Individual Differences in Training Performance: the Derivation of a Prediction Model

1986

Brenda J. Hoskin
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

STARS Citation

https://stars.library.ucf.edu/rtd/4874

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
INDIVIDUAL DIFFERENCES IN TRAINING PERFORMANCE:
THE DERIVATION OF A PREDICTION MODEL

BY
BRENDA JEAN HOSKIN
B.A., University of Central Florida, 1984

THESIS
Submitted in partial fulfillment of the requirements for the Master of Science degree in Industrial/Organizational Psychology in the Graduate Studies Program of the College of Arts and Sciences University of Central Florida Orlando, Florida

Summer Term
1986
ABSTRACT

This research examines the use of non-cognitive personality measures as supplements to traditional cognitive ability measures for predicting training performance. The Hogan Personality Inventory (HPI) significantly predicted an overall performance measure ($R^2 = .17$) for Navy BE&E Students ($N = 155$). However, when applied as a supplemental predictor composite to the military cognitive measure (ASVAB), the resulting increase in $R^2 (.04)$ failed to attain significance, $F(6, 144) = 2.17, p > .05$. In further analyses, several HPI and ASVAB scales combined to significantly predict selected performance criteria. The ASVAB remained as the primary source of information. It is quite possible that, for traditional academic training, cognitive ability measures provide the most valuable insight in terms of individual potential. Personality may have a more profound effect in cases of unconventional skill training or training for occupations of risk.
ACKNOWLEDGEMENTS

I would like to thank my committee chairman, Dr. Edwin C. Shirkey, for the insight and guidance he provided, particularly throughout the analysis phase of this thesis. My other committee members, Dr. James E. Driskell and Dr. Janet Turnage, deserve a special note of thanks for their time and counsel well beyond that which is obligatory. I extend my gratitude and appreciation to Dr. Robert Hogan and Dr. Joyce Hogan for the inspiration of this thesis topic and for the use of the Hogan Personality Inventory. To my friends and fellow students, Penny Faber, Maurie Antrim, Stacie Clark, Gene Cuccarese, and Sara Bennett, I'd like to say thank you for the continued support, motivation and friendship which they provided. Most importantly, I'd like to thank Michael Wass for his patience, understanding, love and support, and for putting up with me and all of the inconveniences that come with graduate student life.
TABLE OF CONTENTS

LIST OF TABLES .. vi

INTRODUCTION ... 1
 Background ... 1
 Individual Factors In Training 3
 Prediction Of Training Performance 6
 Cognitive Predictors ... 8
 Non-Cognitive Predictors 12
 Multiple Prediction For Comprehensive
 Individual Assessment 18

METHOD ... 20
 Subjects ... 20
 Predictors ... 20
 ASVAB ... 20
 HPI .. 21
 Procedure .. 22
 Criterion Measures 23
 Data Analysis .. 25

RESULTS ... 27
 Factor Analysis of Criterion Variables 27
 Regression Analysis 27
 Multiple Regression With Selected
 Dependent Variables 28

DISCUSSION .. 31

CONCLUSIONS ... 33
APPENDICES

A. Hogan Personality Inventory ... 35
B. HPI Reliability Information ... 35
C. Participant Consent Form .. 49
D. Correlation and Intercorrelation Matrices for Predictors and Criteria ... 52
E. Results Tables .. 54

REFERENCES ... 60
LIST OF TABLES

1. Varimax Rotated Factor Matrix .. 61

2. Subgroup and Full Model Regressions with Factor 1 (Objective Performance) .. 62

3. Subgroup and Full Model Regressions with Factor 2 (Subjective Performance) .. 63

4. Significant ASVAB Predictors with Selected Criterion Measures .. 64

5. Significant ASVAB and HPI Predictors with Selected Criterion Measures .. 65
INTRODUCTION

Personnel training has become a multi-billion dollar operation in both the military and private sectors. The proper identification and selection of individuals for training placement is a critical prerequisite for effective training. Selection decisions are traditionally based on objective ability tests measuring intelligence and general aptitude. However, these neglect other non-cognitive, motivational aspects of individual differences which also influence performance. With the exception of learning style and skill acquisition studies, these individual characteristics have received limited scientific investigation. Glaser (1982), Wheaton, Rose, Fingerman, Korotkin, and Holding (1976), and Riding (1983) have all noted the exclusion of individual difference variables in educational and training research. Individual difference variables may include, but are not limited to, abilities, aptitudes, personality, interest, and biographical histories. These personal characteristics govern the unique performance of individuals in all situations.

Background

Measures of individual differences first emerged as mental test in the late nineteenth century with the pioneering works of Galton, Cattell, and Binet (Anastasi, 1982). Galton launched the testing movement with his interest in measuring characteristics of related and unrelated persons. Both Galton and Cattell used sensory discrimination tests to gauge intellect, though Cattell added reaction time to his test battery.
Cattell was interested in determining the intellect level of college students and was the first to use the term "mental test" in the psychological literature. Binet later changed the testing method by focusing on measures of judgement, comprehension, and reasoning. The early Binet tests were used to determine children's mental levels and later evolved into the commonly used "IQ" tests.

World Wars I and II provided the main stimulus for personnel testing as the urgent need arose to select and classify individuals on a mass scale. One of the first applications of the field of psychology to the military is described by Yerkes (1918) in his 1917 presidential address to the American Psychological Association. To assist in the war effort, APA proposed several areas in which they could support the military. These areas included recruit classification by general intellectual level as well as psychological examination "to eliminate the mentally unfit" (p. 94). Concurrently, Woodworth was developing the Personal Data Sheet, the prototype of the personality questionnaire, to identify seriously neurotic men who would be unfit for military service. While the Personal Data Sheet was never implemented for this purpose, it served as the model for most subsequent emotional adjustment inventories.

The Army Alpha and Beta tests of WWI were a direct result of the APA committees' recommendations. These "IQ" tests were administered to obtain some objective basis for assigning recruits, and to provide military commanders with some measure of the ability of their men. Objective testing later enabled Army screening to eliminate "bad risks"
or individuals who could not withstand the severe demands of war and to select those who were quickly and most readily trainable.

Individual Factors In Training

Subsequently, these traditional aptitude tests have persisted as selection and placement instruments for military recruits. Organizations in the private sector have rarely employed this method for training placement. Training selection decisions in this environment are often based on recognition of individual differences. However, this recognition is in the form of observed job performance deficiencies and is usually very general as well as subjective. Even when objective individual difference measures are employed, they are generally restricted to ability measures. In some instances, individual assessment is not even part of the placement process. That is, training is given at the group level where entire occupational classifications receive simultaneous, identical training. All employees are trained regardless of individual deficiencies, proficiencies, needs, abilities, interests, motivation, etc. The simple assumption of such personal characteristics significantly reduces the accuracy of training selection and placement decisions.

Training is an individual concern. In some cases, a training program can be designed for the average trainee that is expected to attend. However, the key to efficient training then becomes the selection of that particular group or population of trainees, and the development of training for that group. The individual's unique attributes should correspond to the content type and level of in-
struction in a program. Dunnette (1966) supports this contention as follows:

At one extreme, if all persons were perfectly modifiable through training, individualized programs of job placement would be quite unnecessary. . . . At the other extreme, if persons were unchangeable through training or experience, programs of personnel selection would be the only way of assuring a good fit between men and jobs. . . . It becomes necessary to base selection and placement partly on information of what training can achieve and to select persons who will be able and willing to profit from training. (p. 8)

This fit between individuals and training programs can be determined by examining the degree to which certain personal characteristics correspond to successful performance in training. The identified variables may then be used to aid future training selection decisions. This allows a better utilization of human resources. Individuals may be placed in the training situations and operational positions where they will be most productive.

Proper selection for training placement is necessary for financial as well as the aforementioned practical reasons. Millions of dollars are spent each year on the implementation of new "revolutionary" training techniques in both military and private organizations. Yet, the largest cost of training remains the labor cost of the individual trainee (Wexley and Lathem, 1981). Potential costs associated with inaccurate personnel decisions and predictions are tremendous. For example, in instances where the attrition rate in training program
exceeds 50%, the organization experiences significant financial loss (for one such example, see Hogan and Hogan, 1985). These losses multiply when training placements are conducted on mass scales with a continual influx of potential trainees and with continual training positions to fill. That is, in mass scale, placements are often made more quickly and with less consideration to prediction errors (Dunnette, 1966). Such circumstances are particularly relevant to training in the armed services. Inaccurate predictions conducted on such a large scale have significant impact on government spending. Thus, proper selection and placement for military occupations is a high priority issue. The Department of Defense expressed this concern in a recent report to Congress (1981):

Proper enlistment screening and job placement are prerequisites for efficiencies in training, retention of skilled personnel, and mission performance. Any deficiencies in the selection and classification system lead to increased training times and cost, dissatisfied personnel with concomitant decreases in morale, productivity, and retention, and critical shortages of skills caused by failure to achieve optimal assignment of available manpower into the various occupation.

(p. 5)

Training in the Navy alone is an enormous operation. Over 100,000 recruits enter the recruit training centers per year at an annual cost of 3.5 billion dollars (fiscal 1983) (Nauta, Ward, and D'Ambrosia, 1983). The selection and placement process becomes further complicated given the pool of applicants for military enlistment. Most are recent
high school graduates or, in fewer cases, dropouts who have never held permanent full time jobs (Eitelberg, Laurence, Waters, and Perelman, 1984). Information on past job performance, proficiencies, or deficiencies is simply not available. Thus, military placement specialists must obtain and rely on indicators of potential performance.

Prediction of Training Performance

The early identification and prediction of individuals who will profit most from specific types of training, perform best in training, complete training most quickly, or be permitted to skip portions of training has important implications for all sectors involved in personnel assessment (Gordon and Cohen, 1973; Gordon and Kleiman, 1976). Indicators or "predictors" of performance are based on the unique individual characteristics. Researchers have expressed increased interest in the influence of these individual difference variables in training environments (Argyris, 1976; Cronbach, 1967; Dunnette, 1966; Ghiselli, 1973; Glaser, 1982; Goldstein, 1974, 1980; Guion, 1965; Hinrichs, 1976; Riding, 1983; Terborg, 1981; Wexley, 1984). For some, this represents a necessary conceptual merging between two separate camps which have rarely recognized the existence of one another. Learning and training researchers have virtually ignored individual differences while examining the effects of their treatments (Glaser, 1982; Goldstein, 1974). In the few applications where these differences have not been considered mere annoyances, the major emphasis has been on identifying general "intelligence" (Riding, 1983). This is most sur-
prising given the consensus that individual variation can be attributed to one's unique patterns of aptitudes, interests, attitudes, and personality (Dunnette, 1966). Collectively, these variables are thought to determine a person's ability and motivation to perform in a given situation (Cronbach, 1967; Riding, 1983; Wexley, 1984).

The ability/aptitude domain is recognized by most as an important determinant of training performance. However, the opinions are mixed as to which specific variables will best supplement ability measures. Riding (1983) suggested starting with the introversion-extroversion dimension to represent motivational tendencies. Cronbach (1967) pointed to documented interactions involving willingness to risk failure, confidence, and motivation, with self directed achievement. He believed that personality and styles of thought may be as or more important than ability in determining performance. Regardless of the differences in focus, the general consensus is that individual variation is multi-dimensional. Training performance may be a function of a variety of interacting personal and situational characteristics.

Unquestionably, the task at hand is to delimit the dimensions of individual differences for study in training environments. For this purpose, it may be useful to discriminate between two separate questions in examining individual differences in performance. First, "can" a particular individual benefit from training? "Can" indicates whether the person possesses the ability necessary for knowledge or skill acquisition. Second, "will" that individual benefit from training? "Will" indicates whether the trainee has the drive, desire, interest, or motivation to use that ability. Ability tests measure the cognitive
"can do" aspect of individual behavior. Personality tests measure the non-cognitive "will do" behavioral domain. While other tests may be applicable for these purposes, personality (non-cognitive) and ability (cognitive) tests represent the most comprehensive measures for both dimensions.

Cognitive Predictors

Ability and aptitude tests represent measures of cognitive faculties or intelligence. They are considered the traditional instruments of personnel assessment for selection and classification. These measures do not simply imply past, present, or future competence, but all of these together. In other words, one's current talent or capacity, and one's potential to perform depend both on natural enduring capabilities as well as past acquired proficiencies. In predicting if an individual "can" benefit from training, the concern is whether that person possesses the ability necessary for the particular knowledge or skill acquisition. Clearly, this information has impact on what training can achieve for a given individual.

A review of all previous research (Ghiselli, 1973) yielded low to moderate validities for the prediction of training performance with general ability tests. Results showed highest demonstrated validities for clerical (.42-.52), protective (.42), and service (.42) occupations while less substantial and consistent validities were found for managerial (.27-.33), industrial (.24-.49), and trade/craft (.26-.49) occupations. Similar patterns emerged with tests of spatial and mechanical abilities though coefficients overall were slightly lower.
Validities diminished further with tests of perceptual accuracy and motor abilities to an approximate average of .25.

Two additional applications provide much less support for the use of ability tests as performance predictors. Gordon and Kleiman (1976) failed to attain significant validities for predicting course grades with mental ability tests in two of three police academy samples. However, it is important to note the small sample sizes (n = 29, n = 27) of these two groups as well as the moderate to high validity obtained in the third sample (.56, p < .01, n = 45). Intelligence tests have also been rather unsuccessful in selecting individuals for foreign language training even when cutoff scores have been employed to eliminate those of limited intellectual abilities (Carroll, 1965).

The number of empirical studies investigating the prediction of performance in training via ability tests is limited. The military services are primarily responsible for this line of research. In these studies, the most frequently employed prediction instrument is the Armed Services Vocational Aptitude Battery (ASVAB).

The ASVAB is currently used military-wide to place recruits in various training programs. One composite of the ASVAB, the Armed Forces Qualification Test (AFQT), is used to screen potential recruits and to establish a measure of quality of the new recruits. The Navy supplements this measure with age and educational information to better estimate the probability that the applicant will successfully complete the first year of service. The use of a single test battery for both screening enlistees and assigning them to military occupations evolved from the need to make the testing process much more expedient.
(Eitelberg, et al., 1984). Such a process was expected to allow improvement in the matching of applicants to available job positions for those qualified.

The ASVAB consists of several subtests designed to measure general ability in the following areas: arithmetic reasoning, numerical operations, paragraph comprehension, word knowledge, coding speed, general science, mathematics knowledge, electronics information, mechanical comprehension, and automotive-shop information. Various combinations of the ASVAB subtests make up aptitude composites which are used to classify recruits and to determine eligibility for occupations and training assignments. In theory, the intent is to maximize the fit between individual potential and occupational positions. The following studies examine the extent to which the ASVAB accurately predicts optimal recruit placement.

Booth-Kewley, Foley and Swanson (1984) undertook an extensive study to examine the ASVAB's predictive validity. The study encompassed all ASVAB selector composites for predicting performance in Navy schools. For the 47 "A" schools involved, using a final school grade (FSG) criterion, the median uncorrected and corrected validity coefficients were .35 and .55, respectively. The time to completion criterion revealed median corrected and uncorrected validities of -.27 and -.42, respectively, while the corresponding values for the prerequisite BE&E schools were -.36 and -.57. Of over 100 schools studied, several were identified for which an alternative ASVAB composite might increase performance prediction, though lack of extensive data and Navy inexperience with alternative composites failed to justify change.
Nevertheless, change did appear warranted in two "A" schools and three BE&E schools. Interestingly, the authors noted that the validities against the time criterion were lower than desired and expected by most schools.

Reviews by Yarkin-Levine, Weldon, and Fleishman (1983) and Black and Campbell (1983) both illustrated the inadequacy of cognitive tests in predicting performance criteria. Yarkin-Levine et al. found that the ASVAB failed to measure 27 of 28 ability dimensions necessary for skill acquisition in electronic troubleshooting training. In a cumulative summarization of predictors of tank crew-man performance, Black and Campbell concluded that psychomotor/perceptual motor tests were sometimes predictive of trainee performance as were perceptual paper and pencil tests, though the latter accounted for only 2.5% of the variance in gunnery scores. Yarkin-Levine et al. concluded that with respect to statistical considerations of reliability and vailidity, the overall quality of the ASVAB is only moderate. Criticism was also sounded by Christal (1981) who stated that ability testing research in the military has stagnated. He noted that the military persistantly used the same tests and attained similar validities as those of twenty years previous. Furthermore, Christal believed that present ability tests may be failing to measure the abilities important for forecasting performance.

While these studies and opinions may not be inclusive, they at least indicate probable deficiencies in the ASVAB's ability to predict training performance with exceptional accuracy. One could safely conclude that the test battery has low to moderate success in predicting
the abilities it is designed to measure, yet, the realization remains that aptitude measures may not tell the whole story.

Non-Cognitive Predictors

Personality constitutes all non-cognitive variations in thought and behavior that differentiate one person from another, and encompasses such concepts as attitudes and motivation (Gough, 1976). The applicability to training environments seems apparent: given an individual with a diagnosed high "ability," what influences whether or not that individual will use that ability? One factor that influences one's effort is the unique non-cognitive aspects of individual differences. Personality assessment represents one method for understanding these personal characteristics.

Traditionally, personality assessment has not been accepted as a procedure for predicting training performance. However, the limited research which has appeared has demonstrated positive and significant results. In 1973, Ghiselli summarized all previous research on training performance predictors. Personality appeared in only a few studies involving managerial training. The average validity (.53) indicated that personality measures were successful predictors of training performance.

The one, and possibly only, persistent application of personality tests to prediction/selection is in law enforcement officer screening. Inwald and Shusman (1984) conducted a recent study to test the prediction power of the Inwald Personality Inventory (IPI) against that of the Minnesota Multiphastic Personality Inventory (MMPI) in this
context. "Results indicated that scales measuring 'acting out' behaviors (as measured on the IPI scales 'trouble with the law,' 'job difficulties,' and 'drugs') best predicted negative behaviors for male police officers on eight job performance measures [(behavior in academy training)] [(p < .05)]" (p. 10). The IPI was determined to measure a much wider range of antisocial behaviors than can be assessed through departmental investigations or biographical data.

Personality as a training predictor has received less attention than ability or aptitude tests. Again the majority of studies have been conducted within the military services.

Both the Army and Air Force have released recent studies on the addition of personality to the current predictor batteries. Hough, Barge, Houston, McGue, and Kamp (1985) developed personality construct scales specifically for predicting Army school performance. On initial analysis, these measures proved to contribute unique variance to the existing prediction instrument. A current Air Force study is seeking to increase efficiency in the selection and classification of pilot trainees with a battery of supplemental predictors. Measures under investigation include personality as well as psychomotor tests and biographical histories (Kantor and Bordelon, 1985). The intent of this work is to obtain the most comprehensive view of individual potential possible.

Ryman and Biersner (1975) found significant relationships between success in three Navy diving schools and scales measuring leadership, training concern and training confidence. Those who passed diver training had significantly higher training confidence scores than those
who voluntarily dropped. The leadership scale and low scores on the training concern scale were correlated with training success. Attitudes toward training appeared to be potent predictors of success or failure as did motivated factors.

Despite over close to a century of research, personality assessment has made relatively little contribution to the area of training. The aforementioned results suggest that personality has much to offer as a selection/prediction instrument. Yet, personality is rarely used in this context as many believe that "... personality measures do not presently provide a good means for predicting ... performance" (Kahan, Webb, Shavelson and Stolzenberg, 1985) (p. 28). Several factors are responsible for this apparent disregard of personality by training researchers.

The primary reason is related to the conceptual foundation of personality and its early uses. Historically, personality theory and research emphasized psychopathological and neuropsychic conceptualizations of personality structure. Selection studies sought to detect and exclude maladjusted individuals. For example, in the 1940s, L.L. Thurstone developed a managerial selection battery for Sears to detect latent psychopathological maladjustment in potential employees (Hogan, Carpenter, Briggs, and Hansson, 1985). Conceptually, personality is a product of psychiatry and clinical psychology and is thought to reflect some underlying set of neurotic structures governing behavior. This view is still evident in current uses of personality assessment. Inwald and Shushman (1984) applied these measures to predict negative job behavior by law enforcement officers and to
identify unstable or persons of "risk." Similar procedures have also been employed in the selection (or exclusion) of astronaut candidates (Collins, 1985). Psychological tests, behavioral observations, and physiological measures have been used to detect undesirable characteristics of potential crew members. The emphasis of these procedures is on excluding individuals on the basis of psychopathology; there is relatively little effort to identify individuals with the potential for exceptional performance. This psychopathological screening has been successful—there have been no known cases of acute psychotic breakdown in our space program. However, it tells us very little about how to "screen in" or select exceptional task performers drawn from a normal population. Consequently, personality assessment, especially as it relates to personnel selection, carries a negative connotation. A large number of people equate personality with psychopathology and are reluctant to accept these measures as predictors of normal performance.

The second reason for the exclusion of personality in training research is methodological in nature. Until recently, personality psychologists failed to reach any consensus regarding how to define personality and accordingly, how it should be measured. Every theory of personality provided its own set of variables or constructs and its own measurement procedures. Over 500 different measures of personality appeared in the research before 1957 alone (Mann, 1958). Consequently, the literature is filled with a maze of inconsistent findings. Mann referred to the field of personality assessment as being "test rich and integration poor" (p. 242), including measures as divergent as oral
sadism and adventurous cyclothymia. Researchers in other areas such as training have found little direction from the confusing state of the personality literature.

Subsequently, attempts have been made to rectify this situation. One possible reason for the confusion may have been that the number of personality variables is just too vast to coherently organize and study. However, a more plausible explanation is that different researchers were simply assigning different descriptors to the same trait dimensions. Factor analytic research supports this contention. Beginning with Tupes and Christal (1961) and Norman (1963), these studies have identified three to six broad dimensions which constitute "personality." The multitude of personality descriptors identified in previous literature can be expressed in terms of these few dimensions. This finding establishes a common vocabulary for both describing and measuring personality. The result is that this allows the systematic evaluation of personality variables in various applications. In summary, personality assessment has been excluded from training research on the basis of both conceptual and methodological shortcomings inherent in early personality theory.

Recent personality theorists have responded to these findings in an attempt to make personality assessment applicable to modern needs and concerns. One such response was the development of the Hogan Personality Inventory (HPI). Breaking from the traditional intra-psychic view, the HPI is based on a socioanalytic theory of personality. The socioanalytic theory reflects a more external conception of personality designed to account for individual differences
in status, popularity, and general performance rather than psychopathological maladjustment. This theory views personality from an observers perspective. As defined by Hogan (1983), "here the word 'personality' refers to a person's distinctive interpersonal style, to the kind of impression that person makes on others" (p. 59). This view is purely external; it refers to a person's social reputation, to his or her unique social stimulus value. Thus, trait terms do not describe some set of neurotic structures, but reflect observers' expressed evaluations of actors both as individuals and as potential group or societal contributors.

There are six broad dimensions in terms of which every reputation can be analyzed and described. These dimensions are based on the findings of the previously discussed factor analytic research. As identified by the HPI, these six dimensions included intellectance, adjustment, prudence, ambition, sociability, and likability. It is possible to both describe and forecast important aspects of individual behavior in terms of these six scales.

Initial HPI applications have been promising. The Hogan Personality Inventory (HPI) significantly predicted non-technical (patient care) job performance in a sample of 150 nursing aids in a large metropolitan hospital (Hogan, Hogan, and Busch, 1984). Fourteen sub-composites from these scales combined to yield a multiple regression coefficient of .61. In a Navy study, several sub-composites of the Hogan Personality Inventory (HPI) significantly predicted Navy personnel performance at an isolated Antarctic research station (Biersner and Hogan, 1984). By combining the sub-composites in a single scale, the correlation with the
positive criterion (peer nomination) was .52 ($p < .004$), and -.46 with the negative criterion. The HPI also proved useful in a study directed toward increasing training selection accuracy and reducing the attrition rates. Hogan and Hogan (1985) obtained a validity coefficient of .38 for predicting successful completion of Army and Navy explosive ordnance disposal technical training. Attributes seen as influential were those related to academic motivation, self concept, self sufficiency, and self confidence. Interestingly, the military ASVAB failed to predict training performance and was virtually of no use.

Multiple Prediction For Comprehensive Individual Assessment

These results suggest that this is a promising area for further investigation. This additional domain has to be measured and considered jointly with ability factors to obtain a more comprehensive view of individual potential. Again, knowledge of an individual's abilities and aptitudes does not indicate whether that person has the initiative to utilize that ability. Current research is already underway to refine the recruit screening process in all military services with the application of additional predictors (Eitelberg et al., 1984).

Regardless of the individual criticism, the apparent consensus is that conventional ability and aptitude tests fail to meet the requirements for sole inclusion for selection and prediction purposes. As early as 1933, Stagner identified the possibility that one reason for the unsatisfactory relationship between aptitude and achievement was "... the energy output of the individual which probably varies independent of ability" (p. 648). These tests should not be eliminated,
rather, they should be supplemented with additional assessment instruments. As Wexley (1984) concluded, substantial predictability is unlikely to be achieved unless all factors are considered together.

The objective of this study is to empirically re-examine the cognitive/non-cognitive issue in the prediction of training performance. Specifically, the goal is to study the use of the HPI as a supplemental predictor to the military ASVAB. The HPI is expected to account for the "will do" or motivational factors that contribute to performance. Furthermore, the inclusion of the HPI in the prediction battery is hypothesized to significantly increase training performance prediction over that obtained with the ASVAB alone.
METHOD

Subjects

Research subjects were 155 Naval trainees who arrived at the Naval Training Center, Orlando, Florida, in January and February, 1986 for entry into the Basic Electricity and Electronics (BE&E) school. This sample consisted of 120 male and 35 female students. The subjects' average age was 21 years, with educational levels ranging from non-completion of high school to four years of college. Military rank ranged from E1 to E4 with the majority holding a rank of E2. Subjects were training for occupations of Electronic Technician, Electricians Mate, and Fire Controllman.

Predictors

ASVAB

Selected scores from the Armed Services Vocational Aptitude Battery (ASVAB) served as measures of cognitive ability. These included measures on the four subtests which form the Electronics selection composite. This composite screens recruits for occupations requiring knowledge and/or use of electronic principles. Specifically, these four subtests are as follows:

1. **Arithmetic reasoning (AR)** - involves reasoning problems with arithmetic processes or solving arithmetic "word problems."
2. **Mathematics Knowledge (MK)** - involves solving mathematical problems which require knowledge of geometry, algebra, fractions, decimals, and exponents.

3. **General Science (GS)** - involves questions covering physical and biological science, geography, arts, sports, first aid, and military history.

4. **Electronics Information (EI)** - involves questions covering electrical and electronic components, symbols, diagrams and principles.

HPI

The Hogan Personality Inventory (HPI) (Appendix A) was administered to assess non-cognitive "motivational" aspects of individual differences. The HPI contains six trait dimensions described as follows:

1. **Sociability (SO)** - persons at the high end of this continuum are affiliative, outgoing, and enjoy helping others. Persons at the low end prefer to work alone and specialize in technology as opposed to social relations.

2. **Prudence (PR)** - persons high on prudence are conscientious, planful, and conforming. Those low on this dimension are impulsive, disorderly, spontaneous, and imaginative.

3. **Intellectence (INT)** - persons high on this dimension are seen as sharp, quick witted, and having good judgement. The low end describes those seen as slow, confused, and having poor judgement.
4. Adjustment (AD) - those high on adjustment are self confident, good spirited, and have a predictable disposition. Persons on the low end are moody, anxious, depressed, self-defeating, and unpopular.

5. Ambition (AM) - persons high on ambition are energetic, leaderlike, and show initiative in social situations. Those on the low end are perceived as passive, dependent, and submissive.

6. Likability (LI) - persons high on this continuum are seen as being cooperative, dependable, and warm. Those on the low end are perceived as being uncooperative, complaining, and difficult to deal with.

Each of the above dimensions contain several distinguishing characteristic facets for which miniature scales, called Homogeneous Item Composites (HIC), were formed. Reliability information for each scale and its constituent HICs are given in Appendix B.

Procedure

The Naval Basic Electricity and Electronics school served as the setting for this study. This school is a prerequisite for a variety of technical "A" schools. The BE&E school provides self-paced, individualized instruction via computer administration. Even though students are screened and placed on the basis of ASVAB score requirements, a large number still fail to complete training in the allotted time or even at all. The average drop rate (non-voluntary) ranges from 20 to 35% and, in some cases, may be higher (Nauta, Ward,
and D'Ambrosia, 1983). These drops are categorized as academic or motivational drops. The concern of school administrators is how to predict those labeled motivational drops. While they have faith in the ASVAB for predicting general ability and academic drops, they recognize the need for motivational indicators which the ASVAB fails to provide.

Administration of the HPI took place during the indoctrination course prior to entry in the BE&E school. Research subjects were informed as to the nature of the study and confidentiality of results via an information and consent form (Appendix C).

The ASVAB was administered to all recruits prior to selection and placement in training programs. ASVAB test scores were obtained from the BE&E school's student history reports.

Students were tracked through completion of the first 25 BE&E instructional modules. Modules 1-14 cover AC/DC electrical circuits and components while modules 15-25 introduce test equipment and solid state circuits. The average time required for the completion of the 25 modules was 9 to 12 weeks.

Criterion Measures

Performance in training was assessed by measures on seven variables. These variables and the corresponding coding of each are described in detail as follows:

1. **Final Academic Standing (FAS)**

 Final academic standing categories include graduate, academic drop, or motivational drop. An academic drop indicates that the student does not have the ability
necessary to complete training. A motivational drop indicates that the student has the ability but lacks the drive, desire, or initiative to complete training. A motivational drop is considered dishonorable whereas an academic drop is acceptable and graduate Status is, of course, preferable. To reflect this difference in status, motivational drops were coded 0, academic drops 1, and graduates 2.

2. **Final School Grade (FSG)**

Students receive a percentile score based on major test grades, performance tests, and all remedial grades. These scores were recorded for this variable.

3. **Number of Remedials (REM)**

For each of the instructional modules, students must pass a competency test before proceeding to the next module. When a student fails a test, that student receives remediation and is then retested. This routine is repeated until the test is mastered. This variable measures the number of times a student is retested on the same material.

4. **Time to Completion (TC)**

Due to the self paced nature of the training, the amount of time spent in training varies for each individual. This measure reflects the average amount of time, in hours and tenths of hours needed to complete one module of training.
5. **Academic Day Off (ADO)**

Students are given permission to miss a normal school day when the student is perceived to be exhibiting outstanding effort in training (regardless of performance). Scores on this variable indicate the number of times a student receives a day off.

6. **Suspensions (SC)**

Students who demonstrate consistent academic problems are suspended, usually to be reviewed by a panel to determine whether an alternative training placement is necessary. This variable recorded the number of times a student was suspended.

7. **Number of Modules Completed (MODS)**

This variable recorded the number of training modules the student completed before training was terminated.

DATA ANALYSIS

All analyses were conducted using the IBM P.C. version of the Statistical Package for the Social Sciences (SPSSPC+) with advanced Statistics.

The seven individual criterion variables were factor analyzed using a principle components procedure with Varimax rotation. Component scores were then obtained for each subject to be used in further analysis.
Several multiple regression analyses were conducted using the component scores and selected individual variables as criterion to be predicted by the ASVAB and the HPI.
RESULTS

Factor Analysis of Criterion Variables

Intercorrelations among the seven criterion variables are illustrated in Appendix D. The principle components method revealed two underlying dimensions or factors with Eigenvalues greater than one. Together, the two factors account for 71% of the variance on the criterion variables, with factor 1 accounting for the greatest percentage (54%). Table 1 (Appendix E) contains the varimax rotated factor matrix.

The highest loadings occurred on factor 1. This factor, labeled Objective Performance (OP), is identified by a combination of the "traditional" academic performance variables. Specifically, the dependent measures defining factor 1 include: final academic standing, time to completion, number of training modules completed, number of remedials, and suspensions. Factor 2 is primarily identified by the variable academic day off. Academic days off are given relative to the instructors perception that the student is displaying exceptional effort, regardless of academic performance. Thus, Factor 2 was labeled Subjective Performance (SP).

Regression Analysis

The second set of results addresses the primary research question of this study: Can the HPI add significantly to training performance prediction above that obtained with the ASVAB?
Multiple regressions with simultaneous independent variable entry were conducted for both subgroup models (ASVAB, HPI) and the full prediction model (ASVAB + HPI) with the derived factor criteria 1 and 2 (tables 2 and 3, respectively, Appendix E). Independent variable intercorrelations and correlations with the dependent measures are illustrated in Appendix D.

The validity of the full prediction model with the objective performance criterion was substantial ($R = .56, p < .01$). Together, the HPI and ASVAB account for 32% ($R^2 = .32$) of the variance in objective training performance. The regression equation was as follows:

$$Y' = 6.25 - .05 (LI) - .12 (AM) + .08 (PR) + .14 (AD) + .01 (50) - .12 (INT) - .15 (EI) - .33 (MK) - .08 (65) - .06 (MC).$$

The shrinkage estimate was applied to test the stability of the relationship. The R^2 estimate (.27) predicts a loss of 5% of variance determined by these measures when applied to another sample.

The HPI composite alone significantly predicted objective performance ($R^2 = .17$). However, when added to the ASVAB composite, the resulting increase in R^2 (.04) failed to reach significance, $F(6, 144) = 2.17, p > .05$. Neither the subgroup, nor the full model regression with factor 2 (subjective performance) attained significance. Thus, the major hypothesis was not supported.

Multiple Regression with Selected Dependent Variables

It was concluded that, for practical application, school administrators might wish to predict specific student behavior rather than an empirically derived overall "performance" measure. Also, while
the full HPI composite failed to aid in this "performance" prediction, certain HPI scales or combination of scales could, conceivably, aid in the prediction of selected single dependent measures. The third set of results addresses these issues by attempting to identify the best set of variables for predicting specific training performance criteria. Given that the ASVAB will most likely always exist as the primary prediction device, the strategy was to first identify the significant ASVAB scale predictors and then to see which HPI scales, if any, would enter the equation to enhance that prediction.

A blockwise selection of predictors was employed. The first step entailed the computation of stepwise regressions with the ASVAB and each single dependent variable. The ASVAB scales Mathematics Knowledge (MK) and Electronics Information (EI) emerged as the primary predictors for most criteria (Final Academic Standing, Final School Grade, Time to Completion, Remediation, Suspensions) while the scales General Science (GS) and Arithmetic Reasoning (AR) reached significance for only one criterion each, Number of Modules Completed and Time to Completion, respectively (see Table 4, Appendix E). No ASVAB scales predicted the Criterion Academic Day Off.

In the second step of the blockwise procedure, the significant ASVAB Scales were retained in the regression equation and HPI Scales were then allowed to enter using a stepwise method. For four of the seven criterion variables, several HPI scales met the .05 entrance requirement to produce the following "best" predictor composites.

Final school grades (FSG) are best determined by the ASVAB Scales Mathematics Knowledge (MK), and Electronics Information (EI) and the HPI
Scale Prudence (PR) \(Y' = 54.27 + .26 \text{ (EI)} + .32 \text{ (MK)} - .15 \text{ (PR)} \).

Together, these variables account for 22\% \(R^2 = .22 \) of the variance in final school grades.

The criterion variable Time to Completion (TC) was best predicted by the ASVAB scales Arithmetic Reasoning (AR), Mathematics Knowledge (MK), and Electronics Information (EI), and the HPI scale Intellectance (INT) \(Y' = 63.99 - .17 \text{ (AR)} - .28 \text{ (MK)} - .14 \text{ (EI)} - .15 \text{ (INT)} \).

Twenty-eight percent of the variance in training completion time was determined by these variables.

The greatest contribution by HPI Scales was in the prediction of the Remediation (REM) criterion. The HPI Scales Intellectance (INT), Adjustment (AD), and Prudence (PR), together with ASVAB Scales Electronics Information (EI), and Mathematics Knowledge (MK) accounted for 34\% \(R^2 = .34 \) of the variance on the remediation criterion \(Y' = 15.24 - .17 \text{ (EI)} - .36 \text{ (MK)} - .24 \text{ (INT)} - .15 \text{ (AD)} + .14 \text{ (PR)} \). The estimated shrinkage in \(R^2 \) (from .34 to .32) indicates a stable relationship for these variables.

Finally, the criterion measure Number of Modules Completed (MODS) is best determined by the ASVAB Scales General Science (GS) and Mathematics Knowledge (MK) and the HPI Scale Ambition \(Y_1 = -15.78 + .20 \text{ (GS)} + .27 \text{ (MK)} + .12 \text{ (AM)} \). Nineteen percent of the variance in the number of modules completed was accounted for by these variables.

Table 5 contains summary statistics for these regressions.
DISCUSSION

The major analysis failed to support the general hypothesis of this study. That is, the full HPI composite failed to significantly increase the prediction of the overall training performance measure above that obtained with the ASVAB. Contrary to results in similar studies (Yarkin-Levine et al., 1983; Hogan and Hogan, 1985), the ASVAB was quite successful in predicting performance in BE&E technical training. That is not to say that the HPI was unsuccessful in predicting performance. Rather, the inability to provide significant supplemental information was due to a surprising finding of shared variance between the two composites, especially between the HPI Scale Intellectance and the ASVAB Scale Mathematics Knowledge.

As might be expected, the cognitive measure (ASVAB) failed to predict the subjective performance measure, Academic Day Off. This measure was intended to reflect non-academic performance (effort) as perceived by the instructors, and was thought to be predictable via personality measures. However, this was not the case; the HPI also failed to predict subjective performance. The inability of both the ASVAB and HPI in predicting this criterion is thought to be attributable to problems inherent in the nature of the criterion itself. It is suspected that inconsistencies in different instructors' interpretations and allocations of the performance reward resulted in a convoluted and unreliable view of this aspect of trainee performance.
While the HPI failed to add to the prediction of overall "performance," certain scales were found to be significant in the follow-up analyses which sought to identify the best predictor composite for specific training criteria. It is important to note, however, that the ASVAB continued to be the primary source of predictive information. These results suggest that, in addition to high aptitude in mathematics and electronics, persons who attain high course grades are imaginative and non-conforming and persons requiring little remediation are self confident, assertive, imaginative, and non-conforming. Those most quickly trainable are assertive, imaginative, interested in education and have high aptitude in mathematics, arithmetic reasoning, and electronics. Those most likely to complete training are competitive, assertive, achievement oriented and have high aptitude in mathematics and general science.

These mini profiles provide insight into the critical questions of who will perform best in training, complete training most quickly, or be able to succeed in training (Gordon and Cohen, 1973; Gordon and Kleiman, 1976). Questions such as these have important implication for effective training in terms of both human and financial resources. While training research has progressed by leap and bounds in the areas of training techniques, instructional content, and program evaluation/cost analysis, knowledge of the individual determinant has lagged behind.
CONCLUSIONS

Proper selection for training is an important determinant of the probable success of any training program. Early identification of individuals who will benefit most from specific types of training, perform at a higher level in training or who may profit from accelerated or supplemental training has important implications in terms of training efficiency and cost effectiveness.

Recent results suggest that ability measures, in particular the ASVAB, fail to successfully identify these behavioral tendencies. Yet, in this study, the ASVAB's predictive validity was found to be moderate to substantial. The HPI composite predicted objective, academic performance as well, yet failed to add significant predictive power when added to the ASVAB. Furthermore, certain HPI Scales, when combined with certain ASVAB Scales were found to be significant in predicting a number of training criteria. Given these somewhat confusing results, exactly what can be concluded as the major findings of this study?

First, it can be concluded that the ASVAB does a fairly good job of predicting objective performance in the Naval BE&E training school. Secondly, the HPI was moderately successful in achieving this same goal. Thus, personality measures are able to predict training performance. Due to an apparent overlap in shared variance between these two measures, the increase in prediction when added together is not significant. Quite possibly, the premise that cognitive and
non-cognitive attributes are separate, unrelated entities may not be as absolute as previously thought.

Some HPI Scales did enter equations with selected ASVAB Scales to produce the "best" predictor composites for certain performance criteria. However, the ASVAB Scales were still the primary determinant of variance for these criteria. It is concluded that for the criteria Final School Grade, Time to Completion and Number of Modules Completed, prediction accuracy using these "best" composites would probably not differ from that obtained using the normal ASVAB composite. Prediction of the criterion Number of Remedials does appear to be substantially enhanced using this "best" composite. However, it would not be feasible to institute change simply for this performance measure. The amount of remediation required for a particular student is not of extreme importance as it does not appear to affect either the amount of time spent in training or whether or not a student will complete training. Possibly, in training situations where remediation is of more practical importance, it may be beneficial to examine personality influences.

These results, far from being substantially conclusive, at least verify the complexity and influence of individual differences in training situations. It is quite possible that for traditional academic training, cognitive predictors will provide the most valuable information in terms of individual potential. Personality may have a more profound effect in cases of unconventional skill training or training for occupations of risk (see Hogan and Hogan, 1985). Future research needs to consider the differences in job types for which training is intended.
APPENDIX A

HOGAN PERSONALITY INVENTORY

HPI
Following is a series of statements. Please read each one, decide how you feel about it, and then mark an "X" in either the box marked TRUE (meaning you agree with the statement) or FALSE (meaning you disagree with the statement).

<table>
<thead>
<tr>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. It is easy for me to talk to strangers.</td>
</tr>
<tr>
<td></td>
<td>2. I never resent not getting my way.</td>
</tr>
<tr>
<td></td>
<td>3. I think crowded public events (rock concerts, sports events) are very exciting.</td>
</tr>
<tr>
<td></td>
<td>4. It is always best to tell the truth.</td>
</tr>
<tr>
<td></td>
<td>5. I enjoy telling jokes and stories.</td>
</tr>
<tr>
<td></td>
<td>6. I'm good at cheering people up.</td>
</tr>
<tr>
<td></td>
<td>7. Before meeting someone, I often think of what I will say.</td>
</tr>
<tr>
<td></td>
<td>8. In school I worked hard for my grades.</td>
</tr>
<tr>
<td></td>
<td>9. As a child I was always reading.</td>
</tr>
<tr>
<td></td>
<td>10. Sometimes I feel like a failure.</td>
</tr>
<tr>
<td></td>
<td>11. Happiness is more important than fame.</td>
</tr>
<tr>
<td></td>
<td>12. I am a relaxed, easy-going person.</td>
</tr>
<tr>
<td></td>
<td>13. I am confused about what I want to be.</td>
</tr>
<tr>
<td></td>
<td>14. I shouldn't do many of the things I do.</td>
</tr>
<tr>
<td></td>
<td>15. It upsets me to hurt people's feelings.</td>
</tr>
<tr>
<td></td>
<td>16. I am sensitive to other people's moods.</td>
</tr>
<tr>
<td></td>
<td>17. I sometimes take a new way home just because it is different.</td>
</tr>
<tr>
<td></td>
<td>18. When I'm in a group I usually do what the others want.</td>
</tr>
<tr>
<td></td>
<td>19. I sometimes feel like I am watching myself.</td>
</tr>
<tr>
<td></td>
<td>20. Most people think I am smart.</td>
</tr>
<tr>
<td></td>
<td>21. I enjoy making people feel better.</td>
</tr>
</tbody>
</table>
22. I would like to be a computer programmer.
23. When I'm in a bad mood, no one can please me.
24. I remember phone numbers easily.
25. I would enjoy writing music for a living.
26. Sometimes I feel like I'm falling apart.
27. I like classical music.
28. I sometimes show off if I get a chance.
29. I would like to work with high explosives.
30. I strive for perfection in everything I do.
31. I often wonder what people are thinking of me.
32. There are a lot of things about myself that I would to change.
33. I tend to be critical of others.
34. I hold grudges for a long time.
35. I am cranky and irritable when I don't feel well.
36. I enjoy working with people.
37. I have never hated anyone.
38. I always try to see the other person's point of view.
39. I want more of everything.
40. I am a leader in my group.
41. I expect to succeed in things I do.
42. I often lose my temper.
43. I would like to learn to scuba dive.
44. I get excited very easily.
45. I have often acted against my parents' wishes.
46. I wish my life were more predictable.
47. I feel guilty about some of the things I have done.

48. I am always arguing with people.

49. I have a natural talent for influencing people.

50. I like challenges.

51. I am a very self-confident person.

52. When I was in school I gave the teachers a lot of trouble.

53. It is as important to seem honest as it is to be honest.

54. I want to be an important person in my community.

55. I wish I knew what I wanted out of life.

56. In school I didn't like math.

57. I don't care if others like the things I do.

58. I wouldn't mind driving a truck across the country for a living.

59. I seldom pay attention to how I look.

60. It bothers me when my daily routine is interrupted.

61. At work I never waste time socializing.

62. It makes me nervous to talk to members of the opposite sex.

63. I'm always tired.

64. I get nervous if I think someone is watching me.

65. I would enjoy sky-diving.

66. I would rather stay home and read than go to a party.

67. I enjoy solving riddles.

68. I would do almost anything on a dare.

69. I don't mind criticizing people, especially when they need it.
70. It is exciting to be part of a large crowd.
71. I don't mind talking in front of a group of people.
72. It makes me uncomfortable to enter a room full of people.
73. I prefer that other people don't pay much attention to me.
74. I sometimes wanted to run away from home.
75. I think I would enjoy living alone.
76. I would never bet on a horse race.
77. When I deal with cashiers and sales clerks I am all business.
78. I don't really care what other people think of me.
79. In school it was hard for me to talk in front of the class.
80. It's okay to brag a little about your accomplishments.
81. I always practice what I preach.
82. I daydream a lot.
83. I do my job as well as I possibly can.
84. I want to be the best at everything I do.
85. I would like to know more history.
86. I ought to treat people better than I do.
87. I would like to be in a talent show.
88. I don't have anyone I can really talk to.
89. Most of the time I am proud of myself.
90. I sometimes wish I were somebody else.
91. I get away with a lot of things.
92. I am often careless about my appearance.
93. I'm known for coming up with good ideas.
94. I often feel anxious.
95. I make my bed every day.
96. In school, I was sometimes sent to the principal for my behavior.
97. I don't like things to be uncertain and unpredictable.
98. I'm not afraid to be the first to try something.
99. When people are nice to me I wonder what they want.
100. I never know what I will do tomorrow.
101. I enjoy reading poetry.
102. I am good at telling jokes and funny stories.
103. I am seldom tense or anxious.
104. I find it hard to express my feelings.
105. I have never taken advantage of anyone.
106. The future seems hopeless to me.
107. I want people to look up to me.
108. Everyone has some good qualities about them.
109. I frequently have indigestion.
110. I plan my work very carefully in advance.
111. Many people would say that I am shy.
112. I don't let little things bother me.
113. I would like to go mountain climbing.
114. Putting on an act for people is often necessary.
115. I can't do anything well.
116. When someone gives me a job to do I finish it no matter what.
117. I get out of breath more easily than I used to.
118. I enjoy showing off a little now and then.
119. I enjoy a strong desire for success in the world.
120. I like to try new, exotic foods.
121. Nothing good ever happens to me.
122. I enjoy helping people.
123. In a group, I never attract attention to myself.
124. In school, I memorized facts quickly.
125. I often think about the reasons for my actions.
126. I won't start a project unless I know how it will turn out.
127. I would like a job that requires traveling.
128. I like large, noisy parties.
129. I read at least ten books a year.
130. I like to talk to people.
131. As a child, school was easy for me.
132. I enjoy working crossword puzzles.
133. I sometimes have too much to drink.
134. Sometimes I felt my parents didn't love me.
135. I was a slow learner in school.
136. I like to gamble.
137. I'm uncertain about what I do with my life.
138. I tend to give up when I meet difficult problems.
139. In order to get along with people, I sometimes pretend to be interested in them.
140. I get annoyed by others' bad manners.
141. I like to do things on the spur of the moment.
142. I consider carefully what clothes to wear each day.
143. I have a good imagination.
144. I sometimes do things just so other people will notice me.

145. I frequently praise others.

146. Before doing something, I usually consider what my friends will think.

147. I have a large vocabulary.

148. I set high standards for myself.

149. People are always nice to me.

150. I like parties and socials.

151. I get bored easily.

152. I don't enjoy a game unless I win.

153. It is more important to get the job done than to worry about people's feelings.

154. It is always best to stick with a plan that works.

155. I like a lot of variety in my life.

156. I don't think much about the future.

157. I am almost always too hot or too cold.

158. I find it hard to work under strict rules and regulations.

159. I have been in trouble for drinking too much.

160. I would rather read than watch T.V.

161. In school I am/was usually in the upper part of my class.

162. Sometimes I am hard to get along with.

163. I never go out of my way to help others.

164. I am a quick-witted person.

165. I am a follower, not a leader.

166. I worry a lot.
167. I often wonder about how I got to be the way I am.
168. There were times when I resented my parents.
169. I've considered suicide.
170. I get depressed a lot.
171. I am often the life of the party.
172. I am a good listener no matter whom I talk to.
173. People can depend on me.
174. I generally trust people until they prove me wrong.
175. As a youngster in school I was suspended for my behavior.
176. I like to be the center of attention.
177. The best part of my day is the time I spend alone.
178. I have taken things apart just to see how they work.
179. I know when I am being myself.
180. I can do long division in my head.
181. Other people's opinions of me are not important.
182. Planning things in advance takes the fun out of life.
183. I would like to be a racecar driver.
184. I frequently have headaches.
185. I like to hear lecturers on world affairs.
186. It often seems that my life has no meaning.
187. I frequently feel guilty.
188. I get tired of doing things the same old way.
189. If something is worth doing, it is worth doing well.
190. I think I would like to do research.
191. People usually follow my suggestions.
192. I expect too much of myself.
193. I have never been in trouble with the law.
194. It is hard to act naturally when I am with new people.
195. People can usually tell what I'm feeling.
196. I am not very inventive.
197. I am usually aware of my inner feelings.
198. I'm a humble person.
199. I have a hard time making choices and decisions.
200. When I am in a bad mood, I let other people know it.
201. If it were legal, I might experiment with heroin.
202. In school, math was easy for me.
203. I would rather take orders than give them.
204. I would like to be a deep-sea diver.
205. I find Greek mythology interesting.
206. I can get along with just about anybody.
207. I am too busy to worry about my appearance.
208. I have been in trouble for experimenting with marijuana or other drugs.
209. I like what I do for a living.
210. I have little self-confidence.
211. I would volunteer for an Army drug experiment.
212. I feel like life is just passing me by.
213. I like doing two things at once.
214. I would enjoy working by myself in a scientific laboratory.
215. I have a lot of friends.
216. I keep calm in a crisis.
217. I am a forgiving person.
218. I am often irritated by faults in others.
219. I'm cautious by nature.
220. I am an ambitious person.
221. I sometimes do things that are illegal.
222. I don't trust people unless I know them very well.
223. I love the hustle and bustle of city crowds.
224. I have let a lot of people down.
225. I am a fast reader.
226. I am a good speller.
227. I never deliberately defied my parents.
228. I hate opera singing.
229. I can make up stories quickly.
230. When I'm mad, I seldom show it.
231. I am a hard and steady worker.
232. I like to play chess.
233. I frequently do things on impulse.
234. I am interested in science.
235. I can multiply large numbers quickly.
236. I don't show my emotions to others.
237. I like not knowing what tomorrow will bring.
238. I am good at inventing games, stories or rhymes.
239. I often feel that I chose the wrong occupation.
240. I rarely get angry with others.
241. I usually feel good.
242. Most people are nice once you get to know them.
243. I believe people are basically honest.

244. I used to steal sometimes when I was a kid.

245. I like to work on several projects at the same time.

246. I like detective stories.

247. I work well with other people.

248. I always try to do a little more than what is expected of me.

249. I am careful about my appearance.

250. I have never deliberately told a lie.

251. I never resent being asked for a favor.

252. I enjoy just being with other people.

253. Nothing seems to matter to me anymore.

254. I always work hard, even when I'm not feeling well.

255. I rarely get anxious about my problems.

256. I often try to understand myself.

257. There are a lot of things I would like to change about my past.

258. I am a happy person.

259. I like to give orders and get things moving.

260. I can use a microscope.

261. I understand why stars twinkle.

262. I sometimes pretend to know more than I do.

263. I often analyze my motives.

264. Life is no fun when you play it safe.

265. People seem to underestimate my intelligence.

266. I am usually calm.

267. I am a sociable person.
268. I often start things I never finish.
269. I like doing things that no one else has done.
270. I sometimes feel irritated without any good reason.
271. I don't hate anyone.
272. Before going out, I think carefully about what I will wear.
273. I have a good memory.
274. As a child I could always go to my parents with my problems.
275. I enjoy meeting new people.
276. I like to have a schedule and stick to it.
277. I rarely make a promise that I don't keep.
278. Basically, I am a cooperative person.
279. I would like to be an inventor.
280. When I was young, there were times when I felt like leaving home.
281. I often say things without thinking.
282. As a child, my home life was usually happy.
283. I enjoy the excitement of the unknown.
284. Sometimes I enjoy going against the rules.
285. I would go to a party every night if I could.
286. I am not a competitive person.
287. I usually notice when I am boring people.
288. My successes mean little to me.
289. I enjoy giving parties.
290. I always notice when people are upset.
291. I don't care for large, noisy crowds.
292. My sexual behavior has gotten me in trouble.
293. I think I would enjoy having authority over people.
294. In a group, I like to take charge of things.
295. At parties, I am often the last to leave.
296. I often say things I regret.
297. I usually feel that life is worthwhile.
298. My health is excellent.
299. I am always respectful when talking to people in authority.
300. I am easy to get along with.
301. I am a patient person.
302. I'm known as a wit.
303. I don't like to try things when I think I might fail.
304. I would never cry in public.
305. I'm pretty careful in my work.
306. People pretend to care more about one another than they really do.
307. People think I am an introvert.
308. I am always polite, even to loud-mouthed, obnoxious people.
309. I would rather work with facts than people.
310. I often do things I don't want to do.
APPENDIX B
HPI RELIABILITY INFORMATION
HPI Scales, Constituent HICs, and Respective Alpha Reliability Estimates

<table>
<thead>
<tr>
<th>Scale</th>
<th>No. of Items</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectance</td>
<td>41</td>
<td>.85</td>
</tr>
<tr>
<td>HICs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Good memory</td>
<td>5</td>
<td>.61</td>
</tr>
<tr>
<td>2. School success</td>
<td>3</td>
<td>.70</td>
</tr>
<tr>
<td>3. Math ability</td>
<td>4</td>
<td>.77</td>
</tr>
<tr>
<td>4. Reading</td>
<td>4</td>
<td>.72</td>
</tr>
<tr>
<td>5. Cultural taste</td>
<td>4</td>
<td>.65</td>
</tr>
<tr>
<td>6. Curiosity</td>
<td>4</td>
<td>.60</td>
</tr>
<tr>
<td>7. Intellectual games</td>
<td>4</td>
<td>.64</td>
</tr>
<tr>
<td>8. Generates ideas</td>
<td>5</td>
<td>.67</td>
</tr>
<tr>
<td>9. Intelligence</td>
<td>4</td>
<td>.51</td>
</tr>
<tr>
<td>10. Divergent thinking</td>
<td></td>
<td>.53</td>
</tr>
<tr>
<td>Adjustment</td>
<td>68</td>
<td>.94</td>
</tr>
<tr>
<td>HICs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Not anxious</td>
<td>4</td>
<td>.84</td>
</tr>
<tr>
<td>12. No somatic complaint</td>
<td>9</td>
<td>.69</td>
</tr>
<tr>
<td>13. Not depressed</td>
<td>10</td>
<td>.82</td>
</tr>
<tr>
<td>14. No guilt</td>
<td>5</td>
<td>.60</td>
</tr>
<tr>
<td>15. No social anxiety</td>
<td>8</td>
<td>.78</td>
</tr>
<tr>
<td>16. Self-confidence</td>
<td>5</td>
<td>.75</td>
</tr>
<tr>
<td>17. Self-esteem</td>
<td>7</td>
<td>.59</td>
</tr>
<tr>
<td>18. Identity</td>
<td>7</td>
<td>.80</td>
</tr>
<tr>
<td>19. Calmness</td>
<td>5</td>
<td>.64</td>
</tr>
<tr>
<td>20. Good attachment</td>
<td>8</td>
<td>.81</td>
</tr>
<tr>
<td>Ambition</td>
<td>3</td>
<td>.83</td>
</tr>
<tr>
<td>HICs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Sets high standards</td>
<td>7</td>
<td>.69</td>
</tr>
<tr>
<td>22. Leadership</td>
<td>13</td>
<td>.82</td>
</tr>
<tr>
<td>23. Status seeking</td>
<td>7</td>
<td>.60</td>
</tr>
<tr>
<td>24. Tenacity</td>
<td>8</td>
<td>.51</td>
</tr>
<tr>
<td>25. Influence</td>
<td>4</td>
<td>.60</td>
</tr>
<tr>
<td>26. Entertaining</td>
<td>4</td>
<td>.67</td>
</tr>
<tr>
<td>Likability</td>
<td>65</td>
<td>.90</td>
</tr>
<tr>
<td>HICs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Attentive</td>
<td>6</td>
<td>.57</td>
</tr>
<tr>
<td>28. Dependable</td>
<td>6</td>
<td>.62</td>
</tr>
<tr>
<td>29. Tolerant</td>
<td>10</td>
<td>.67</td>
</tr>
<tr>
<td>30. Flattering</td>
<td>4</td>
<td>.58</td>
</tr>
<tr>
<td>31. Caring about others</td>
<td>7</td>
<td>.72</td>
</tr>
<tr>
<td>32. Even tempered</td>
<td>9</td>
<td>.75</td>
</tr>
<tr>
<td>33. Cheerful</td>
<td>10</td>
<td>.68</td>
</tr>
<tr>
<td>34. Cooperative</td>
<td>7</td>
<td>.74</td>
</tr>
<tr>
<td>35. Trusting</td>
<td>6</td>
<td>.63</td>
</tr>
<tr>
<td>Scale</td>
<td>No. of Items</td>
<td>Alpha</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Sociability</td>
<td>43</td>
<td>.87</td>
</tr>
<tr>
<td>36. Sociable</td>
<td>23</td>
<td>.81</td>
</tr>
<tr>
<td>37. Enjoys crowds</td>
<td>5</td>
<td>.77</td>
</tr>
<tr>
<td>38. Exhibition</td>
<td>10</td>
<td>.78</td>
</tr>
<tr>
<td>39. Expressive</td>
<td>5</td>
<td>.62</td>
</tr>
<tr>
<td>Prudence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Caution</td>
<td>5</td>
<td>.56</td>
</tr>
<tr>
<td>41. Avoids trouble</td>
<td>12</td>
<td>.75</td>
</tr>
<tr>
<td>42. Predictability</td>
<td>5</td>
<td>.54</td>
</tr>
<tr>
<td>43. Planful</td>
<td>17</td>
<td>.73</td>
</tr>
<tr>
<td>44. Not experience seeking</td>
<td>9</td>
<td>.56</td>
</tr>
<tr>
<td>45. Not thrill seeking</td>
<td>7</td>
<td>.79</td>
</tr>
</tbody>
</table>

APPENDIX C

PARTICIPANT CONSENT FORM
PARTICIPANT INFORMATION

The Human Factors Division, Naval Training Systems Center, is conducting a study in cooperation with the Service School Command and Chief of Technical Training. This study will examine the use of ASVAB and personal/social measures for determining training performance. Results from this investigation will help the Navy in the placement of future recruits to training schools.

As a participant in this study, you will be asked to complete a survey. This survey will ask you questions about your feelings, interests, and behaviors in everyday life. This task will take you approximately 20 to 25 minutes.

Your responses to the survey will be strictly confidential and your participation is voluntary. Names will be removed from the data sheets and replaced with numbers to protect your privacy. This data will be used to evaluate a procedure for future use in military training and does not affect your schedule.

Thank you for your cooperation.

NAME: ______________________________
APPENDIX D

CORRELATION AND INTERCORRELATION

MATRICES FOR PREDICTORS AND CRITERIA
Intercorrelations Between Criterion Measures

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FAS</td>
<td>.34**</td>
<td>-.72**</td>
<td>-.69**</td>
<td>.12</td>
<td>-.58**</td>
<td>.94**</td>
</tr>
<tr>
<td>2. FSG</td>
<td>--</td>
<td>-.49**</td>
<td>-.56**</td>
<td>.23**</td>
<td>-.27**</td>
<td>.36**</td>
</tr>
<tr>
<td>3. TC</td>
<td>--</td>
<td>.84**</td>
<td>-.12</td>
<td>.36**</td>
<td>-.82**</td>
<td></td>
</tr>
<tr>
<td>4. REM</td>
<td>--</td>
<td>-.17*</td>
<td>.43**</td>
<td>-.80**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ADO</td>
<td>--</td>
<td>-.19**</td>
<td>.13*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. SC</td>
<td>--</td>
<td>-.48**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Mods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
INTERCORRELATIONS BETWEEN HPI PREDICTORS

<table>
<thead>
<tr>
<th>PREDICTOR</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INT</td>
<td>.37**</td>
<td>.01</td>
<td>.37**</td>
<td>.02</td>
<td>.22**</td>
</tr>
<tr>
<td>2. AD</td>
<td>--</td>
<td>.11</td>
<td>.22**</td>
<td>.08</td>
<td>.27**</td>
</tr>
<tr>
<td>3. PR</td>
<td>--</td>
<td>--</td>
<td>-.07</td>
<td>-.20**</td>
<td>.13*</td>
</tr>
<tr>
<td>4. AM</td>
<td>--</td>
<td>--</td>
<td>.38**</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>5. SO</td>
<td>--</td>
<td>--</td>
<td>.23**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. LI</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
INTERCORRELATIONS BETWEEN ASVAB PREDICTORS

<table>
<thead>
<tr>
<th>PREDICTOR</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MK</td>
<td>.10</td>
<td>.28**</td>
<td>.36**</td>
</tr>
<tr>
<td>2. EI</td>
<td>--</td>
<td>.54**</td>
<td>.40**</td>
</tr>
<tr>
<td>3. AR</td>
<td>--</td>
<td>--</td>
<td>.48**</td>
</tr>
<tr>
<td>4. GS</td>
<td></td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
CORRELATION BETWEEN HPI AND ASVAB

<table>
<thead>
<tr>
<th>HPI</th>
<th>MK</th>
<th>EI</th>
<th>AR</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>.42**</td>
<td>.23**</td>
<td>.26**</td>
<td>.41**</td>
</tr>
<tr>
<td>AD</td>
<td>.12</td>
<td>.18*</td>
<td>.18*</td>
<td>.09</td>
</tr>
<tr>
<td>PR</td>
<td>-.05</td>
<td>-.18*</td>
<td>-.21**</td>
<td>-.18*</td>
</tr>
<tr>
<td>AM</td>
<td>.17*</td>
<td>.11</td>
<td>.27**</td>
<td>.07</td>
</tr>
<tr>
<td>SO</td>
<td>.17*</td>
<td>-.02</td>
<td>.16*</td>
<td>.10</td>
</tr>
<tr>
<td>LI</td>
<td>.13</td>
<td>-.11</td>
<td>.04</td>
<td>.07</td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
CORRELATION BETWEEN PREDICTORS AND CRITERIA

<table>
<thead>
<tr>
<th>PREDICTOR</th>
<th>FAS</th>
<th>FSG</th>
<th>TC</th>
<th>REM</th>
<th>ADO</th>
<th>SC</th>
<th>MODS</th>
<th>OP</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASVAB MK</td>
<td>.29**</td>
<td>.35**</td>
<td>-.41**</td>
<td>-.47**</td>
<td>-.01</td>
<td>-.27**</td>
<td>.37**</td>
<td>-.45**</td>
<td>.06</td>
</tr>
<tr>
<td>EI</td>
<td>.19**</td>
<td>.32**</td>
<td>-.30**</td>
<td>-.27**</td>
<td>.03</td>
<td>-.20**</td>
<td>.22**</td>
<td>-.28**</td>
<td>.12</td>
</tr>
<tr>
<td>AR</td>
<td>.22**</td>
<td>.34**</td>
<td>-.37**</td>
<td>-.33**</td>
<td>.08</td>
<td>-.16*</td>
<td>.27**</td>
<td>-.32**</td>
<td>.15*</td>
</tr>
<tr>
<td>GS</td>
<td>.19**</td>
<td>.24**</td>
<td>-.37**</td>
<td>-.35**</td>
<td>-.00</td>
<td>-.17*</td>
<td>.31**</td>
<td>-.35**</td>
<td>.04</td>
</tr>
<tr>
<td>HPI INT</td>
<td>.24**</td>
<td>.23**</td>
<td>-.35**</td>
<td>-.38**</td>
<td>.09</td>
<td>-.21**</td>
<td>.29**</td>
<td>-.34**</td>
<td>.12</td>
</tr>
<tr>
<td>AD</td>
<td>.01</td>
<td>.04</td>
<td>-.10</td>
<td>-.00</td>
<td>.07</td>
<td>.03</td>
<td>.02</td>
<td>-.02</td>
<td>.06</td>
</tr>
<tr>
<td>PR</td>
<td>-.12</td>
<td>-.21**</td>
<td>.15*</td>
<td>.20**</td>
<td>-.13</td>
<td>.06</td>
<td>-.19**</td>
<td>.16*</td>
<td>-.16*</td>
</tr>
<tr>
<td>AM</td>
<td>.19**</td>
<td>.09</td>
<td>-.22**</td>
<td>-.18*</td>
<td>-.01</td>
<td>-.14*</td>
<td>.21**</td>
<td>-.23**</td>
<td>-.02</td>
</tr>
<tr>
<td>SO</td>
<td>.08</td>
<td>.07</td>
<td>-.13*</td>
<td>-.12</td>
<td>.00</td>
<td>.02</td>
<td>.13</td>
<td>-.12*</td>
<td>-.01</td>
</tr>
<tr>
<td>LI</td>
<td>-.02</td>
<td>.02</td>
<td>-.10</td>
<td>-.11</td>
<td>.08</td>
<td>-.03</td>
<td>.04</td>
<td>-.06</td>
<td>.07</td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
APPENDIX E

RESULTS TABLES
Table 1

VARIMAX ROTATED FACTOR MATRIX

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS</td>
<td>-.91</td>
<td>.05</td>
</tr>
<tr>
<td>FSG</td>
<td>-.47</td>
<td>.52</td>
</tr>
<tr>
<td>TC</td>
<td>.89</td>
<td>-.12</td>
</tr>
<tr>
<td>REM</td>
<td>.87</td>
<td>-.22</td>
</tr>
<tr>
<td>ADO</td>
<td>.01</td>
<td>.92</td>
</tr>
<tr>
<td>SC</td>
<td>.57</td>
<td>-.25</td>
</tr>
<tr>
<td>MODS</td>
<td>-.95</td>
<td>.05</td>
</tr>
</tbody>
</table>
TABLE 2

SUBGROUP AND FULL MODEL REGRESSIONS WITH FACTOR 1 (OBJECTIVE PERFORMANCE)

<table>
<thead>
<tr>
<th>PREDICTION MODEL</th>
<th>R</th>
<th>R²</th>
<th>ADJUST. R²</th>
<th>SE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASVAB</td>
<td>.52</td>
<td>.27</td>
<td>.25</td>
<td>.86</td>
<td>14.11**</td>
</tr>
<tr>
<td>HPI</td>
<td>.41</td>
<td>.17</td>
<td>.13</td>
<td>.93</td>
<td>4.99**</td>
</tr>
<tr>
<td>Full Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASVAB + HPI</td>
<td>.56</td>
<td>.32</td>
<td>.27</td>
<td>.86</td>
<td>6.62**</td>
</tr>
</tbody>
</table>

REGRESSION EQUATIONS

Subgroup

- **ASVAB**
 \[Y' = 6.89 - .12 \text{(GS)} - .37 \text{(MK)} - .15 \text{(EI)} - .09 \text{(MC)} \]

- **HPI**
 \[Y' = .87 - .02 \text{(LI)} - .10 \text{(AM)} + .13 \text{(PR)} + .12 \text{(AD)} - .05 \text{(SO)} - .35 \text{(INT)} \]

Full Model

- **ASVAB + HPI**
 \[Y' = 6.25 - .05 \text{(LI)} - .12 \text{(AM)} + .08 \text{(PR)} + .14 \text{(AD)} + .01 \text{(SO)} - .12 \text{(INT)} - .15 \text{(EI)} - .33 \text{(MK)} - .08 \text{(GS)} - .06 \text{(MC)} \]

* *p < .05 ** *p < .01
Table 3

Subgroup and Full Model Regressions with Factor 2 (Subjective Performance)

<table>
<thead>
<tr>
<th>Prediction Model</th>
<th>R</th>
<th>R²</th>
<th>Adjusted R²</th>
<th>SE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASVAB</td>
<td>.17</td>
<td>.03</td>
<td>.00</td>
<td>.99</td>
<td>1.06</td>
</tr>
<tr>
<td>HPI</td>
<td>.23</td>
<td>.05</td>
<td>.01</td>
<td>.99</td>
<td>1.33</td>
</tr>
<tr>
<td>Full Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASVAB + HPI</td>
<td>.27</td>
<td>.07</td>
<td>.01</td>
<td>.99</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Regression Equations

Subgroup

- **ASVAB**
 \[
 Y' = -1.42 - .07 (GS) + .04 (MK) + .07 (EI) + .13 (MC)
 \]

- **HPI**
 \[
 Y' = .21 + .07 (LI) - .07 (AM) - .18 (PR) \\
 + .04 (AD) - .03 (SO) + .12 (INT)
 \]

Full Model

- **ASVAB + HPI**
 \[
 Y' = .003 + .07 (LI) - .11 (AM) - .17 (PR) \\
 + .01 (AD) - .02 (SO) + .15 (INT) + .05 (EI) \\
 + .01 (MK) - .14 (GS) + .14 (MC)
 \]

* \(p < .05 \) \(**p < .01 \)
TABLE 4

SIGNIFICANT ASVAB PREDICTORS WITH SELECTED CRITERION MEASURES

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>PREDICTOR(S)</th>
<th>R</th>
<th>R²</th>
<th>ADJUST. R²</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS</td>
<td>MK, EI</td>
<td>.33</td>
<td>.11</td>
<td>.10</td>
<td>9.35**</td>
</tr>
<tr>
<td>FSG</td>
<td>MK, EI</td>
<td>.45</td>
<td>.20</td>
<td>.19</td>
<td>19.20**</td>
</tr>
<tr>
<td>TC</td>
<td>MK, AR, EI</td>
<td>.51</td>
<td>.26</td>
<td>.24</td>
<td>17.51**</td>
</tr>
<tr>
<td>REM</td>
<td>MK, EI</td>
<td>.52</td>
<td>.27</td>
<td>.26</td>
<td>28.26**</td>
</tr>
<tr>
<td>ADO</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SC</td>
<td>MK, EI</td>
<td>.32</td>
<td>.10</td>
<td>.09</td>
<td>8.44**</td>
</tr>
<tr>
<td>MODS</td>
<td>MK, GS</td>
<td>.41</td>
<td>.17</td>
<td>.16</td>
<td>15.61**</td>
</tr>
</tbody>
</table>

* *p < .05 **p < .01
Table 5

Significant ASVAB and HPI Predictors with Selected Criterion Measures

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>ASVAB</th>
<th>HPI</th>
<th>PREDICTORS</th>
<th>R</th>
<th>R²</th>
<th>ADJUST. R²</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSG</td>
<td>MK</td>
<td>PR</td>
<td>PR</td>
<td>.47</td>
<td>.22</td>
<td>.21</td>
<td>14.51**</td>
</tr>
<tr>
<td>TC</td>
<td>MK</td>
<td>INT</td>
<td>INT</td>
<td>.53</td>
<td>.28</td>
<td>.26</td>
<td>14.41**</td>
</tr>
<tr>
<td>REM</td>
<td>MK</td>
<td>INT</td>
<td>PR</td>
<td>.58</td>
<td>.34</td>
<td>.32</td>
<td>15.39**</td>
</tr>
<tr>
<td>MODS</td>
<td>MK</td>
<td>AM</td>
<td></td>
<td>.44</td>
<td>.19</td>
<td>.18</td>
<td>12.04**</td>
</tr>
</tbody>
</table>

*p < .05 **p < .01
REFERENCES

