alerts, with a highly commanding

behavior on days with orange and red alerts. One of the unexpected results of this

scenario is that the overall friendliness perception is very low, despite the fact that

the soldiers are friendly on most days. The reason for this phenomena is due to the

fact that a sudden shift to commanding behavior with persons one had established

friendship is more damaging to dignity than commanding behavior to a stranger. This

scenario, with its abrupt behavior changes, maintain a high level of perceived security,

but it maintains a negative overall perception of friendliness.
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Figure 3.4: Scenario 3 - Two negative bulges can be observed in dignity (S3) of kebab seller

on high alert days (day 8, 12).

4. Moderate changes in behavior. Similarly to the previous scenario, the soldiers are

friendly on days without alarm, while more firm on days with orange and red alarms.

This scenario, however, presents less abrupt changes, decreasing the mitigation level of

command A6 only until the command is obeyed. They don’t have abrupt changes in

their behavior and gradually persuade the seller to move over (e.g. increasing directness

of speech).
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Figure 3.5: Scenario 4 - The security (S2) risk increases with time as the checkpoint members

persuade the seller by varying A6 (L1, L3, L7)

5. Delegation of unpleasant tasks. In this scenario, we observe the social values of the

participants wherein the checkpoint members are assisted by a robot, The sergeant

and private are friendly and use low level of mitigation and accept gifts on all the days.

On the high alert days, initially they communicate without assistance of robot, but if

the seller doesn’t move then they send the robot over to perform action A10.
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Figure 3.6: Scenario 5 - The security (S2) risk increases as robot assists due to action A2 of

seller.

We study the dynamics of the evolution of vendors belief by comparing the belief

BV→x
friend over different scenarios. From Figure 3.7, we can observe the most negative evolution

of BV→x
friend for Scenario 1 (which had mitigated level of speech as L6), and eventually BV→x

friend

drops to minimum level. Further, as contrary to scenario 1, the scenario 2 had absolute

positive nature of checkpoint members and the belief of friendship eventually reaches the

peak. In scenario 3, a positive trend is observed in BV→x
friend in the first week. Starting day 8,

where there was an abrupt change in behavior of the checkpoint members and also with the

accumulative negative behavior on day 12, BV→x
friend drops to a significant level.

40



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

 

 

Scenario1
Scenario2
Scenario3

Figure 3.7: The evolution of belief of the vendor BV→x
friend over different scenarios
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CHAPTER 4
SOCIAL CALCULUS - THE USER STUDY VALIDATION

4.1 Modeling the AIFs

An agent acting in a social setting tries to maximize a perceived utility. The contribution

of the tangibles and CSSMs to the utility can be complex, non-linear and time-varying.

An example of this is the saturation curve provided by the phenomena of psychological

adaptation [59]. The change of CSSMs as a result of an action is described by action-impact

functions (AIFs). Let us consider a social metric Mc(A, t) showing the value of the metric at

time t for agent A. The action-impact function will give the value of the same metric after

an action had been performed a(AA, AT , x1, x2, . . . , xn) where AA is the actor of the action,

AT is the target of the action, and xi are the parameters which describe the nature of the

execution of the action:

Mc(A, t+ 1) = F (Mc(A, t), a(x1, x2, . . . xn)) (4.1)

We need expressions for this function for various agents: the actor, the target, but

also their peers. We shall also consider virtual agents which represent, for instance, the

public opinion of the bystanders.
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The reader may note that our analysis is essentially just a rewriting of the traditional

way in which an agent can be built. What is new here, is the CSSM bottleneck - we assume

that the behavior of the agents in a social-cultural context can be fully described by the

CSSMs and the tangible values. The utility function can be, of course, a complex and

possibly non-linear function of these values, but it does not depend on anything else. What

makes our model more useful for social-cultural modeling is that the components of the

utility function are clearly mapped to values which make sense in a certain culture. Finding

the AIFs can be seen as a symbolic regression: a process through which measured data is

fitted with a suitable mathematical formula. Symbolic regression can be performed through

manual knowledge engineering. However, there are also several techniques to automatize it,

genetic programming being one of the several possibilities.

Genetic programming [63] is an evolutionary algorithm where the individual units of

evolution are programs. When applied to symbolic regression, these programs will simply

be expressions of the functions we are searching for. GP follows the generic workflow of

evolutionary programming. It starts by initializing a diversified population, where each

individual unit is represented by a chromosome. For each step, it generates a new set of

individuals through the genetic operators of crossover and mutation. Finally, the fitness of

the individuals are evaluated, and a selection process takes place, where individuals with

higher fitness have higher chances of survival. In the case of GP, chromosomes encode a

program, usually in the form of a tree structure. The fitness of a specific program is evaluated

by actually running the program over several test cases with known desired outputs.
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Poli et al. [64] lists a series of circumstances where GP has been found to show good

results. Out of these, there are two criteria which strongly applies to the search for AIFs:

• The interrelationship among the relevant variables is unknown or poorly

understood: this is clearly the case of the various parameters of human interaction.

As we have said above, there is no guarantee that CSSMs form an independent set

of variables. In fact, there is normally a strong correlation between the self, peer and

public CSSMs.

• Conventional mathematical analysis does not, or cannot, provide analytic

solutions: there is no mathematical theory behind social calculus. What the assump-

tions behind the CSSM model say is only that different members of the same culture

will evaluate the values similarly. We can make only very loose assumptions about the

mathematical form of the AIFs - for instance we can infer that they are monotonic in

certain variables, or that they are not periodic in certain variables.

• Significant amounts of test data are available in computer readable form. In

our case, we have a relatively large data set acquired through our survey. Furthermore,

the CSSM assumption that any person immersed in a given culture will provide the

same evaluation allows for relatively efficient ways to collect data.

Based on these considerations, we conclude that GP is a good choice for the acquisition

of AIFs through symbolic regression.
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4.2 Calibration of AIFs

Assigning numbers to social values is an inherently inexact science. However, the working

assumption is that the culture enforces a more or less uniform method to calculate the

sanctioned social values. This means that we can validate (and, if necessary calibrate) the

CSSM model by performing a survey in which persons cognizant with the respective culture

will judge the impact on the social values.

In this section, we describe our experience in administering a survey to 91 respondents

from various regions in Pakistan. The respondents were presented with several possible

unfoldings of the Market Checkpoint scenario and were asked about their personal evaluation

of CSSMs at certain points.

The datapoints obtained through this survey will be used as an input into the learning

process of the AIFs. Our objective will be that the genetic programming model will evolve

functions closely matching those used by the target population when updating their CSSMs.

In the following, we first discuss the problem of the representativeness of the survey,

then briefly present the survey methodology and results.

4.2.1 Representativeness of the Survey

One of the important considerations is the representativeness of the survey: are the results

of the survey representative of the CSSMs of the target population? It is well known that
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many academic surveys suffer from the problem of using respondents who are in many ways

divergent from the general population and are, in certain ways, “weird” [65].

In the following we will discuss some of the obstacles we perceive in the representa-

tiveness of our results.

• The culture of the survey takers (Pakistan) might not be an exact match of the target

culture. This is an unavoidable bias - for a perfect localization, one would need to use

respondents from the exact geographical location we model.

• There might be a possible misunderstanding between the culture-sanctioned metrics

covered by the specific names. Our modeling target was a hypothetical, Arabic speak-

ing Middle-Eastern environment. Our respondents have been primarily Urdu speaking,

with a good knowledge of English, and many with at least some level of Arabic. We are

confident that the use of English names, together with the Urdu and Arabic translations

have provided a sufficiently clear definitions of the values considered (see Table 4.2.2

for some of translations used).

• The distorting factor of social class: the survey subjects have been drawn from a signif-

icantly higher social strata (students, engineers, doctors) than the average composition

of the market. It is to be determined whether the social class affects the calculations

of CSSMs. Our conjecture is that it has only a minimal effect, through secondary

implications, which we will outline below.
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• The impact of persons cognizant of multiple cultures. Many of the respondents have

received some level of Western or Western-style education. It is to be determined

whether this impacts their evaluation of the CSSMs. Our conjecture is that is at most

a minimal impact. We assumed that people cognizant of multiple cultures are able to

evaluate separate CSSMs according to multiple cultures (naturally, within the limit of

the cognitive load they can handle). Then, they decide which CSSM-dependent rules

of conduct apply in the current situation (which might be a combination of rules), and

plan their actions in function of (not necessarily in obeisance to) these rules. This

behavior model implies that even people who do not follow rules according to these

CSSM settings, will still be able to calculate them.

4.2.2 The Survey Results

The methodology of the survey was as follows:

• the participants were presented with the scenario in a story-board style, with screen-

shots and explanation of the ongoing action.

• the participants scored the value of the perceived social value from the point of view

of the seller (answering of questions of the type: rate the perceived politeness of the X

on a scale of 0 to 10).

The participants were 91 persons from various regions in Pakistan.
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While space limits us from analyzing the full output of the survey here, Figure 4.1

shows a representative case. The figure shows the histogram of answers for the public and

peer politeness values for action A(7, 5) - order to move using mitigation level 7 and moderate

voice level and A(1, 5) using maximally mitigated speech. The graph shows that there is

a remarkable consistency in the estimated CSSM values, but also some level of distribution

around mean values.

Table 4.1: Names of CSSMs in English, Urdu and Arabic colloquial terminologies
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Figure 4.1: The survey histogram for public politeness [S4] and peer politeness [S5] in view

of the vendor when the sergeant performs action [A6] (order to move)
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Figure 4.2: Normal distribution for dignity (S3) and friendship (S8) due to actions of order–

to-move (A6) with mitigated level of speech L1 and L6

4.3 Symbolic Regression for AIFs

In the following, we will describe the workflow of evolving the AIFs using genetic program-

ming. We will need to specify the function representation (which also defines the structure of

the chromosome), the fitness function and its evaluation method, and the genetic operators

to be used.

Function representation: To start a GP evolution, we need to define the functional

space over which the evolution will take place. In our previous experiments with manual

knowledge engineering of the AIFs, we have found it useful to restrict them to a combina-
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tion of constants, polynomials and Heaviside step functions connected through arithmetic

operations. In addition, many GP algorithms use periodic functions such as sine and cosine

due to their favorable mathematical properties. This set, however, creates a too wide set of

combinations, making evolution difficult. We can use some of our a priori knowledge about

the problem domain to make simplifying assumptions about the format of the AIFs:

• the functions are not periodical, thus there is no logical need to use periodical functions

such as sine functions

• there is a natural aspect of human behavior which achieves saturation

• with appropriate parametrization, sigmoid functions can both emulate linear functions

and the Heaviside step function.

The function set was chosen to include only multiplication, division, addition, sub-

traction, and a general form sigmoid function sigmoid (ax - b), where all of the three

inputs to the function would be evolved using genetic programming.

Besides using the input parameters for the terminal set, we used a set of scalar values

having fractional range from 0.1 to 0.9 and decimal range from 1 to 10. The reason for

using such values was to evolve the function as a sum of different sigmoid’s which helps in

regression to evolve better results. For Table 4.3, we can see that the best solution set was

evolved using all the combination of all above mentioned terminals.

Fitness function: The evolved functions have been validated by comparing their

values with the reference points provided by the survey results. One of the challenges we
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have encountered was that the survey had been designed to test the CSM assumptions of

cultural consistency, not for AIF elicitation. Thus, despite the comparatively large number

of respondents, it covered a relatively small set of the AIFs parameter range. To extend this

coverage, we have used a cubic spline interpolated surface of the survey results. The fitness

function had been defined based on the euclidean distance between the generated AIF and

this surface. For future surveys, explicitly designed for AIF elicitation, this interpolation

step might not be necessary.

Genetic operators: Finally, genetic operator probabilities, population size, and the

number of generations to evolve were chosen through a combination of computational re-

sources as seen from Table 4.3. For our initial phase we used variable genetic operators of

crossover and mutation on the population. The values which seemed to guarantee an explo-

ration of the space and diversity in the population while at the same time insuring selection

pressure were using low crossover probability and high mutation rate. The formation of new

population in this phase was based on the technique that the children would replace the

parent population completely, i.e., this option was chosen for using the non-elitist approach

(even if children are worse individuals than their parents). From Table 4.3, we can see that

the best results were generated using the tournament selection for generation of new pop-

ulations. When the change is relatively small then keeping high level to mutations gives

better results in genetic algorithms [66]. For successfully preserving while improving on the

solution structure we used low crossover probability and high mutation rate.
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One of the problems frequently encountered in genetic programming is bloat: the

phenomena that the population is gradually taken over by individuals of high complexity

(and associated long chromosomes) which offer, at best, minor improvements in fitness.

Bloated solutions frequently generalize poorly, and are difficult to interpret by humans. To

limit bloat, we have limited the trees to a maximum size of 10. The trees were initially limited

to a size of 2 but were allowed to grow only if there was an increase in fitness function.

Table 4.2: Crossover and mutation probability variation using tournament selection for sur-

vival

CrossOver probability Mutation probability Fitness Test fitness

0.05 0.95 82.21 24.73

0.1 0.9 58.07 22.2

0.2 0.8 61.1 22.13

0.25 0.75 67.34 33.28

0.5 0.5 65.04 32.5

0.7 0.3 91 91
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Table 4.3: Training phase for evolution of CSSMs through genetic programming

PSize Sampling Terminals

{p} {p, 10} {p, 0.1· · · 0.9,1· · · 10}

Fitness Test-fitness Fitness Test-fitness Fitness Test-fitness

50

Tournament 374.01 120.276 72.02 30.75 273 273

Roulette 253.1 69.91 91 91 273 273

Lexictour 379 122.7 74.7 31.47 273 119.3

Doubletour 380.44 122.9 91 35.1 219 97.9

100

Tournament 350.76 142.81 70.24 31.61 272 119.3

Roulette 263.17 80.65 90.94 44.76 91 35.1

Lexictour 260.87 260.87 91 91 219 219

Doubletour 378.12 163.87 91 91 91 35.1

500

Tournament 51.18 18.75 46.52 14.39

Roulette 224.60 69.76 74.6955 31.46 219 97.9

Lexictour 149.03 44.047 50.78 17.71 55.41 22.51

Doubletour 74.7 31.47 73.97 30.29
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Table 4.4: Parameters for the genetic learning

Parameter Value

Number of generations 75

Population size 50,100, 500

Crossover probability 0.95

Mutation probability 0.05

Function set {+, -, /, *, sigmoid}

Terminal set {CSSM inputs, 0.1 · · · 0.9, 1 · · · 10}

Selection
{Roulette, Tournament

Doubletour, Lexictour}

4.4 Results for the Modeled AIF’s

The workflow described in the previous section had been implemented using the GPLab an

open-source toolbox for Matlab [67].

In the following we will describe the experimental results for the evolution of the

AIF for the dignity CSSM at the action A6 (see Section 3.2.3. This functions has two

parameters, the loudness X1 and the offensiveness X2 (the latter being calibrated with the

level of mitigation of the speech).
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Figure 4.3 shows the evolution of the fitness values of the population during the

evolution. Using hard limits on the dynamic size of tree not only helped us in minimizing

the bloating effect but also we were able to evolve the functions fairly quickly. Evolving the

best equations with the optimal parameters took about 80-120 minutes with a population

size of 500 individuals and 75 number of generations. The best fitness was 18.85, using the

tournament selection procedure for evolving generations.
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median: 47.498
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test fitness: 18.8569

Figure 4.3: The fitness output for best candidate using tournament selection with variable

crossover and mutation probability

The best AIF evolved by the system is shown in Figure 4.4.
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Figure 4.4: The evolved AIF grammar tree for the CSSM dignity in action A6

Finally, Figure 4.5 illustrates the quality of the solution by matching the evolved

function to the interpolated data points of the survey. While the match is imperfect (we

have survey points both above and below the AIF surface), this appears to be more a result

of the inherent noise in the survey data, than the imperfect match. Thus we can conclude

that the system had successfully evolved a functional, practically usable form of the AIF for

this particular CSSM and action.
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Figure 4.5: A comparison between the evolved function (represented as a semi-transparent

surface) and the interpolated survey data (shown as small circles). The small circles under

the surface are faintly visible due to its transparency.

The evolved output matched with our assumptions about the perceived change in

AIF with respect to its variables. The sigmoid (flipped around x-axis) contributes to higher

levels of AIF when input variable have low values, which indicates that being polite maintains

better dignity. Similarly, we can see that higher levels of x2 (offensiveness) contributes to

lower values of dignity.
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CHAPTER 5
MICRO-CONFLICT - MOBILE ROBOT IN THE CROWD

We consider the case of an autonomous robot which moves in such an environment. The

robot, just like the human participants, has a mission which can be expressed in physical

terms. For instance, the mission might be to reach a certain landmark by a certain time,

to follow one or more humans at a certain distance, or to maintain its position in a team

formation while moving in the crowd. At the same time, the robot needs to stay out of

trouble: it must avoid violating the social norms which govern the crowd, taking into account

the local social and cultural norms. Part of this can be achieved through path-planning: the

robot can plan its path around landmarks and try to avoid dense crowds. Dynamic path

replanning, using algorithms such as focussed D*[68] or D*-lite [69] can allow the robot to

avoid large, persistent crowds of people. Occasional micro-conflicts with human participants,

however are unavoidable, and the urgency of the robots missions makes it unfeasible for the

robot to be always the one which “gives way”. In general, the robot must avoid violating the

social norms, but it should be able to accept some social costs, if it is necessary to achieve

its mission.

The scenario considered in our work is as follows. In a busy marketplace a number

of customers perform a purposeful movement. They visit various landmarks such as stores

and stalls where they spend a certain amount of time, then they move to other landmarks.
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We assume that agent movements are independent, i.e., group movement patterns aren’t

under consideration in this work. The movement of the humans between the landmarks

follow planned trajectories, which avoid obstacles, but try to get from one landmark to the

other in the shortest amount of time. Reaching their destination in the planned time is the

mission of the individual human. Delays represent mission costs, which the agent tries to

minimize. At the same time, the humans need to obey social norms, which require them

not to bump into other humans, violate their personal space or block their movement. If

they violate these norms, humans incur social costs. If two humans are about to collide

with each other, they need to take actions to avoid this by one or both of them changing

their speed and or trajectory. We call such an encounter a micro-conflict. The strategies of

the two agents in a micro-conflict must balance mission costs and social costs. We use the

term “micro” to illustrate the fact that such conflicts are normally resolved very quickly (in

matter of seconds).

5.1 The Crowd Model for the Marketplace

A busy marketplace might appear chaotic to an outside observer. However, people are not

Brownian particles - in fact, each person in the market has a “mission”, which we will equate

with the task of reaching a goal location Lg which can be a shop, an exit or a location next

to another person. Let us assume that an unhindered person aims to reach the goal at time

tg. If the interaction with the crowd creates delays, the actual time will be t′g > tg. We say
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that the person incurs a mission cost mc(tg, t
′
g, Ig) which depends on the planned arrival tg,

actual arrival t′g and the importance of the goal Ig. The simplest mission cost formulation

is a linear function of t′g − tg, but other ones, such as deadline dependent formulas are also

possible.

The main source of delays when moving in a crowd is the necessity for a person to

slow down, stop or alter his trajectory function of the movement of other persons. There

is a culture and environment dependent social cost sc associated with certain behaviors.

For instance, a person incurs a social cost if (a) bumps into another person, (b) violates

a person’s personal space [70] or (c) blocks a person’s movement. For a given person P

at a given moment t, we can create a social cost surface scP (x, y) which associates to every

location (x, y) the cost of the person moving there. This surface can be created as a weighted

sum of geometrical shapes corresponding to the physical contact zones of the persons in the

crowd, their personal distance (1-1.5 ft), social distance (3-4 ft) and their predicted movement

cones.

The social and mission costs incurred by a person depend on both his own behavior

and those of other crowd members. If everybody would give way to the person, the mission

and social costs will be zero. If the person would give way to everybody, the social cost will

be zero but the mission cost will be likely significant. In fact, in dense crowds, a person

might not make any progress at all if he gives way to everybody. Robots are known to freeze

up in dense crowds [33].
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Whenever two persons get into a sufficient proximity that social costs are possible

in the next step, they need to adjust their movement, each taking into consideration the

possible social and mission costs. We call this situation a micro-conflict. A micro-conflict

is resolved when the persons get sufficiently far away that no social costs are possible. We

model micro-conflicts with a sequence of one or more 2x2 games where a C move means that

the person gives way while D means that it moves forward on his planned trajectory. This

model can account for a slow-down (by alternating C and D moves), but it does not cover the

options of accelerating or changing the movement path. The payoffs of the game are given

by the total costs incurred by the players for the various combinations of moves. The games

are not, in general, symmetric, as the cost functions differ from person to person. The games

also do not fall into a specific, well known class, as they are dynamically created from the cost

surfaces, and each game depends on the outcome of the previous game as well. If two persons

are heading on a collision course, they will at some moment encounter some variation of a

Hawk-Dove game, where in the case of a (C,D) or (D,C) play the player moving D will have

an advantage, but a (D,D) move will have a large cost for both players. A (C,C) move means

that neither player moved – the players made no progress, but have incurred mission costs.

Thus, even for a (C,C) move, the next game will have different payoffs. It is not necessary,

however, for each of the games encountered during the resolution of a micro-conflict to be

Hawk-Dove games.

Before moving on to the behavior of a robot, let us first consider how humans “play”

the sequence of games in a micro-conflict. Restricting our considerations to a single game,
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game theory would tell us to choose a move which maximizes our payoffs with the assumption

that the opponent also plays the perfect strategy. As the games in the micro-conflicts are

not (in general) zero-sum, this would correspond to a maximin strategy (risk minimization).

However, this is not an accurate model of human behavior. Crowd participants encounter

many micro-conflicts over time, each micro-conflict consisting of several games. Human

psychology rewards perceived consistency and predictability. Sudden behavior changes, even

if justified on a game theoretic basis, carry their own psychological and social costs. Thus,

instead of choosing a strategy on a game-by-game basis, humans choose long term meta-

strategies which are often associated with their social status. Furthermore, people advertise

the type of games they are likely to play by social signals such as clothing, posture and facial

expression. Relying on these signs, players can, to a certain degree, predict the moves of the

opponents.

5.2 The Micro-conflict

The individual members of the crowd move in a purposeful way: move from one shop to

another, stop at various landmarks or head towards the exit along a pre-planned but not

rigidly fixed trajectory. We will say that the individuals have a mission with a specific value

and urgency. The movement of people in such environments is governed by social norms:

they are not supposed to violate each other’s personal space, block each other’s intended

direction of movement or physically bump or push each other. The social norms for physical
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movement depend on the culture and social setting. Different cultures define the personal

space of an individual differently, and put different penalty on physical contact. Whether

movement in a certain environment can be performed without violating any social norm

depends on the density of the crowd: beyond a certain density, an individual which tries to

avoid any violation of personal space will not make any advance at all. Groups of individuals

moving in dense crowds will enter into micro-conflicts if following their planned trajectory

would create an unplanned, large social cost through physical collision or severe violation

of personal space. The attribute micro illustrates the fact that these conflicts are normally

resolved in several seconds: one or more participants will alter their speed and/or path,

reducing the social cost to an acceptable level.

5.2.1 The Social and the Mission Costs

One way to quantify the decision making process of humans in social settings is by taking into

consideration the costs and benefits of certain actions. We will split the cost of movement into

the social costs depend on the social norms governing the environment and the participants

while mission costs depend on the specific goals of the human or robot

We will model the social costs of moving in the crowd by a number of geometrical

zones associated with the opponent agents. An agent incurs costs whenever it enters into one

of these zones. The zones are not necessarily circular, they move and change orientation with
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the agents. The costs associated with these zones are justified by psychological models of

human perception, and they must be calibrated for the individuals as well as for the culture.

The social costs depend on the degree an agent violates the physical zones of the

agent. In general, a person can avoid occurring social costs by avoiding to enter the specified

zones, which normally means giving way to the opponent in micro-conflicts.

For modeling the social costs, we consider three zones:

Physical contact zone: represented by the actual physical size and shape of the human

or robot agent. Violating this zone means physical contact and carries a large social cost.

Personal space: is the spatial region which a person (and by extension, a robot) regards as

psychologically his [70]. Within the personal space, we model the personal distance (1-1.5 ft)

and the social distance (3-4 ft). The cost decreases towards the outside of the area, becoming

zero outside the social distance perimeter.

Movement cone: the movement cone represents the space where the human or the robot

made public its intention to move. We consider the movement cone as circular pie extending

from the agent in the current direction of movement, for a radius equal of 3 seconds movement

with the current speed. The movement cone is only relevant for a mobile agent. By violating

the movement cone, the opponent forces the agent to change its movement, unless it accepts

a high social cost by violating the personal space or even the physical space.

The mission cost is proportional to the degree the mission of the person is jeopardized

by the actions. We assume that the mission cost is proportional to the delay occurred in
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micro-conflicts. In some scenarios, for instance, if the person or agent’s mission is to reach a

landmark before a deadline or to keep up with a moving companion, the mission cost might

increase non-linearly with the delay.

We are using a model where the social costs are additive across the cost types and

for the multiple agents. For instance, if the agent violates more than one agent’s personal

space, it will occur the sum of the costs. On the other hand we retain only the maximum

social cost for each micro-conflict.

Figure 5.1: A moment in the scenario of the robot navigating a crowd of people on the

market. The screenshot shows the visualization of the scenario in the simulator at time

t = 21sec.
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Figure 5.2: The diagram shows the cummulative social cost at that particular moment. The

goal of the robot can be interpreted as an attempt to move while keeping to the “valleys”

of this constantly changing surface.
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5.2.2 Modeling the Micro-conflict

A micro-conflict is a situation in the movement of an agent in the crowd where the next

planned action of the agent has a significant, unexpected social cost by violating the zones

of one or more opponent. For the current work we will only consider micro-conflicts with

exactly two participants. Furthermore, we assume that micro-conflicts will be attended to

in the reverse order of their maximal costs (which means in dense crowds, agents will ignore

lower stake micro-conflicts until the ones with higher stakes are resolved).

The answer of the agent to a micro-conflict involves the consideration of other alter-

natives to the currently planned movement: the agent might stop, continue moving with a

different speed (faster or slower) or it can replan its trajectory. We model this choice with

a two-player one-move game. The move C (collaborate) corresponds to the player stopping,

while the move D (defect) corresponds to the agent moving on its currently planned path.

This model can account for a slow-down (by alternating C and D moves), but it does not

cover the options of accelerating or changing the movement path.

The payoffs of the game are given by the total costs incurred by the players for

the various combinations of moves. The games are not, in general, symmetric, as the cost

functions differ from agent to agent.

As a note, for these games it is more convenient to speak in terms of cost minimization

rather than payoff maximization. Rigorously, the payoffs are the costs with a negative sign.
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5.2.3 The Life cycle of a Micro-conflict

A game can be technically created among any pair of agents. However, if the agents are

sufficiently far away from each other, the moves (D,D) will have no cost in the game. The

agents enter into a micro-conflict when the (D,D) move pair has a non-zero cost for at least

one of the agents. The conflict is resolved when the (D,D) move pair will have again a zero

cost.

A micro-conflict is not necessarily resolved in a single game. It normally requires a

series of games, each with a specific set of costs. Even if the two agents play (C,C) which

means that they start the next game from the same physical position, the costs of the new

game might change if one of the agents has an urgent mission, which would change the

mission component of the cost. Figure 5.3 shows the evolution of the games played during a

hand-crafted micro-conflict where a robot and a human are heading to a collision course on

right-angle trajectories.

It is impossible to predict the nature of the games which will occur during a micro-

conflict. The agents heading on a collision course will at some moment encounter some

variation of a Hawk-Dove game, where in the case of a (C,D) or (D,C) play the player

moving D will have an advantage, but a (D,D) move will have a large cost for both players.

It is not necessary, however, for each of the games encountered during the resolution of a

micro-conflict to be Hawk-Dove games.
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Game at t=8.0 (moves: R: C, H: D)

Civilian C D

BigDog

C 38.268 13.500

1.000 22.535

D 12.500 37.268

1.000 18.750

Game at t=9.0 (moves: R: D, H: C)

Civilian C D

BigDog

C 25.768 2.000

20.750 37.268

D 0.000 24.768

24.535 12.500

Game at t=10.0 (moves: R: D, H: D)

Civilian C D

BigDog

C 25.768 2.000

2.000 0.000

D 0.000 24.768

2.000 0.000

Game at t=11.0 (moves: R: D, H: D)

Civilian C D

BigDog

C 1.000 2.000

2.000 0.000

D 0.000 0.000

2.000 0.000

Figure 5.3: A hand-crafted single-conflict scenario between a robot and a human. The

screenshot of the scenario (above) at time t=7.0 and four individual games at times t=8.0

to t=11.00 as they appear during the resolution of the micro-conflict.
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CHAPTER 6
HUMAN BEHAVIOR ADAPTATION IN MICRO-CONFLICT

6.1 A Consistent Strategy for Micro-Conflict Resolution

Mobile robots moving in a crowd need to conform to the same social standards as the human

participants. Imitating human behavior is a natural choice in these situations - however, not

every human behaves in the same way. On the other hand, it is known that humans tend to

behave in a consistent way, with their behavior predictable by their social status.

We are tempted to think that making a robot behave in a socially acceptable way

is equivalent for the robot to mimic “human behavior”. However, if we observe human

social settings, we find that not all humans behave in the same way in all social encounters.

First, human social behavior has a certain randomness even for seemingly identical settings.

Second, humans vary their behavior in function of the opponent and the circumstances of

the encounter. And finally, not every human choose to obey the social rules. On the other

hand, it is a well known fact of psychology that the overall functioning of the social life

depends on the consistency of behavior. One of the principal requirements of human social

interaction is that the participants form a theory of mind of each other [71]. This allows

them to predict the beliefs, goals and actions of the interaction partner. This allows for

a significant variance on allowed behavior. However, a certain consistency in the behavior
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is required, as we cannot model or predict the mind of an erratically behaving interaction

partner. The agents need to take this into consideration about their human interaction

partners; furthermore they need to act such that the humans can form a predictive model of

them. Research show that humans are willing to treat agents as social actors [72] although

in some situations they will treat humans differently from agents or robots [73]. In most

social settings, it is not the individuals pursuing aggressive or defensive strategies who are

causing the most social disturbance but the ones who are erratically switching between the

two.

In this chapter we develop strategies for the resolution of the micro-conflict games

introduced in the previous chapter. The micro-conflicts are modeled as a series of two-player

games, in which the participants must deploy specific strategies. The consistency of the

behavior does not mean that every human deploys the exact same strategy every time (in

fact, such an overly uniform strategy creates problems in which symmetrical strategies can

be broken only by one party abandoning the game). Rather, a consistent behavior means

that the behavior in the micro-conflict can be predicted from observable attributes of the

participant.
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6.2 Human Opponent Strategy

6.2.1 Strategy consistency and choice of strategies

We define strategy as the algorithm used by an agent to determine its choice of move in

a given game. Restricting our considerations to a single game, game theory would tell us

to choose a move which maximizes our payoffs with the assumption that the opponent also

plays the perfect strategy. As the games in the micro-conflicts are not zero-sum, this would

correspond to a maximin strategy (risk minimization).

However, this is not an accurate model of human behavior, because the human game-

playing strategy takes into consideration other factors beyond the current game. First of all,

crowd participants will encounter many micro-conflicts over time, each micro-conflict con-

sisting of several games. Human psychology rewards perceived consistency and predictability

and there is a social cost of being perceived in having an erratic behavior.

Second, beyond the micro-conflict games costs, the agent’s behavior must be consis-

tent with other social values such as dignity, politeness, “face” and other metrics. The first

implication of all this is that instead of choosing a strategy for the individual games, the

agents will choose meta-strategies which they will follow consistently across the games of the

micro-conflict. Meta-strategies can contain stochastic elements and considerations of factors

outside the current game (such as the history of the games in the micro-conflict or predictions

of future games). The existence of stable meta-strategies means that the players can, to a

certain degree, predict the moves of the opponents. Under these conditions, maximizing is
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not an optimal strategy - stochastic expectation maximization strategies can yield a better

value in the long run.

The next questions involves whether humans use mixed strategies in micro-conflicts.

It is well known that for Hawk-Dove games the only symmetric Nash equilibrium is a mixed

strategy equilibrium. On the other hand it had been argued that the randomness involved

by mixed-strategies is not the normal way for humans to operate: humans do not perform

mental coin-tosses, and even if they would want to, they have difficulty generating random

outcomes without external physical means. In the particular case of micro-conflicts, however,

we can safely assume the existence of mixed strategies as there is sufficient randomness both

in the lack of knowledge about the exact game (the Harsányi interpretation [74]) as well as

in the uncertainty about the strategy of the opponent [75].

6.2.2 Modeling human meta-strategies

One of the characteristics of human meta-strategies is that humans enter into micro-conflicts

with a clear view of what type of resolution they would prefer. These strategies not only

determine the behavior of a specific human player, but they also provide information to the

other players. The use of a specific meta-strategy in the case of a human is signalled through

the physical movement itself. In human-to-human interaction there are a number of other

means through which this communication can happen: there is a priori information that

can be inferred from social status, previous acquaintance and physical characteristics. In
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addition to this, human players can perform communication during the micro-conflicts using

social signaling[76] or even natural language. These communication means, however, are not

available for human-to-robot interaction.

We will consider four meta-strategies. For each, we will describe the intent of the

agent A when encountering agent B, followed by its expression in terms of costs. The intent

of an agent will be to either cooperate (C) or to defect (D) in a micro-conflict.

MS1 Respectful: I am going to give B a wide berth. Agent A tries to avoid any social cost

in the interaction with B, playing C for all games unless the predicted costs are very

low.

MS2 Tight-after: I am going to let B pass, but pass very close behind him. This can be

modeled by a stochastic model where the agent plays with a high confidence that the

opponent plays D (i.e., the assumption that B will cooperate is 0.25).

MS3 Tight-front: I am going to cross in front of B (but will avoid direct physical contact).

This can be achieved by a stochastic strategy that weights the opponent’s predicted

choice with a high confidence that the opponent plays C (in our model, we assume a

probability of 0.75).

MS4 Bully The agent decides to minimize its mission costs, ignoring almost all social costs.

The assumption behind this model is that this behavior will make the opponent play

C, thus keeping the costs low.
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These meta-strategies can be transformed into a specific mixed strategy for each

individual game encountered by the agent in the resolution of the micro-conflict. Note that

although these meta-strategies are not optimal, certain combinations can yield near optimal

social costs for the overall micro-conflict. The encounter between a bully and a respectful

agent will yield a low social cost through the restraint of the respectful agent. However, the

series of C moves by the respectful agent implies a high delay and thus a high mission cost

for it.

Another observation is that the high level intent in the meta-strategy might not

necessarily be accomplished. If both agents use Tight-front, naturally, only one of them

can pass first. What will happen is that depending on the geometric configuration, there

will come a moment when the other agent’s cost for the D move will outweigh all other

considerations, and it will need to play C, allowing the other agent to pass first. Nevertheless,

the series of moves will be different from that of an agent which would have played Tight-

after.

6.3 Mobile Robot Strategy

The intent of an agent is not physically observable unless observations are made from past

experience of micro-conflicts. The motivation behind the robot’s strategy is to be consistent

with its behavior during its interaction with different types of agents in social context. The

robot’s strategy uses a two-fold approach: there is a passive phase and an active phase. In
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the passive phase the robot performs the offline learning of a classifier which helps to decide

the intent of the agent. The robot is trained with samples of micro-conflicts performed by

humans. In the modeled system, some of the physical features of the human agents partially

overlap. Hence, this fuzziness in the physical attributes of humans helps in introducing noise

to the robot’s identification system. In the active phase the mobile robot, with the help of

trained classifier selects an appropriate micro-conflict strategy.

There is a strong motivation for the robot to play a meta-strategy which is, at least

superficially, similar to that of humans. Furthermore, if the robot can make the assumption

that the human will play a particular consistent meta-strategy chosen from a limited set (such

as the MS1 . . . MS4 strategies outlined above), it can try to infer what strategy the opponent

uses and choose an advantageous counter-strategy. As we have seen, human players have

various means of social signaling to communicate their chosen strategy. If the robot lacks

the ability to communicate in a similar way, it needs to rely exclusively on the information

gleamed from game-play.

We have implemented a Näıve Bayes classifier that allows the robot to adapt its

behavior to the opponent, by probabilistically predicting the next move of the opponent,

and using it to weight the costs of its own moves. For instance, if the agent classifies its

opponent as a Bully, the agent only needs to consider the costs of the (C,D) and (D,D) move

pairs, knowing that the opponent always plays D. The Näıve Bayes classifier takes the form

p(X = xi | Y = yj, Z = zk) = p(X = xi | Y = yj) (6.1)
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where xi is the category of the human crowd member, yi is the set of physical attributes and

zk is the social context. The mobile robot can be trained on any set of observable features.

In our case, we divide the crowd members into six classes as shown in Table 6.1.

Table 6.1: Modeled attributes of human crowd members for the Middle Eastern social context

Physical Features Micro-conflict

Strategy

Classification

Chin-type Hair-type Height (ft)

Round Short 1 - 4 Tight-front Child (Male, Female)

Square, Heart Short, Long 5 - 7 Respectful Adolescent (Male, Female)

Square, Heart Bald, Long 4 - 7 Bully Senior (Male, Female)

Among the other advantages of using an adaptive model is that it also helps the robot

to adapt itself according the urgency of the mission. For example, for urgent missions the

robot would try its best to minimize time-cost whereas for normal missions it would try

to minimize the social-costs. This can easily be integrated in the model, by training the

robot to vary its consistent strategy for different opponents. We model the consistent meta

strategy using Näıve Bayes defined as follows:

MS5 Consistent: The robot, with the help of a classifier would classify the human opponent

based on physical attributes such as face and body features. The robot will select an
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appropriate meta-strategy that will likely be successful based on the classification of the

human opponent, and maintain this strategy for all the games until the micro-conflict

is resolved.

6.4 Micro-conflict Strategy Evaluation

In the following we describe the results of a series of experiments that test the behavior of the

consistent micro-conflict resolution strategy. The experimental setup models a marketplace

with a narrow space surrounded with shops whose entrances serve as landmarks, as well

as internal obstacles. A number of shoppers perform purposeful movement, which involves

visiting shops for a shorter or longer times. The path chosen by the individuals balances

the shortness of the path with the avoidance of the obstacles and large groups of people.

Micro-conflicts are resolved through a succession of games.

In this baseline scenario, we consider the presence of a patrol of peacekeeping soldiers

traversing the market while being accompanied by a Boston Dynamics Big Dog robot [77].

The mission of the robot is to follow the soldiers through the crowd as closely as possible

with consistent behavior towards the population. The soldiers can change their movement

at any time, triggering frequent path re-plannings, for which we use the D*-lite algorithm

[69]. The robot participates in micro-conflicts in the same way as the human participants.

Naturally, the robot’s personal space and physical space is different from that of a human

(a Big Dog robot is larger than a human).
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We consider two different sets of experiment for the the behavioral simulation of the

robot. In the first set of experiments we evaluate different set of populations against the

consistent strategy of the robot. In the second set of experiments, we evaluated different

strategies of robot against a single population set of the humans. In both scenarios, the

humans agents play consistent sets of strategies against each other based on their social

status.

6.4.1 Varying the Population Metrics

We consider three distinct times of the day (morning, afternoon and evening). We assume

that the population of the marketplace varies in function of the time of the day - each part

of the dayis dominated by a particular age group. For each part of the day, we consider

dense male population: the population is uniformly distributed with 70% males.

The population-set (PS) of agent in the morning has the majority of the agents from

the senior age group. The population-set for the afternoon is dominated by the agents of

children age group and in the evening the population is dominated by the adolescent age

group. The distribution statistics for each time of the day is as follows

PS1 Morning 10% Children, 20% Adolescent

PS2 Afternoon: - 30% Senior, 30% Adolescent

PS3 Evening: - 70% of Adolescent, 10% Children
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6.4.2 Varying the Micro-conflict Strategies for the Robot

For different meta-strategies, to compare the intervals of the incurred social cost and the

mission cost, we run the each experiment twenty times. In each experiment, we vary the

meta-strategies [MS1 · · · MS5] for the robot in the experiment. The comparative analysis

of various meta-strategies helps to determine the effectiveness of a consistent meta-strategy

in different scenarios.

6.4.3 Training the Näıve Bayes Classifier

For the consistent meta-strategy [MS5], the robot uses a Näıve Bayes classifier which is

trained with a set of six hundred examples using the data-set generated from Table 6.1. The

height attributes of training set used for Näıve Bayes training set has the following statistics:

Table 6.2: Height attribute from the training-set for the human classes

Attribute Class-Type

Child Young Senior

M F M F M F

Height (mean) 2.49 2.48 6.06 5.96 5.06 5.01

Height (std. dev.) 1.063 1.0722 0.7851 0.8237 0.8224 0.8426
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After classifying the human opponent, the robot selects the counter strategy in a micro-

conflict using the social graph schema (Figure 6.1).

Robot

Child
(Male, Female)

Youngster
(Male, Female)

Senior
(Male, Female)

Figure 6.1: Social Behavior Graph for the robot

6.4.4 The Experimental Results

6.4.4.1 Morning

For the first experiment, we consider the morning when there are more seniors in the market-

place. Following the social graph schema (Figure 6.1), the robot is expected to be considerate
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towards the seniors during micro-conflicts and hence it should incur low social costs during

the morning. From the incurred social costs results (Figure 6.2), we observe that indeed the

robot cooperates more during the morning in the marketplace.
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Figure 6.2: Social cost incurred during the morning time

The results for the mission cost incurred during the morning is shown in Figure 6.3.

We can observe that besides being respectful during most of its micro-conflict, the robot

will employ the bully strategy and tight-after strategy whenever possible. Hence, the mission

cost is lower as compared to the meta-strategy where robots cooperates during all of the

games. Another observation is the increase in mission cost with the increase in the density

of the crowd (the robot cooperates more and incurs more mission cost). Hence, the robot is

adapting its behavior with the crowd variance during the morning session.
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Figure 6.3: Mission cost incurred during the morning time

6.4.4.2 Afternoon

During the afternoon, the marketplace has an equal mix of adolescents and seniors - 30% each.

There are more children in the marketplace during the afternoon as compared to the morning

and the robot expects that the children would cut the robot’s path from the front during

the micro-conflict, i.e., children would use meta-strategy [MS3] tight-front. Comparing the

social cost incurred during the afternoon (Figure 6.4) to the social cost incurred during the

morning (Figure 6.2), we observe that with the increasing number of civilians, the social costs

increases during the afternoon. The reason is the increase in the number of adolescents and
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children and the mobile robot uses strategy of tight-after (in micro-conflicts with children)

and bully (in micro-conflicts for adolescents).
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Figure 6.4: Social cost incurred during the afternoon

Comparing the mission costs incurred in the morning (Figure 6.3) to the mission costs

incurred during the afternoon task, we observe that with the increasing number of civilians

the mission cost remains consistent. The rational for incurring a low but consistent mission

cost is due to more bullish behavior of the mobile robot during its micro-conflicts.
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Figure 6.5: Mission cost incurred during the afternoon

6.4.4.3 Evening

Figure 6.6, shows the results of the social cost incurred during the evening. We can observe

that the incurred social cost is more in the evening as compared to the morning but the

incurred social cost remains consistent with the increase in the number of civilians. The

reason is the fully cooperative behavior of the adolescents, which unlike the children do not

come in close proximity of the robot (i.e. adolescent cooperate and do not use meta-strategies

of defect or tight-front).
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Figure 6.6: Social cost incurred during the evening

The mission cost incurred in the evening is the least compared to other times of the

day. In the evening the robot expects the adolescents to cooperate and hence the mobile

robot will defect in most of the micro-conflicts. Therefore, as the mobile robot does not

cooperate often in the evening, the incurred mission cost for the mobile robot will decrease

respectively.
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Figure 6.7: Mission cost incurred during the evening
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CHAPTER 7
HUMAN BEHAVIOR IMITATION IN MICRO-CONFLICT

7.1 Learning Human Behavior in Crowds

Moving in a crowd requires a balance of assertiveness and politeness. While it is impolite

to invade other people’s personal space or cut off their movement, in dense crowds forward

movement is impossible without a credible threat of personal space violation. Our objective is

to develop an autonomous behavior for a mobile robot which imitates the decisions performed

by a human controller. We model the situation where participants in a crowd must decide

who has the right of way as a micro-conflict resolved through a sequence of games where a C

move means that the player gives way, while a D move means it continues to move forward.

We collect data from human controllers navigating a robot and resolving micro-conflicts in

a simulated marketplace. These recordings are then used to learn a micro-conflict resolution

strategy which imitates the human controller’s behavior. Through a user study, we find

that observers can not distinguish between the fully autonomous and the remote controlled

robot’s behavior.

The ability to navigate a dense crowd of people is an important human skill. The

appropriate behavior depends on the culture and specific circumstances: even the highly

polite Japanese will behave assertively and without deference when they need to catch a
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subway train. While we can learn certain principles from guidebooks, ultimately a traveler

in a foreign country must observe and adapt to the local customs of in-crowd behavior.

Let us now consider a mobile robot controlled using the principles of adjustable or

mixed autonomy [78, 79]. In such systems, there is a human remote operator who exercises

nominal control over the robot. However, depending on the circumstances, the behavior

of the robot might alternate between different degrees of autonomy: from teleoperation, to

waypoint methods, goal biased autonomy and finally, fully autonomous behavior where the

robot is able to set its own goals. Even moderate shifts towards autonomy can reduce the

cognitive load of the operator or allow a single operator to control multiple robots.

We consider a mixed autonomy robot moving in a dense crowd in a busy marketplace.

The robot has an urgent mission and uses the D*-lite algorithm [80] for navigation. However,

the robot also has another mission, the social mission, which requires it to act in accordance

to the local customs of crowd movement. Whenever a robot violates a social norm, for

instance, by entering the personal space of a pedestrian, or colliding with him, the robot

will incur a social cost. It is impossible to avoid all social costs when moving a dense crowd.

Instead, the robot needs to make rational decisions to balance the social and mission costs.

We model this decision problem as a micro-conflict - a game that is played by pedestrians

and/or robots whose movement affects the outcome [23, 81, 82].

For our work, we use imitation learning to create an autonomous robot controller

which behaves in micro-conflicts similarly to human remote operators. We started by per-

forming a user study to record the decisions made by humans remote operators in micro-
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conflicts. In each micro-conflict the robot would either (a) stop and allow pedestrian to pass

or (b) will continue to move along the same path. The human remote operator had to select

the robot’s decision in specific situations, while the system recorded the incurred social and

mission costs. We used supervised learning algorithms on the recorded data to model three

decision-makers: (i) ensemble learning using random forests, (ii) support vector machine

(SVM) and (iii) neural network learning using an evolutionary computational model. For

the training phase appropriate features were selected by the use of information gain (IG)

and principal component analysis (PCA). After reducing the dimensionality of the recorded

data, we trained the random forest classifier and SVM classifier with the pruned data. In

the case of neuroevolution, NEAT [83] has an inherent property of reducing the dimension-

ality of the neural network. Hence, for training NEAT, we used all of the features of the

recorded data without applying dimensionality reduction. The decision-making abilities of

the models were tested for four unique scenarios. We analyzed the abilities of the learned

decision-makers by comparing their output to the decisions made by the human participants

for the same scenarios.
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7.2 Data Collection for Imitation Learning

7.2.1 The User-study for Imitation Learning

The objective of our work is to emulate the behavior of the robot remotely controlled by a

human operator. Our starting point is a mixed autonomy system where the robot assumes

responsibility for the navigation while the operator is asked to take decision when the robot

enters a micro-conflict. We thus need to collect the decisions made by the operator, and

features describing the circumstances in which those decisions were made. The collected

data is specific to the operator’s “style” and to the environment in which it was collected

(football crowd, oriental market, Japanese train station).

For the experiments, we created a simulated environment where the operator of a

Big Dog robot [77] must navigate a simulation of a crowded market. The shoppers perform

purposeful movement and use a mix of consistent meta-strategies to resolve micro-conflicts.

We will assume that the costs (negative payoffs) for players are the sum of their respective

social and mission costs.

With this framework, we collected a number of “runs”, with the goal that the behavior

of the operator will serve as a demonstration or imitation target for the fully autonomous

robot. The null hypothesis would be that the operator takes decisions exclusively based on

the game payoffs. We have seen however, that people in the crowd do not use exclusively

the game payoffs as the basis of their decisions, but also consider the consistency of their

own strategy, environmental circumstances and so on. In fact, our strategy of learning to

92



imitate the human operator is based on the assumption that the operator does not simply

apply an optimal risk minimization strategy (that could be calculated by the robot without

any need of learning) and that the strategy applied by the operator is part of a consistent

meta-strategy (which can be learned and applied to games not previously seen by the robot).

The user study was conducted with the help of 12 participants. The human player

was presented with a visual interface which provided an overview of the environment and a

keyboard-based control of the robot. In order to separate the social behavior from navigation

skill, the robot used a mixed autonomy control: the navigation of the robot remained under

the control of the agent, with the user receiving control only in situations when the robot

entered into a micro-conflict with a crowd member. The presence of the micro-conflict,

the personal space and the intended movement cone of the participants had been clearly

indicated on the screen. When receiving control, the player could select between moving

forward (corresponding to playing D) and staying (corresponding to playing C). Albeit the

payoffs of the game had been calculated and used by the adversaries to adapt their play, the

game matrix had not been presented to the user, who was instructed to play based on visual

feedback as if he was driving the robot through remote control and an overhead camera.

To avoid incorrect readings due to the limited reaction time of the user, we stopped the

simulation until the user selected a choice, after which the simulation resumed at normal

speed.

In a typical experiment the user had to drive the robot across the busy market, during

which it encountered about 10-12 micro-conflicts, each being resolved with 2-8 games. We
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created 5 different scenarios with different crowd sizes {20, 30, 40, 50, 100} and runs were

recorded as video files (see Figure 7.1). The number of games played depended partly on

the human subject, as more assertive players cleared a micro-conflict in a smaller number of

games (but potentially, incurring higher social costs).

Figure 7.1: Scene from the recorded video with 20 crowd members (sparse crowd). The

dark grey boxes are static obstacles. For each crowd participant we show the physical

space, personal space and intended movement cone. Active micro-conflicts are indicated by

rectangles surrounding the participants.

7.2.2 The Dataset for Imitation Learning

Our working assumption is that the behavior of humans in micro-conflicts can be described

as a two-player game, in which the payoffs for both sides are calculated as the sum of the
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social cost and the mission cost for the player corresponding to a given move (we call this the

composite game). Nevertheless, the question remains whether this is a good model for the

behavior of a human user controlling the robot. For instance, if the robot operator completely

ignores the game payoffs, the proposed modeling approach is useless. To investigate the

factors used by the human players in their decisions, we decided to collect a larger set of

features together with the action C (the robot temporarily stalls its motion) or D (the robot

continues its current motion) taken by the user:

7.2.2.1 The robot’s own payoffs

RCC, RCD, RDC and RDD. These are the values based on which the user would act if he

would be playing an incomplete information game (with no information about the opponent’s

payoffs).

7.2.2.2 The opponent’s payoffs

OCC, OCD, ODC and ODD. The 8 values Oxy and Rxy would be used by the user if he would

be playing a perfect information game.
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7.2.2.3 External values

These are values which are not part of the payoffs of the given game. If the user takes these

values into consideration, it means that its strategy is not optimal for the given game, but

influenced by external factors. Observations of people behaving in crowds validate that such

considerations exist: for instance, a person might give way to four passersby but angrily cut

in front of the fifth one. The five external values which we hypothesized might possibly affect

the behavior of the human agent are listed in Table 7.1. These include the absolute values

of the mission and social cost for this particular micro-conflict and the maximum social cost

collected by the agent before the current micro-conflict. We have also included the time

delay incurred by the agent before the current micro-conflict td.

To signify the importance of social cost on the overall decision, we also included the

predicted social cost before start of micro-conflict. Further, to maximize the socially enacted

information we attributed one of the features with the maximum social cost endured by the

robot till that point. Another feature was the time delay which helped us in including

the temporal impact on the overall decision making. The last feature which we felt was

important, keeping in view the urgency of the mission, was to include the robot’s mission

cost. The list of features is given in Table 7.1.
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Table 7.1: The features collected for modeling the imitation decision maker

Rxy The payoffs of the composite game for the robot

Oxy The payoffs of the composite game for the opponent

Nd The N number of civilians at distance d at the start of micro-conflict

δmission The mission cost before start of the micro-conflict

δsocial The social cost for this particular micro-conflict

δsmax The maximum social cost for the robot before the start of the current

micro-conflict

td The time delay cost for the robot before the start of micro-conflict

7.3 The Imitation Learning Framework

We have used three different learning techniques to create controllers imitating the human

behavior. These controllers act as classifiers which classify situations into those where the

robot should move C versus D. The overall learning process for the three techniques is illus-

trated in the flowchart in Figure 7.2. The ensemble learning and the SVM based approaches

share a significant part of the learning pipeline and will be discussed in this section. The
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neuroevolution-based learning process has a different pipeline and will be discussed in the

next section.
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Figure 7.2: The flowchart of the learning process

7.3.1 Imitation Learning using Ensemble Learning and Support

Vector Machine

7.3.1.1 Pre-processing the Data

7.3.1.1.1 Data normalization The 13 features collected have their own native, incom-

patible data ranges expressed in terms of mission cost, social cost, combinations of the two
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(for the game payoffs), time delay and crowd density. To maximize the efficiency of the

learning, these values had been normalized to the [0,1] range, based on the range of the

samples in the collected dataset.

7.3.1.1.2 Feature Selection Using Statistical Information As a first step in the se-

lection of the features, we measured the information gain provided by the individual features.

Let ~F = {f1 . . . fn} be the feature vector for n number of features and let X = x1 . . . xk be

the k normalized instances in the training dataset. The information gain for i-th attribute

is given in Equation 7.1.

IG([C,D], fi) = H([C,D])− {H([C,D])|fi} (7.1)

where H is the information entropy and fi is the i-th feature of X.

Calculating the information gain for the features had shown that the most valuable

features were td (IG=0.249), δmission (IG=0.212), ODC (IG=0.208), RCC (IG=0.166) and

δsocial (IG=0.0567).

The information gain for the remaining features were zero or near zero. The fact that

the information gain for Nd was zero, shows that the human subjects did not consider the

crowd density when making decisions in micro-conflicts. The fact that RCD and RDD turned

out to be zero means that the human subjects did not consider their own costs in the event

of the opponent defecting. While the games in micro-conflict are dynamically created, the

most challenging games are the ones which have the structure of a hawk-dove game. In these

terms, it appears that the human subjects were assuming the opponents to be “doves”.
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Overall, the information gain analysis step led us to discard five attributes with

negligible information gain: RDD, OCD, RCD, δsmax and Nd.

7.3.1.1.3 Dimensionality Reduction Using Principal Component Analysis Af-

ter the dimensionality reduction step, we still had a number of 8 features, some of them

likely correlated. Thus, instead of further pruning the features we opted for dimensionality

reduction by using principal component analysis PCA [84]. PCA helps in dimensionality re-

duction by providing with a set of new attributes that are linear combination of the original

attributes. These new attributes have eigenvectors formed using orthogonal transformation,

thus they are statistically uncorrelated. The principal components of the data will be the

eigenvectors associated with the largest eigenvalues. The higher dimensional data xk ∈ <i

is projected into lower dimensional vector yk ∈ <j (where j < i). Hence, given the mean

µ = 1
K

∑K
i=1 xi, the linear projection gives us

yk = CT (xk − µ) (7.2)

Here CT is the transpose of list of eigenvectors which were selected of the basis of

highest eigenvalues from the covariance matrix of the preprocessed dataset. Table 7.3 shows

the resulting principal components of the data. For our case, as the features were measured

on different scales having variance in them, we used opted for the correlation matrix (shown

in Table 7.2) for PCA transformation.
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Table 7.2: The correlation matrix of the attributes from principal component analysis

RCC RDC OCC ODC ODD δsocial δmission td

RCC 1 0.35 -0.07 0.04 -0.07 -0.07 -0.08 -0.08

RDC 0.35 1 -0.05 -0.02 -0.05 -0.02 -0.03 -0.02

OCC -0.07 -0.05 1 0.53 0.97 -0.11 -0.11 -0.11

ODC 0.04 -0.02 0.53 1 0.53 -0.05 0 0.02

ODD -0.07 -0.05 0.97 0.53 1 -0.08 -0.1 -0.11

δsocial -0.07 -0.02 -0.11 -0.05 -0.08 1 0.79 0.74

δmission -0.08 -0.03 -0.11 0 -0.1 0.79 1 0.99

td -0.08 -0.02 -0.11 0.02 -0.11 0.74 0.99 1
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Table 7.3: The formulated eigenvectors and there corresponding eigenvalues. Note that each

eigenvector contains at least 0.95 variance of the pruned dataset. These components are only

computed to provide transformed datasets for the classifier.

Eigenvalues Eigenvectors

2.81332 0.53δmission + 0.522td + 0.481δsocial - 0.301OCC - 0.296ODD . . .

2.28364 0.542ODD + 0.538OCC + 0.439ODC + 0.273δmission + 0.269td . . .

1.33126 -0.697RDC - 0.692RCC - 0.148ODC - 0.061td - 0.059δmission . . .

0.67271 -0.661RDC + 0.597RCC + 0.394ODC - 0.155ODD - 0.154OCC . . .

0.56402 -0.757ODC + 0.384RCC + 0.303ODD + 0.302OCC - 0.26RDC . . .

Therefore, after transformation we obtain vector Y = {y1 . . . yk}, where the k-th

instance had vn number of transformed features.

7.3.1.2 Classification

Once the dataset had been reduced in dimensionality, the next step is to develop a classifier

that for any given set of features would classify them into situations requiring a C or D

answer. Once trained, this classifier can be directly used as a decision-making engine for

a robot resolving micro-conflicts. The overall effect is one of imitation learning: what the
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robot learns is not to act in an optimal way, rather to imitate the decisions of the human

subjects who were used to collect the dataset.

The classification problem is essentially a supervised learning problem over the five

features obtained after applying feature selection and PCA as described above. We have

experimented with a number of supervised learning techniques. The best results had been

obtained using random forests, an ensemble learning technique and support vector machines.

In the following we describe the application of these techniques to our learning problem.

7.3.1.2.1 Using Ensemble Learning for Classification The basic idea behind deci-

sion trees is to use multi-level decision systems that would sequentially classify the instance

using features associated at each level until we reach a final decision. Hence, the feature

space is separated into distinct regions in a sequential manner.

One of the known problems with decision trees is its number of sibling variants.

The reason for variance is linked with low generalization of decision trees for the training

data-set used for their construction. If an error occurs high among the nodes it propagates

downstream affecting the leaves. One way of improving the generalization error is to use

bootstrap aggregating (bagging). The main idea behind bagging is to create a number of

M variants Y1,Y2, . . . ,YM of the original dataset Y. Each set Yi is created by uniform

sampling with replacement from the dataset Y.

The random forests technique uses bagging to create trees with random feature selec-

tion. We have implemented the technique using the Weka [85] library. For an M-tree random
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forest classification, using features {v1, v2 . . . vn} the classifier takes input yi and M − trees

assigns the label C or D. Being an ensemble learning method, the output is based on the

majority vote of the sub-classifiers.

7.3.1.2.2 Using Support Vector Machines (SVM) An SVM classifier searches for

hyperplane which separate the classes using a maximum margin to allow for generalization.

The hyperplane takes the form:

g(y) = wTy + w0 = 0 (7.3)

where the direction of the hyperplane is decided by w and the position is determined by w0.

The goal for SVM is to find the direction which can give us maximum margin. Thus, for our

case of binary classification, we represent the decision C with 1 and decision D with -1 such

that:

wTy + w0 ≥ 1 ∀y ∈ C

wTy + w0 ≤ −1 ∀y ∈ D

However, in our case the two classes are not separable classes. For these situations,

we can formulate the SVN as a cost minimizing optimization problem [86]:

J(w, wo, ε) =
1

2
‖ w ‖2 +δ

N∑
i=1

εi (7.4)

Hence we get:

minimize J(w, wo, ε)

subject to di[w
Tyi + w0] ≥ 1− εi
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where di ∈ {1,−1} and ε > 0 are slack variables. The slack variables are used as the measure

of error in the misclassified yi. If ε = 0, then yi is correctly classified. If 1 > ε > 0, then yi

is correctly classified but close to the margin. If ε > 0 then yi is misclassified and δ
∑N

i=1 εi

becomes the penalty term. Here δ is the externally set penalty cost associated with the

misclassified vector.

For the two instances yi and yj we use the radial basis function given as:

K(yt
i,yi) = exp(−γ ‖ yt

i − yi ‖2), γ ¿ 0 (7.5)

where γ = 1/2σ2. Equation 7.5 defines a spherical kernel with center yt
i and radius γ. We

will use cross-validation to determine the appropriate values penalty cost δ and the kernel

radius γ. For the implementation of SVM we used the LibSVM library [87].

7.3.1.3 Cross-validation and Overall Accuracy of the Classifiers

Cross-validation was used to calibrate and test the random forest and the SVM classifier.

Using k-fold cross-validation process, we initially divided the training set into k equal bins.

We performed k runs and during each run we sequentially trained the model on k − 1 bins

and tested it for the remaining bin. For experiments, we choose k = 10, a commonly

recommended approach.

The random forest module was tested using tree range = {10, 15,. . ., 40}. Each of

those were constructed while considering 3 random features. We selected the random forest
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which provided us with the minimum error on the cross validation results. The maximum

depth for the trees was set to have no bounds. The out-of-bag error (OOB) for the 35-tree

random forest was 0.2743. For comparing the results of the best forest tree we performed

10-fold cross-validation, which is not usually required as one can get a good estimate of

the random forest from OOB. The confusion matrix after performing validation on original

data-set and then performing validation using 10-fold cross validation is given in Table 7.4.

For the SVM-classifier, we had to find the combination (δ, γ) for the best penalty

cost δ and the value of gamma γ. Therefore, we used grid selection [88] which suggests using

the exponentially growing sequence of δ = {2−5, 2−3, . . . 217} and γ = {2−15, 2−13, . . . 25}. We

used 10-fold cross-validation on each model trained based on the combination (δ, γ).

From results we observe that as we increase δ from 2−5 → 215, the accuracy increases

from 58% to 60% for γ = 2−15, then it drops for δ = 217. And if we increase γ from

2−15 → 23, then the accuracy increases from 60% to 75% for δ = 215, and then it drops for

γ = 25. Hence, from results we choose, γ = 23 and δ = 215. The confusion matrix for the

SVM-classifier is given in Table 7.4 where C̄ and D̄ are the classified outputs .
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Table 7.4: Confusion matrix for controllers evolved using Random Forest and SVM classifier

Random Forest SVM

C̄ D̄ C̄ D̄

C 144 32 170 6

D 44 83 70 57

Both random forest and SVM classifier had an output accuracy of approximately

75%. However, SVM appears to have a tendency to misclassify D instances as C (while

almost never making the opposite error). In contrast, the random forest module makes both

types of errors with roughly the same probability.

7.3.2 Imitation Learning Using Neuroevolution of Augmenting

Topologies

The two learning techniques presented in the previous section use a common, relatively long

learning pipeline. As an alternative approach, we choose to investigate the applicability

of a technique which does not require feature selection and PCA for its inputs, but can

work directly on the normalized data. The algorithm we choose to apply is the NEAT

neuroevolution algorithm [83] augmented with the modifications proposed in the NEAT

variant called ANJI [89].
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A neuroevolution algorithm creates an artificial neural network by evolving the archi-

tecture and the weights of a neural network. To improve the evolution process, the NEAT

algorithm introduces the concept of the innovation number, a historical marking (tagging)

of a gene, during the process of evolution. Innovation numbers help in the genetic encoding

process and also helps in the protection of speciation. NEAT uses the innovation number

of genes during the crossover to identify and track the origin of genes. For every unique

structural mutation, a global innovation number is attached to the mutated gene. This helps

in lining up the genes with similar innovation number during the crossover process.

NEAT evolves the ANNs by the means of crossover and mutations. There are three

basic mutations types:

• perturbing the weights of an existing connection in ANN

• adding a new connection between the unconnected weights or connecting a node with

itself by the use of a recurrent connection

• splitting the old connection between two neurons by adding a new neuron between

them

A fourth type of mutation was introduced for NEAT in one of its implementation

called NEAT ANJI [89]. This mutation specifies the rate of deletion for a neural connection

between the two nodes. Selected connections are deleted from the stranded genes assum-

ing that the lower weight connections are less influential and are better candidates to be

deleted [89].
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To apply the NEAT algorithm for modeling the controller, we investigated three

different approaches:

a. Complexification - The evolution is initiated with a population of chromosomes having

minimal complexity (size of specie), i.e., an ANN with no hidden nodes. The search

space moves towards the higher dimensions of an ANNs (by mutation) only when the

lower ones provide stagnant outputs.

b. Simplification - The evolution is initiated with a population with complex ANN struc-

tures. Over the period of evolution, the size of ANN is pruned till we get a chromosome

with optimal output.

c. Blended - The evolution is initiated with a population of mixed properties from both

complexification and simplification settings [89].

Variance in the performance of evolved neural network for NEAT depends upon the

structure of the initial popoulation. The “simplification” configuration will give good per-

formance if the structure of the initial population is a subset of the required optimal neural

network structure. For an unknown solution, it is difficult to predict a good structure for ini-

tial population. Hence, a weak prediction of the solution subset, if used for initial population,

would lead to an inefficient search space [83].

The issue beforehand for “complexification” configuration is the limited exploration

of a topological subset. In “complexification”, hill climbing search leads to a local minima

(in the search space) and new structures will not be explored. Hence during the evolutionary
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phase, new structures are sidelined because they have a lower index of fitness. To solve the

problem of limited exploration, NEAT uses historical markings to protect speciation: NEAT

retains the innovations of new structures. In NEAT, during evolution, a new structure first

competes in niche and the new structure is only allowed to compete beyond the niche after

it is optimized.

Table 7.5 provides details for the common configuration settings used during the

evolutionary phase. Table 7.6 provides the mutation settings used for different configurations

for modeling the controller with NEAT.
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Table 7.5: Common parameter settings for the evolutionary runs

Max. number of generations 150

Population size 500

Remove connection max weight 100

Weight mutation rate 0.8

Weight mutation standard deviation 1.5

Survival rate 0.2

Elitism True

Speciation threshold 0.2

Roulette selection Not Used

Topology activation Sigmoid

Recurrent cycles Disallowed
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Table 7.6: Parameter settings for different configuration used for evolving controller using

NEAT

Complexification Simplification Blended

Add connection mutation rate 0.03 0.00 0.03

Remove connection mutation rate 0.00 0.04 0.02

Add neuron mutation rate 0.01 0.00 0.01

Figure 7.3(a) is the average size of the evolved species during different generations. In

comparison with the rest of the evolutionary settings, simplification resulted in the smaller

sizes of the species over the course of evolution. Similarly, the size of the champ chromosome

using simplification has the smallest structural size (see Figure 7.3(d)). The confusion matrix

of evolved controllers using different configurations is given in Table 7.3.2.
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Figure 7.3: The comparative analysis for different evolutionary techniques used for neuroevo-

lution learning module
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Table 7.7: Confusion matrix for controllers evolved different configuration of NEAT

Complexification Simplification Blended

C̄ D̄ C̄ D̄ C̄ D̄

C 99 41 126 69 97 38

D 51 159 24 131 53 162

Figure 7.3(c) give us the comparison of the fitness for the fittest chromosomes that

were evolved using complexification, simplification and blended settings. For selecting a

neuroevolution based decision-maker, we select the fittest chromosome that was evolved

using simplification.

7.4 Evaluation of the Decision-makers

For a situated mobile robot [90], a suitable model for the controller would be able to balance

the social costs and mission costs with the dynamically changing environment. For example,

in our case, we have considered few features of the environment that are sensed by the mobile

robot when it decides to cooperate or defect in a micro-conflict. The density of the crowd

should not effect the performance of a controller: a reasonable controller would balance

both the social and mission costs while moving in a dense crowd or sparse crowd. For the

evaluation of the modeled controllers, we vary the properties of the environment and create
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four scenarios. The properties that we vary for the scenarios are the density of the crowd and

the urgency of mission for the robot. Table 7.8 provides the settings for the four scenarios.

Table 7.8: Parameter settings for scenrios used for evaluation of controllers

Crowd density Mission type

Scene A Low Urgent

Scene B High Urgent

Scene C High Non-urgent

Scene D Low Non-urgent

In Table 7.8, the feature “low density” simulates a market place which is not crowded.

Due to this environment setting, the mobile-robot will encounter only one or two opponents

in a single micro-conflict. The feature “high density” is the environment setting of an over-

crowded marketplace and the mobile-robot will usually encounter more then two opponents

in a single micro-conflict. For an “urgent” mission the mobile-robot cannot afford to loose

much time in a micro-conflict: it cannot cooperate during all micro-conflicts, while for a

“non-urgent” mission, the mobile-robot can cooperate more during micro-conflicts.

For the evaluation, we again collected the data from human operator controlling the

mobile-robot in market-place. The decisions were recorded for all of the mobile-robot micro-

conflicts in the scenarios mentioned in Table 7.8. It should be noted that the dataset which

was used to train various controllers had examples similar to Scene A and Scene B. A few
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examples of Scene D were incorporated in the training dataset. No example was used from

Scene C to train the decision-maker controller. Therefore, Scene C is used to evaluated the

generalisation ability of the modeled decision-makers.

The modeled decision-makers were evaluated using the dataset collected from the hu-

man operators. The classification accuracy for different decision-makers is given in Table 7.9.

Results show that the classifiers show good classification accuracy for Scene A and Scene

B because most of the examples in the training dataset were included from Scene A and

Scene B. For generalized evaluation, the SVM and Random Forest classifier are tested in an

environment created from Scene C. Table 7.9 shows that the controllers have low classifica-

tion accuracy for Scene C. During modeling phase, cross-validation was applied for ensemble

learning and SVM classifier to avoid overfitting but in this case the low classification accu-

racy is due to undersampling from Scene C, i.e., a bias exists in the training database for

Scene A and Scene B.

For the evolutionary learning, we can see that the classification is comparatively better

in all of the four scenarios. One of the reasons for having good accuracy for generalised results

is the assumption of not reducing the dimensionality for neuroevolution learning. The other

classifiers were trained on datasets after dimensionality reduction. Perhaps some of the

features that were pruned during the dimensionality reduction contributed more towards

decision making in Scene C and hence would had made an effective SVM decision-maker.

Due to more generalized results we conclude that neuroevolution learning can be used to

imitate controller for decision-making for movement in crowds.
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Table 7.9: Classification accuracy for different models

SceneA SceneB SceneC SceneD

SVM 76% 88.64% 26.09% 48.94%

Random Forests 76% 83.36% 30.43% 48.93%

NEAT 75% 74.42% 59.09% 73.91%

7.5 Validating the imitation learning

Imitation learning of a behavior is successful if the learned behavior can be “mistaken” for

the original. As the best judges of the similarity of social behavior are humans, we decided

to test the learned behaviors through a user study where we investigated whether human

observers can differentiate the behavior of a mixed autonomy robot which resolves micro-

conflicts through a human operator from a robot where the micro-conflicts are resolved using

the classifier learned as in the previous section.

We have implemented an experimental scenario involving a marketplace in a Middle-

Eastern country that has been implemented in the Yaes [62] simulation environment. The

area is a narrow space surrounded with shops whose entrances serve as landmarks, as well

as internal obstacles. Individual shoppers enter and leave the market and visit the stores. If
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their trajectories lead them on a course which intersects their personal space or movement

cone, they resolve micro-conflicts through a sequence of games and consistent meta-strategy.

In this environment we introduced the presence of a robot of the size of the Big Dog

robot [77]. We considered two variations of the robot control:

H: The path planning is controlled through dynamically added waypoints and the D*-

Lite algorithm [69], while the micro-conflict behavior is resolved by a human remote

operator.

R: The path planning is controlled as in the case of the H robot. The micro-conflict

behavior is resolved using the random-forest based controller developed in the previous

section.

We created 5 different scenarios with different crowd sizes {20, 30, 40, 50, 100}, and

repeated each scenario with an H and an R robot. The resulting 10 scenario runs were

recorded as video files 7.1.

Using this set of 10 videos, we conducted an opinion poll using 11 subjects (2 female

and 9 male). The subjects were briefed on the fact that the robot is navigating the crowd

while balancing the need to reach its destination quickly with the desire to not upset the

social norms of politeness. The subjects were informed that in some videos the robot is

remotely controlled by a human while in others it acts autonomously. Then, the subjects were

requested to identify which video shows a remote controlled (iH) and which an autonomous
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robot (iR). The 110 responses were then matched with the actual video shown, resulting in

the following confusion matrix:


iR iH

R 27 29

H 28 26


Essentially, what this result shows is that the answers of the study subjects were not

better than random, a fact also confirmed by the debriefing interviews. We conclude that

the proposed framework had successfully imitated the human behavior in micro-conflicts and

human observers were unable to distinguish between the resolution of micro-conflicts by a

human operator and a controller learned by imitating it.
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CHAPTER 8
CONCLUSIONS

In order to conform to the social and cultural norms of the environment in which they

operate, social robots need to be able to understand and interpret the social behavior of

humans. In this dissertation, we presented contributions towards improving human-robot

interaction for social robots. The general setup we have considered was one of mobile robots

assisting soldiers on a peacekeeping mission. These robots need to understand the local

social and cultural conventions, take into account the social norms, but at the same time

also accomplish their mission.

The first scenario we considered is a near-future peace-keeping scenario, where a group

of soldiers (of different ranks) and a robot interact with the local population in the context

of an urban checkpoint near a busy marketplace. We have developed a model using culture

sanctioned social metrics (CSSMs) that can be used for learning the impact of actions on

social values for a Middle Eastern marketplace. We show that with the use of CSSMs, we

can trace the evolution of the social values through individual interactions, rather than a

value integrated over populations. We have verified the hypothesis of CSSMs using a survey

of the perception of social incurred during the interaction. The survey was administered to

people familiar with the Middle Eastern culture. Using the CSSM model, we calibrated the

values acquired by the survey and run a series of simulations for modeling the evolution of
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values over the course of several weeks. The outcome of the social values match well with the

intuition and judgment of people with similar cultural background. For the CSSM model, the

effect of an action on a CSSM is described by the action-impact function (AIF). We described

a method that acquires AIFs from the survey of human respondents who evaluate the impact

of a specific sequence of actions on the social values. We used genetic programming to learn

AIFs that match the responses of human subjects.

The second scenario we considered was the case of mobile robots moving in a crowd.

Such robots need to conform to the same social standards as the human crowd members.

Imitating human behavior is a natural choice in these situations - however, not every human

behaves in the same way. On the other hand, it is known that humans tend to behave in a

consistent way, with their behavior predictable by their social status. We considered a mar-

ketplace scenario where humans and the mobile robot perform purposeful movement. With

many people moving on intersecting trajectories, the participants occasionally encounter

micro-conflicts, where they need to balance their desire to move towards their destination

(their mission) with the requirements of the social norms of not bumping into strangers or

violating their personal space. We model micro-conflicts by a series of two-player games.

In the dissertation, we have shown that if a human is using a consistent strategy and is

aware of his own social status then it can also infer the social status of its opponent during

a micro-conflict. A consistent strategy would minimize the overall social costs as compared

to a scenario where the humans use inconsistent strategies (even if those strategies are adap-

tive). We argued that the correct approach for a robot is not a strategy to avoid all of social
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costs. Instead, in a micro-conflict, a mobile robot should use a socially consistent strategy

that depend of his opponent in the micro-conflict. This would allow the humans to form a

mental model of the robot’s behavior (a “theory of the robot mind”) and adjust their own

behavior accordingly.

We developed an alternative approach using the imitation strategy for a mobile robot

that would reflect the strategy of humans while moving in crowds. We collected the dataset

of the mobile robot controlled by a human operator and used three different supervised

learning algorithms (random forest, SVM and neuroevolution) to create a decision maker

module. The decision maker module imitates the human operator’s behavior in a micro-

conflict and hence reflects the same strategy used by humans during micro-conflicts. Results

show that the neuroevolution-based decision-maker gives results most closely matching the

strategy of humans under scenarios with various crowd density and mission urgency. In

addition, we observe that the neuroevolution decision maker generalizes better as it imitates

the similar behavior in environments that were not learnt during the user-study.
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