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ABSTRACT

Non-destructive evaluation (NDE) techniques are critical for assessing the integrity, health, and

mechanical properties of materials manufactured from various methods. High fidelity NDE tech-

niques are essential for quality control but often lead to massive data generation. Such a vast

data load cannot be manually processed, this leads to a severe bottleneck for process engineers.

Machine learning (ML) offers a solution to this problem by providing powerful and adaptable

algorithms capable of learning patterns, identifying features, and finding hidden relationships in

large sets of data. Various ML models are used in this work to improve predictions, improve mea-

surements, detect anomalies, classify anomalies, segment images, determine material health, and

directly model behavior. These neural network or ML models are implemented to perform these

tasks by utilizing data gathered through various NDE techniques. Additive manufacturing enables

the production of complex geometries and customized parts with reduced waste and lead times.

The development of new material printing capability and techniques is necessary to expand its

capabilities to produce high-performance parts with unique properties and functionality. Contri-

butions to advanced additive manufacturing are made via the application of customized machine

learning algorithms in this work. The development of a novel grain image generation method was

completed to improve grain and grain boundary image segmentation methods on microstructure

images. Convolutional Neural Networks (CNNs) were also applied to datasets of Stainless Steel

Powder to help identify, qualify, and classify the health of the powder prior to print application.

A feasibility study of the implementation of Binder Jetting (BJT) is conducted on Martian and

Lunar regolith using a simplistic binder in this work. The need for efficient techniques to pro-

cess data gathered from NDE methods is crucial to enhance the accuracy, efficiency, and speed

of the analysis of this data. This will lead to faster development and implementation of advanced

manufacturing techniques.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

There is a large amount of data that is generated through (NDE) Non-Destructive Evaluation that

could be better processed through a data-driven machine learning approach. A substantial amount

of data is gathered every year through NDE techniques. NDE techniques are also constantly being

developed and improved. As the techniques become more accurate, precise, and able to collect

larger amount of data, engineers will struggle to process this data. The vast majority of these

techniques could benefit greatly from (AI) Artificial Intelligence assisted data processing methods.

NDE is can be used to determine material health before, during, and after the manufacturing pro-

cess for a given material. If more knowledge can be derived via a AI approach, then ultimately

the material manufacturing process can be improved [1, 2]. The main areas this work will investi-

gate machine learning applications in NDE is in defect detection (Chapter 3), microstructure data

collection (Chapter 4), and in material health (Chapter 5)

One of the newest and most innovative ways to construct materials is through additive manufac-

turing. Additive manufacturing can provide the user with faster component manufacturing times,

increased design flexibility, increased customization of material properties, and reduction of waste

material. There are several new and innovative methods in additive manufacturing that will be dis-

cussed in section 2.1. The increase in techniques has also yield in increase in materials that are able

to be printed, such as metallic and ceramic materials. The process to print metallic components are

often complex and are currently being improved upon. When NDE is used in conjunction with the

construction/printing of a given material, the data that is gathered can then be used to improve the

process [3, 4]. This work will investigate new and innovative methods that additive manufacturing

can be used (Chapter 6).
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Some of the main pitfalls to additive manufacturing are cost of equipment, build size, standard

safety regulatory procedures, material selection, and material quality. The selection of materials

has grown, and continues to grow, but this is a slow process. The more complex metals that may be

desired, are also the ones that are used in the most high temperature and high stress environments.

The quality of these metals must be at or above the standard in order to withstand these conditions

[5, 6]. The manufacturing of various parts for turbomachinery operations is a very delicate and

detail oriented process. The application of heat, hard machining, cutting, and other processes have

many variables that can have a direct and drastic effect on the product which is manufactured. This

work will use machine learning to help improve existing additive manufacturing methods to allow

for components that could be implemented in a turbomachinery environment (Chapter 7).

There are many forms of NDE that help engineers to determine part viability and quality prior to

certifying a part for operation [7, 8]. Some of the more commonly implemented NDE techniques

include: eddy-current, magnetic-particle, liquid penetrate, radiography, ultrasonic, and visual [9].

All of these techniques produce a significant amount of data and the processing and analyzing

of this data can often be both time-consuming and inefficient for humans to perform. Artificial

intelligence can either take over completely or play an assistance role in the processing of the

massive amounts of data that is produced through NDE. Anytime the data produced is visual (either

image or video) then neural networks can have a substantial effect on the processing efficiency of

this data. Neural networks are well equipped to process images, but can also be used to process

ultrasonic data and eddy-current data[1, 10, 11]. The field of NDE is well suited for the application

of neural networks, and will most likely be transformed by it. The increased capability of NDE

will also have a key role in improving the field of additive manufacturing.
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1.2 Intellectual Merit

This work will make many contributions to the field of machine learning, additive manufactur-

ing, and non destructive evaluation. The three fore mentioned fields all have the potential to work

together and improve upon each other. This work is aimed in that direction. The most obvious con-

tributions are in data generation, data collection, data analysis, novel methodology development,

existing methodology improvement, and novel methodology feasibility studies.

One of the key ways to improve the collaboration between NDE and machine learning is by cre-

ating or collecting relevant data. There is currently a lack of relevant data available online that

can be used to develop and improve NDE methods. The availability of data cannot be understated.

If data is made available to the public, this will encourage innovation, foster collaboration, fa-

cilitate reproducibility, improve model accuracy, and enables more people to have access to this

knowledge. All applications in mechanical engineering, materials science, and NDE that produce

data can benefit from publishing that data to help encourage machine learning applications. This

work provides data for this purpose in a few forms on Kaggle. This work provides particle SEM

(scanning electron microscope) images of particles that are to be used in metallic additive manu-

facturing [12]. This work also provides SEM data and optical microscope data of stainless steel

printed on a binder jet printer [13, 14]. This work provides new and innovative ways to examine

this data as well, but just publishing the data is a very necessary contribution to the science. These

contributions should be encouraged in these fields if growth is desired.

One of the most obvious roles that machine learning or artificial intelligence will be able to im-

mediately contribute to assembly of parts, is through inspection. Machine learning can improve

quality control of assembly-style production through direct camera observation by automating the

inspection process and identifying defects in real-time. This can help reduce the time and cost of

manual inspection while improving the overall quality of the final product. This can be achieved
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through computer vision techniques that enable cameras to capture images of the assembly process

and identify defects using algorithms or neural networks. The ability to train on a dataset of images

that have been labeled as good or bad based on specific quality criteria, will be a huge contribution

to the manufacturing industry, and by extension the additive manufacturing industry. This work

makes contributions to this connection between machine learning and manufacturing in Chapter 3.

In this work, a dataset of sheet steel defects is examined. A convolutional neural network is then

implemented to determine the type of defects and the locations of defects. A systematic study of

this process is completed. Work like this must be done to help allow image processing techniques

to be applied to manufacturing for the purposes of quality control.

To better understand the material properties, and the micro-structure of a given material, it is

necessary to implement microscopy. This is a standard method to better understand a material.

Whether a standard optical microscope is used or an SEM, the images gathered can provide a lot

of useful data on the material. These images require a laborious and extensive analysis. Certain

features in the images must be identified, quantified, correlated, gathered, and analyzed. Machine

learning can also be implemented to assist in the processing of these images as well. In this work,

machine learning based image processing techniques were implemented on a variety of metallic

microstructure data. The analysis process was completed through traditional methods, through

basic machine learning methods, and also new methods were developed. A novel approach to

data generation for grain boundaries of metallic micro-structure was developed in this work. This

method can be easily expand to other material systems, in the future.

Another important task over the next decade will be the further development of existing additive

manufacturing techniques. Sintering is a paramount portion to the success of many of the exist-

ing additive manufacturing techniques that are used on advanced materials, such as metallics and

ceramics. This work investigates the effect of sintering on material systems that were constructed

through binder jetting. This work also examines the effect that sintering has on the final material
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properties. A feasibility study on binder jetting for both Martian and Lunar regolith was completed

in Chapter 6. Another contribution to sintering analysis is made in Chapter 7. In this chapter, a

monte carlo style model for sintering behavior is completed and presented. The sintering phe-

nomena is complex, and has held the attention of many brilliant engineers and scientists over the

centuries. This behavior needs to continue to receive attention if new and inventive manufacturing

methods are to be developed.

1.3 Dissertation Outline

The dissertation is comprised of eight chapters. Chapter 1 is the introduction, which includes

motivation of this research, the intellectual merit, and an outline of this work. Chapter 2 is a

literature review, it is composed of three sections. The first is additive manufacturing, the second

is sintering, and the third is Machine Learning. Chapter 3 is on the utilization of machine learning

for detecting defect in manufactured metallic components. Chapter 4 is using machine learning

for microstructure analysis. More specifically, Chapter 4, is about segmenting grains from grain

boundaries in microscopic images. Chapter 5 is implementing machine learning to determine the

quality of powder for additive manufacturing purposes. Chapter 6 is a feasibility study on the

implementation of Binder Jet additive manufacturing on either the Moon or on Mars. Chapter 7

is on shrinkage prediction methods for metallic additive manufacturing methods. Conclusions are

provided at the end of each chapters and pertain to the content in that specific chapter.

1.4 List of Publications

This research resulted in the following peer-reviewed publications:

• Warren, Peter, et al., Effect of sintering temperature on microstructure and mechanical
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properties of molded Martian and Lunar regolith, (Ceramics International) Volume 48, Issue

23, Part B, 1 December 2022, Pages 35825-35833.

• Warren, Peter, et al., Rapid defect detection and classification in images using convolu-

tional neural networks, (Turbo Expo: Power for Land, Sea, and Air) Volume 84966, 2021.

• Warren, Peter, et al., Shrinkage Prediction Using Machine Learning for Additively Man-

ufactured Ceramic and Metallic Components for Gas Turbine Applications, (Turbo Expo:

Power for Land, Sea, and Air) Volume 85987, 2022.

• Warren, Peter, et al., Investigation of an advanced acoustic based nondestructive evaluation

method, (Turbo Expo: Power for Land, Sea, and Air) Volume 58677, 2019.

• Warren, Peter, et al., Modeling Thermally Grown Oxides in Thermal Barrier Coatings

Using Koch Fractal, (Turbo Expo: Power for Land, Sea, and Air) Volume 58677, 2019.

• Warren, Peter, et al., Investigating Load Transfer in Ceramic Reinforcements, (Turbo Expo:

Power for Land, Sea, and Air) Volume 51128, 2018.

• Raju, Nandhini, Warren, Peter, et al., Sintering Behaviour of 3d Printed 17-4PH Stainless

Steel, (Turbo Expo: Power for Land, Sea, and Air) Volume 86052, 2022.

• Raju, Nandhini, Warren, Peter, et al., Material properties of 17-4ph stainless steel fabri-

cated by atomic diffusion additive manufacturing (adam), (2021 International Solid Freeform

Fabrication Symposium) 2021.
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CHAPTER 2: LITERATURE REVIEW

2.1 Additive Manufacturing

Additive manufacturing has developed quite rapidly over the past few decades. Although it is now

possible to print metallic and ceramic components, polymers are still the most commonly printed

material. This is due to the simplicity of the printing process. FDM (Fused Deposition Method)

is the most common 3D printing method for polymer material, but there are now many new and

innovative techniques for 3D printing plastic polymer material. Some of the more common 3D

printed techniques for PLA (Polyactic Acid) include: FDM (Fused Deposition Method), SLA

(Stereolithography), DLP (Digital Light Processing), SLS (Selective Laser Sintering), MJ (Mate-

rial Jetting), and DD (Drop on Demand). PLA and other polymers have become quite lucrative to

print in a timely manner. Metal has proven to be a much more challenging material to 3D print.

Metal has a much higher melting temperature. Also Metal can be toxic to humans while in a fine

powder form. Metal 3D printing also has a variety of techniques to use, but they are much more

complex than the methods used for polymer printing [3, 4, 5, 6].

2.1.1 Metallic Additive Manufacturing

There are many types of 3D printing for metallic materials, and even more when other materials

are included. It is difficult to organize them in a chart or graphic that paints a clear picture of the

current state of the additive manufacturing industry. A good way to organize the various types of

AM techniques would be to split them up into four categories: Liquid, Filament, Powder, and Solid

[15]. The label is indicative of the state that the material is in prior to printing. The categories can

then be further broken down into subgroups, this is illustrated in Figure 2.1.
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Figure 2.1: Categories of additive manufacturing methods organized based upon the starting state
of the printable material. [16]

The first type of Metal 3D printing that is examined is metal binder jet printing. In metal binder

jetting, the first step is completed when a liquid binder is dripped onto a bed of fine metallic

powder. This binder will cause the particles to adhere to one another. The powder bed is lowered

and another layer of binder liquid is applied to the powder bed. The part will be constructed and

will slowly be submerged deeper and deeper into the powder bed as it is built. After printing is

completed, the excess powder can be removed and only the part will remain. Now the part is

simply metal particles with a liquid binder holding them together. The part will now need to be

cured at around 150 °C to 200 °C. This process can take several hours. Finally the part will need to

be sintered to remove the rest of the binder and fuse the metal particles together. The temperature

needs to be raised to just below the metal temperature to slightly liquify the particles, and the

pressure from the oven will fuse the particles together[17, 18, 19]. The part will shrink by around
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Table 2.1: Additive Manufacturing Process and Material Table

AM Starting State AM Process/Acronym Material Capability
Liquid (SLA) Stereolithography Polymer
Liquid (MJM) Multi-Jet Modeling Polymer
Liquid (LTP) Liquid Thermal Polymerization Polymer

Molten/Filament (FDM) Fused Deposition Method Polymer
Powder (LBPF) Laser Powder Bed Fusion Metallic, Ceramic
Powder (SLS) Selective Laser Sintering Polymer, Metallic, Ceramic
Powder (SLM) Selective Laser Melting Polymer, Metallic, Ceramic
Powder (EBM) Electron Beam Melting Polymer, Metallic, Ceramic
Powder (BJT) Binder Jetting Polymer, Metallic, Ceramic
Powder (DED) Direct Energy Deposition Polymer, Metallic, Ceramic
Solid (LOM) Laminated Object Manufacturing Metallic, Ceramic

10-20%. The shrinkage is not always uniform and this is the area of prediction the AI could assist.

An optimization of the complex sintering process, will ultimately lead to an optimization of the

final material properties.

2.1.2 Fused Deposition Method

Fused Deposition Modeling (FDM), is a type of additive manufacturing technology that exploits

the melting point of thermoplastic material. A filament of the thermoplastic material is heated and

extruded through a small nozzle. The filament is extruded layer by layer to build up the final printed

design. FDM technology was first patented by S. Scott Crump at Stratasys, Inc. in 1989. The

first commercial FDM machine, the 3D Modeler, was released by Stratasys in 1992. In the more

recent past, FDM technology has seen significant growth and there are a wide number of printers

available from many different companies. It is the most popular form of additive manufacturing.

This technology has seen many application in various industries for the rapid prototyping and
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manufacturing of a wide range of products. A few examples are aerospace components, medical

devices, and consumer products [20, 21, 22].

Recently, machine learning (ML) has been applied to the FDM process to improve the quality

of the printed parts and to automate certain aspects of the process. Some crucial examples of

the application of ML to FDM is predictive modeling, automated support generation, real-time

monitoring, adaptive slicing, and failure prediction [23, 24, 25].

Predictive modeling: ML can be used used to predict the properties of the printed parts, such as

strength, flexibility, and dimensional accuracy. This allows for the optimization of the printing

process and the selection of the appropriate materials.

Automated support generation: ML algorithms are used to automatically generate support struc-

tures for the printed parts, which helps to improve the quality and reliability of the printed parts.

Real-time monitoring: ML algorithms are used to monitor the printing process in real-time, which

allows for the detection and correction of errors before they become a problem.

Adaptive slicing: Instead of using pre-determined slicing algorithms, ML algorithms are used to

adapt the slicing process for each print job in order to optimize the print quality and reduce material

waste.

Failure prediction: ML algorithms can be trained to predict when a printer is likely to fail, allowing

for proactive maintenance and reducing downtime.

These are some of the current applications of machine learning to FDM printing, the field is still

evolving and new application may arise in the future.
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2.1.3 Laser Powder Bed Fusion

Laser Powder Bed Fusion (LPBF) is a type of additive manufacturing (AM) technology that uses

a laser to selectively melt and fuse small particles of metal or polymer powder together to create

a solid object. The process is similar and somtime used interchangeably with Directed Energy

Deposition (DED) or Selective Laser Melting (SLM). The history of LPBF can be traced back to

the 1980s, when researchers at the Fraunhofer Institute in Germany first began exploring the use

of lasers to melt and fuse metal powders. In the 1990s, researchers at the Lawrence Livermore

National Laboratory in the United States developed the first LPBF machine for the production of

metal parts [26, 27].

In the early 2000s, companies such as EOS, Concept Laser, and SLM Solutions began commer-

cially producing LPBF machines for industrial use. The technology quickly gained popularity in

the aerospace and medical industries for the production of complex and high-performance parts.

Over the years, LPBF technology has evolved and improved significantly, with new materials and

improved process parameters. Today, LPBF is considered one of the most promising AM tech-

nologies for the production of high-performance metal parts, with a wide range of applications in

aerospace, automotive, medical, and many other industries. The field of Laser powder bed Fusion

is still evolving, with new materials and printing methods being developed, and the technology is

seeing more and more adoption in various industries [28, 29].

2.1.4 Binder Jetting

Binder jetting is a type of additive manufacturing (AM) technology that uses a print head to se-

lectively deposit a liquid binder onto a bed of powder material. The binder cures and binds the

powder particles together. Next, another layer of powder is spread over the current layer, and the
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process is repeated. In the end the solid component can be removed carefully from the powder bed,

and then proceed to sintering. Binder jetting technology has the advantage of being able to print

with a wide range of materials, such as metals, ceramics, and polymers. It can also print with a

variety of different powders, such as sand, gypsum, and metals. If the binder can adhere a powder

together, than the technology can be implemented, making this technology very versatile. Binder

jetting is being used for functional prototypes and end-use parts in a variety of industries, such as

aerospace, automotive, and construction [30, 31, 32].

Binder jetting was developed in the late 1980s and early 1990s, by researchers at the Massachusetts

Institute of Technology [33, 34, 35, 36]. It wasn’t until the early 2000s that the first commercial

binder jetting machines were developed and released by companies such as Z Corporation and

Objet Geometries. In recent years, Binder jetting technology has improved with the development

of multi-material printing, full-color printing and high-resolution printing. This technology shows

a lot of adaptability and promise [37, 38].

2.2 Sintering

2.2.1 History of Sintering

Sintering is a process of compacting and forming a solid mass of material from smaller particles

by heating to near melting temperature for a given time. At this near melting temperature, the

particles will merge together. This process has been used for thousands of years for producing

ceramics and metallic materials. The use of sintering for producing better materials is widespread

across many ancient civilizations [39, 40]. The sintering capabilities of a given civilization can be

used to quantify how advanced, a given civilization was. Historians have referred to different time

periods, as the stone age, the bronze age, the iron age, and so on [41]. This sintering capability
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and knowledge of the behavior of the material at higher temperatures is a contributing factor to the

"age" that a civilization would be in.

In ancient China, sintering was implemented for producing ceramics as early as the Neolithic pe-

riod (around 10000 BC) [42]. All throughout Europe, evidence of sintering for iron objects for

a myriad of purposes, has been discovered as far back as 1200 BC [43]. The Hittites, who lived

in Anatolia (modern-day Turkey) from around 1600 BC to 1180 BC, are known to have used

sintering to produce iron, bronze, and silver objects [44]. Sintering was even performed by the

ancient Egyptians for producing various ceramics for pottery and other purposes [45]. Sintering

was widely used, in many ancient civilizations for producing both ceramic and metallic objects.

The development of sintering and the development of materials can be directly related to the ad-

vancement of civilization.

2.2.2 Sintering Quantification

The quantification of sintering can be a difficult process. Sintering is often performed at high

temperatures, making it difficult to get measurements in situ. Some of the properties that can be

measured to help quantify the amount or quality of sintering are: density, appearance, size, or

mechanical strength [46].

Typically and often ideally the density will increase after sintering has been performed. Density

measurements can be obtained through the Archimedes method, X-ray diffraction, CT scanning,

or gas pycnometry. The appearance of a material will also change during sintering [47].

An examination of the microstructure of a given material can be used to provide insights into the

extent a material has been sintered. A microstructural analysis could be completed with an optical

microscope, a scanning electron microscopy (SEM) or transmission electron microscopy (TEM).
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With a clear image of the microstructure it is possible to quanify porosity, grain size, grain shape,

and grain boundaries. These properties can be very useful in the quantification of sintering [48].

In general materials are expected to shrink after the sintering has been completed. They may ex-

pand during sintering due to thermal expansion, but once could the object should be smaller than

it was prior to sintering. Simple dimensional measurements can taken before and after sintering to

record the amount of shrinkage that has occured. If shrinkage during sintering is desired, dilatom-

etry is needed. A dilatometer is a simple device that will measure the linear shrinkage over time

during the sintering process [49].

More optimal material properties are often another benefit or goal of sintering. Higher tensile and

compressive strength are typically found after sintering. A material property that changes during

sintering can be used to quantify the sintering as well. Material strength, thermal conductivity,

modulus of elasticity, hardness are all good examples of a material property that could potentially

be used to help quantify a given sintering process.

The input conditions for sintering can also be used to quantify sintering. Input conditions can

include sintering temperature, duration, and environment. Ideally both input and output properties

and variables are necessary to have a good model of a sintering behavior for a given material.

2.2.3 Sintering Models and Theory

There are several models for sintering that have been developed to describe and predict the behavior

of materials during the sintering process. Some of the more common models include: Diffusion-

controlled sintering models, neck-growth models, and kinetic models.

A diffusion-controlled sintering model describes the sintering process as a diffusion-controlled

process where particles move towards each other and form a compact structure. The Johnson-
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Mehl-Avrami (JJMA) model is an example of a diffusion-controlled sintering model [50, 51].

Neck-growth models are a geometric model of the material. These models describe the sintering

process as the growth of necks or bridges between particles, which eventually form a compact

structure. These models will typically model the interaction between particles using a combination

of surface energy and strain energy associated with the inter-particle contact [40].

A kinetic model for sintering describes the rate of sintering as a function of time, temperature, and

other parameters. These models often use the Arrhenius equation to predict the rate of sintering

based on the activation energy required for sintering to occur and the effect of temperature on that

activation energy. Other factors can be used in these models, such as the particle size distribution,

porosity, and surface area of the starting powder material. Input conditions such as rate of heating,

cooling, and sintering environment are also used frequently in kinetic models [52, 53, 54].

Accurate sintering models are difficult to formulate, but they are also necessary to predict the

evolution of the microstructure and properties of a sintered material as a function of time and

temperature. They are also necessary in order to optimize the sintering conditions to achieve

desired final shape and material properties for a given object or material.

2.3 Machine Learning

2.3.1 Introduction

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on the development

of algorithms and statistical models that enable computers to learn from data and make predictions

or detect patterns without being explicitly programmed to do so. The foundation of ML was

developed in the 1950s and 60s, but it wasn’t until significant advances were made in computational
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power in the late 90s and early 00s that the field was able to show it’s true potential. With better

computational power, ML algorithms and techniques were better developed and implemented in

more inventive ways. Currently ML is being implemented in several different fields for many

applications.

Some of the more common tasks performed by ML include: classification, regression, clustering,

and anomaly detection. Classification is the process of sorting data into different categories, such

as determining whether an email is spam or not. Another example is classifying a pixel on a given

image to a certain object. Regression is a technique that relates a dependent variable to one or

more independent variables. An example would be to predict a continuous value over time, like

the density of a material during sintering or stock price over time. Clustering is the process of

grouping data together based on the properties of the items of interest. Anomaly detection is the

process of detecting outliers in a dataset. These are just a few examples of the many applications of

ML. The field has received a tremendous amount of attention recently and is constantly evolving

and new applications are being discovered and deployed regularly.

2.3.2 Linear Regression

Linear regression is a statistical modeling technique that quantifies the relationship between a de-

pendent variable and one or more independent variables. It is used to make predictions about a

continuous outcome based on the values of the independent variable(s). The first step in perform-

ing linear regression is to collect and prepare the data. A determination of the dependent and

independent variables is necessary to choose the correct model for the data. Two common mod-

els are single variable and multiple variable. With multiple independent variables, the weight of

each parameter should also be analyzed and estimated. Independent variables can be weighed via

coefficients.
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ARTIFICIAL
INTELLIGENCE

MACHINE 
LEARNING

DEEP 
LEARNING

Artificial Intelligence (AI) – Intelligence that is 
demonstrated via computers of machines rather than 

humans. Intelligence can be demonstrated through
perception, communication, creation, hypothesizing, 

organizing information, or dispensing information.

Machine Learning (ML) – ML is a subset of AI. ML is the 
implementation of statistical models or mathematical 
algorithms to enable a system to learn and adapt from 

data

Deep Learning – Deep learning is a subset of machine 
learning. Deep learning uses multiple layers in a single 

model or network to extract patterns from a set of 
data. A common example is the neural network.

Figure 2.2: A graphical layout of the fields Artificial Intelligence (AI), Machine Learning (ML),
and Deep Learning. Definitions are provided for each of the terms on the right side of the figure.

Ordinary least squares, which is the most commonly used method, can be used to determine the

intercept and also be used to determine the independent variable coefficients as well. Next the fit

of the curve can be assessed. The model fit is evaluated by assessing the fit of the model to the

data. A common method of accuracy quantification is the R-squared value. The R-squared value

measures the proportion of variation in the dependent variable that is modeled by the independent

variables. Once a model is determined to be adequate, it can be used to make future predictions.

Linear regression is a widely used statistical method that and is the most simple to implement.

Although the method is simple it still is used frequently in several fields. It is often a good first

choice to use when analyzing a new set of data and trying to determine key insights on how to

proceed forward.
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2.3.3 Neural Network

The origin of neurons withing neural networks can be traced back to the work of Warren McCul-

loch and Walter Pitts in 1943 [55]. They proposed a model of a simple artificial neuron, which

they called the McCulloch-Pitts neuron, and showed how such neurons could be combined to form

a network that could perform simple computations. Many people currently refer to these neurons

as an accurate representation of the neurons in the human brain, which could be true, but as of now

there is no evidence of this. We have little knowledge of what governs the behavior of the neurons

in our brains, and it would be hard to imagine that each nueron in our head behaves according to

EQ. 2.1.

F(z) = F(b+
n

∑
n=1

xiwi) (2.1)

The pratical development and implementation of the neural network models occured in the late

1950s and early 1960s. Frank Rosenblatt introduced the concept of the perceptron, a simple type of

neural network in 1958 [56]. Deep learning saw very small increments over the next few decades.

A big breakthrough occurred when Yann LeCun developed the first successful deep learning model

for handwritten digit recognition using Neural Networks in the late 1980s. This small simple task,

displayed the power of deep learning in an elegant and intuitive way [57].

A neural network is a type of deep learning model that utilizes the layer by layer structure of the

model to extract features from the data from different scales. The applications of neural networks

can be classification and segmentation of images. Neural networks can also be used for natural

language processing as well. They can even be implemented to perform regression, this would

simply just be a more complex method to perform linear regression, the same method explained in

the previous section. Neural networks just have the added benefit of being redesigned to allow for
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the input of data in a variety of different forms. A image is simply an array of numerical values

which just happens to be a good input format for a neural network.

Neural networks have proven to be a powerful tool for machine learning and have been used in

many successful applications. However, like all machine learning models, they must be imple-

mented correctly. The choice of model architecture, training algorithm, loss function, and many

other hyperparameters will determine the success of failure of a neural networks ability to perform

a given task.These values can vary based on the specifics of the problem.

2.3.4 Convolutional Neural Network

Yann LeCun, should be credited with developing the first successful implementation of the Con-

volutional Neural Network (CNN) when he used it for deciphering handwritten digits [57]. Larger

and more substantial improvements to the CNNs were able to be made in the mid-2010s. These

improvements were possible due to the availability of large amounts of data and computational re-

sources This led to the widespread use of CNNs in various computer vision and machine learning

tasks, and it has since become the most popular deep learning model [58, 59, 60].

A convolutional neural network (CNN) is a type of deep neural network designed to process data

with grid-like data structure, such as an image. An image is simply an array of numerical values

for the pixels. CNN uses convolutional layers with filters that scan the input and apply different

weights to the local regions. This is what makes them different from standard neural networks. The

resulting feature map from a CNN is then processed using a combination pooling and convolution

through the fully connected layers, which eventually produce the final output of the CNN.

The main difference between a CNN and a traditional neural network is that a CNN is specifically

designed for image or audio data formats. A standard neural network is more general and can be
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applied to various types of data. CNNs work by applying filters to the input data to extract local

features, and then using these features to make predictions.

The main components of a CNN are the convolutional layers, the pooling layers, the fully con-

nected layers, and the output layers. A convolutional layer is where filters are applied to extract

local features. This filter (or kernel) slides over the input image, performing element-wise multi-

plications with the elements in the image, and then producing a transformed output, which is also

a matrix of values. The pooling layers typically come after the convolutional layers. The pooling

layers reduce the spatial dimension of the feature map. This helps to reduce the computational cost

of the network, as well as make the features more robust to small translations in the input data. Af-

ter a few iterations of convolutional and pooling layers the fully connected layers are used. These

layers are the same layer architecture found in a standard neural network. The final output comes

from the output layer. This comes after all the convolutional, pooling, and fully connected layers.

The output layer is in the desired format of the output prediction, whether that is highlighted pixels

or class labels. The output is usually performed by a softmax activation function, which converts

the predictions into a probability distribution over the possible classes.

CNNs work by extracting local features from the input data using convolutional layers, reducing

the spatial dimensions of the feature map using pooling layers, and finally making predictions

using fully connected layers.CNNs are widely used for a variety of computer vision tasks, such as

image classification, object detection, and semantic segmentation. They are also used for speech

recognition, natural language processing, and other applications where grid-like data is processed.

2.3.5 Generative Adversarial Neural Network

Generative Adversarial Networks (GANs) were first introduced in 2014 by Ian Goodfellow and

colleagues at the University of Montreal. The paper "Generative Adversarial Nets" was published
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in the Conference on Neural Information Processing Systems (NIPS) and introduced the concept

of using a competition between two neural networks to generate new data samples [61, 62, 63].

GANs have recently become a widely researched area in the field of deep learning and have been

applied to a wide range of tasks. The basic idea of adversarial training has proven to be a powerful

technique for generating new data, and GANs continue to be a popular and active area of research.

A Generative Adversarial Network (GAN) is a type of deep learning model that is used to generate

new data samples that are similar to an existing dataset. It consists of two parts: a generator and

a discriminator. The generator’s goal is to create new data samples that are as similar as possible

to the existing dataset, while the discriminator’s goal is to distinguish between the generated data

samples and the real data samples from the existing dataset.

The two parts of the GAN are trained simultaneously, with the generator trying to produce samples

that fool the discriminator into thinking they are real, and the discriminator trying to correctly iden-

tify whether a sample is real or generated. Over time, the generator becomes better at producing

realistic data samples, and the discriminator becomes better at detecting them. GANs have seen

success in a wide range of applications, including image generation, video synthesis, text genera-

tion, and more. They have the ability to generate highly diverse and realistic outputs, making them

a powerful tool in areas such as computer vision and natural language processing.
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CHAPTER 3: MACHINE LEARNING FOR DEFECT DETECTION

3.1 Introduction

The manufacturing of various parts for turbomachinery operations is a very delicate and detail ori-

ented process. The application of heat, hard machining, cutting, and other processes have many

variables that can have a direct and drastic effect on the product which is manufactured. There are

many forms of non destructive evaluation (NDE) that help engineers to determine part viability

and quality prior to certifying a part for operation[7, 8, 1, 2]. Some of the more commonly imple-

mented NDE techniques include: eddy-current, magnetic-particle, liquid penetrate, radiography,

ultrasonics, and visual[9]. All of these techniques produce a significant amount of data and the

processing and analyzing of this data can often be both time-consuming and inefficient for humans

to perform. Artificial intelligence can either take over completely or play an assistance role in the

processing of the massive amounts of data that is produced through NDE. Anytime the data pro-

duced is visual (either image or video) then CNNs can have a substantial effect on the processing

efficiency of this data. There are a variety of new and innovative NDE methods that could benefit

from the assistance of machine learning to process the data produced [64]. Neural networks are

well equipped to process images, but can also be used to process ultrasonic data and eddy-current

data[1, 10, 11]. The field of NDE is well suited for the application of neural networks, and will

most likely be transformed by it.

In this work, a dataset composed of visual images of freshly manufactured sheet steel is examined.

This image dataset was provided by a Russian steel manufacturing company known as Severstal.

They supplied this data to the Kaggle community with a prize money of 120,000$ in 2019. Kaggle

is a online data science community where many datasets are posted with certain modeling aspi-

rations, and users often collaborate and compete to achieve those goals. The sheet steel surface
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images provided in this dataset are of both specimens with defects and without defects. The speci-

mens with defects will have varying types and varying size of defects. The first goal for the CNN is

to be able to determine if the sample has a defect, and if it does, then the second step is to determine

what type of defect it has. This type of technology could be reconfigured and applied to several

other manufacturing industries. It could also be applied to part inspection during operation. CNNs

are well suited for image segmentation and classification. The next section will explain the Sev-

erstal Kaggle Competition requirements in further detail. There have been a few previous studies

into this particular dataset which have experimented with various CNN architectures [65, 66, 67,

68].

The determination and classification of present defects in a product is a highly critical task to the

manufacturing process and timeline. The rapid identification of defects in a finished product will

also contribute to the determination of the cause of the defects. This will allow engineers to become

much more efficient at manufacturing a defect free product in the future. An online database of the

history of defects within manufactured parts can also serve as a reference during the determination

of which areas of the manufacturing process will require further research and development in the

future. CNNs are well equipped to provide the framework for rapid part inspection via images.

In this work, only surface images will be analyzed, but in the future computed tomography (CT)

images can also be examined. CT scans can show the internal details of a component and therefore

internal defects can be found and analyzed. This type of work would be very beneficial to part

manufacturing and operational equipment monitoring.

In this work, two specific CNN architectures will be implemented and trained on the Severstal steel

dataset. Various accuracy metrics will be recorded during the training of the CNN architectures

used on this dataset. This work will provide a benchmark for the performance of these two CNN

architectures. The process of applying a CNN could be broken down into four basic steps. The

first is a preliminary data analysis, the second is model selection (this should be done with some
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thought of the end goal for the data), the third step is to apply the model to the data, and step four

is to analyse the results. It is common to iterate over steps three and four in order to obtain a good

model. This paper will be broken down into sections with this process in mind. First there will be

a dataset details section (step 1), then implementation (step 2), then a testing plan section (step 3),

then a results section (step 4), and finally a conclusion section.

The CNN for this work is designed to both segment and classify images with an anomaly, which

CNNs are quite capable of doing. Mechanical parts have not yet seen a significant amount attention

from the artificial intelligence community. In recent years, CNNs have seen and are currently

seeing a significant amount of research and attention in the medical imaging industries[69, 70].

They are mostly being used to find defects or ailments within the human body. The technology is

highly transferable to mechanical parts.

In Figure 3.1, there is a very basic and simplified layout of how the neural network should operate

for this specific task. The pictures on the right side are taken from a high frequency camera of the

surface of newly manufactured sheet steel. Some of those images will have defects of various types,

and some will not. The images will be fed through a fully trained model, which will determine

if the images contain a defect and if they do, they will be annotated in a certain color to indicate

which type of defect it possesses. There are examples of this in the right side of Figure 3.1. The

middle is simplified representation of the architecture of a neural network.

This dataset is available for public viewing on Kaggle. The dataset could be broken down into 3

sections. There is a training set, a public testing set, and a private testing set. The training set is for

training the model. The public testing set is for testing the model, and it is available for the public

to see. The private set is a set of data that nobody, except for Kaggle has access too. The code is

submitted, then Kaggle runs the private test set through it. Our models were scored on both the

private and public test set. The scores are in the results section.
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Images of Sheet Steel
After Manufacturing

Images of Sheet Steel with 
Categorized Annotated DefectsDensely Connected Artificial Neural Network, 

Composed of n layers 

Figure 3.1: A visual representation of a convolutional neural network implemented for steel defect
detection and categorization.

3.2 Dataset Details

As mentioned previously in the work, this dataset was published on Kaggle for a competition, and

it is still currently available there [71]. There are an ample amount of notebooks, some of which

are very well annotated, that are of great use and reference on Kaggle. This dataset is composed

of images of sheet steel, which were gathered just after the steel was manufactured using a high-

frequency camera. In the images there are several types of defects, so each image will either

have no defects, have one class of defect, or have multiple classes of defects. The purpose of the

competition is to be able to implement a CNN to not only detect if the steel has a defect, but also

what type of defect is present within the specimen.
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In order to evaluate performance the mean dice coefficient will be used as a metric. The dice

coefficient can be used to determine if there is an agreement between predicted defect area and the

ground truth. The formula in true statistical notation for the dice coefficient is given in Eq. 3.1. X

is representative of the predicted pixel area and Y indicates the ground truth. X and Y are in the

form of a 3rd order tensor. The dimensions are length and width in pixels, and the 3rd dimension

is the value of the RGB (Red Green Blue) in the color scale. A high dice score indicates that the

predicted areas of defect occurrence have a good match to the actual area of defect occurrence.

The scale of the dice score is from 0 to 1, and a score of 1 would indicate perfect classification

in the image at every pixel. There is an added complexity to the problem because it is not simply

binary classification. The predicted area must also classify the defect into the correct type (1-4).

The dice coefficient was used as a metric for the Kaggle Severstal steel dataset competition, so it

will be calculated in this work as well.

Dice(X ,Y ) =
2∗ |X ∩Y |
|X |+ |Y |

(3.1)

There is also another metric that is commonly used on pixel segmentation and classification tasks.

This is called the intersection of union (IoU). The IoU and the dice coefficient are very similar. The

formula for Dice coefficient is given in a different form in Eq. 3.2. This formula is given because

it is easier to interpret. TP is true positives, FP is false positives, and FN is false negatives. TP is

a group of pixels in the image that is representative in a defect that have been correctly predicted

as a defect of the correct defect type. FP is a group of pixels that have been predicted as a defect,

but are actually defect free or a defect of a different type. FN is an area predicted to be defect

free, but actually contains a defect. True negatives are not included in the equation because the

vast majority of the pixels in the images negative, so this would give an over inflated score. This

is standard practice with image segmentation and classification. The formula for IoU is given in
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Eq. 3.3. Both the IoU and Dice scores will be calculated in this work.

Dice =
2T P

2T P+FN +FP
(3.2)

IoU =
T P

(T P+FP+FN)
(3.3)

There is a stipulation on the submission format for this challenge. In order to reduce the size of

the submission file the run length of encoded pixel values will be submitted. This means that only

the first pixel and the length of the encoded area will be submitted. Pixels are numbered from left

to right in rows and then top to bottom. Pixel 1 is in the top left corner and pixel 1601 would be

one pixel below that. The images are 1600x256 pixels. A quick example of encoded pixel notation

would be (12,4) which would cover pixels (12,13,14,15). The first number in (12,4) indicates

the first pixel encoded, and the second indicates how many pixels following that pixel should be

encoded.

When starting to analyze a dataset, it is important to examine the data carefully, prior to the im-

plementation of a CNN. This initial examination helps to identify what could cause problems later

during the training of the CNN. The first step of this initial examination is to look at some of

the very basic statistics within the dataset, and then graph them. The competition stipulates that

there are 4 distinct types of defects within the samples, unfortunately a specific category of defect

(scratch, ablation, crack, etc.) was not provided by Severstal. The defects are only categorized by

number(1,2,3,4). Upon examination it would appear that type 1 is small divots, type 2 is vertical

cracks, type 3 is surface scratches, and type 4 is an ablation (this is a guess). In Figure 3.2, the

composition of defects across the entire dataset is given. Defect type 3 is the most common type of

defect to occur. Defect type 2 is very uncommon. In Figure 3.3, the amount defects in each image
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are given. It is about half with defects and half without, and there is a small group of images which

possess multiple defects.

One of the more challenging aspects of this dataset is the image segmentation and classification.

One issue with doing this is the way that the pixels have been encoded or marked. The entire

surrounding area of a defect is marked as the defect. There are examples of this in the right side

of Figure 3.1. The CNN is training to find the defect, and also grab some of the nearby area. This

is because the training set images were annotated in this manner, the CNN will try to replicate it

as best it can. It is a tedious job to mark the defects with more accuracy and precision, especially

for such a massive dataset, so it is an understandable problem to have. Also the surface scratching

is only counted as a defect if it is substantial enough. Minor surface scratching is sometimes not

marked on some of the images. There are some images in the dataset, that are marked as having

no defect, but they do have some minor surface scratches visible.
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Figure 3.2: A bar graph of the number of specific defect types over the entire span of the training
dat set of images.
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Figure 3.3: A bar graph of the number of defects of any type per image in this data set.

3.3 Implementation

The development of the Residual Network (Resnet) has enabled CNNs to be designed with hun-

dreds of layers. Previous CNN architectures could have an infinite amount of layers, but the ef-

fectiveness of the CNN would drop off at a certain quantity of layers. CNN’s with a Resnet archi-

tecture can have hundreds of layers and will see no drop off in the performance of the network.

The Resnet was actually developed to solve the famous "vanishing gradient" problem during back

propagation. So many layers in the CNN will cause the loss function to get a smaller and smaller,

until it "vanishes."

The equation for a single neuron in a neural network is given in Eq 3.4. This equation is quite

simple on it’s own, but when compiled into a network of thousands of neurons it is difficult to

solve without a computer. The w is the weight, b is the bias, the al+1 indicates the neuron under

consideration, and the al indicates the previous neuron. The σ is a nonlinear activation function.

Usually a sigmoid function or a ReLu (rectified linear unit) are used for the nonlinear activation
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function for the neuron. As the neural network obtains more and more layers the weight function

and the bias will drop off to zero. The later layers in the network do not improve the network.

Resnet networks offer a solution partially skipping every other connection. This connection is

shown in Figure 3.4. This "skipped connection" allows the network to learn the identity function

into the deeper layers. Another way to think about it, is at the deeper levels of the neural network,

the features that the network is learning are too abstract. The initial levels of the network focus on

objects, edges, positions, and other lower level features of the image. The deeper levels become

to abstract and irrelevant. This skipped connection layer or the residual block in the network has

proven to be a good solution to this issue.

al+1 = σ(wl+1a1 +b1+1) (3.4)

Weighted Layer

Weighted Layer

x
(Identity 
Function)

x

F(x) ReLu

ReLu
F(x)+x

𝑎[]

𝑎[ାଵ]

𝑎[ାଶ]

Figure 3.4: A basic residual building block diagram that makes up the resnet architecture. Relu is
a rectified linear unit. This diagram details how the identity function passes through the layers of
a given neural network.

The Resnet was implemented on the CIFAR-10 (Canadian Institute for Advanced Research) dataset

and achieved first place in the ILSVRC 2015 classification competition (ImageNet Large Scale Vi-
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sual Recognition Challenge). The CIFAR-10 dataset is a collection of images which are commonly

used to train machine learning and neural network algorithms.The error rate that was achieved for

that competition was 3.57%. This novel CNN architecture shook up the deep learning community

and the Resnets have seen significant implementation and development over the past five years[72].

3.4 Testing Plan

For this work, two of the more common Resnet architectures are tested on the Severstal steel

dataset. The two types of network layouts that we will be testing are the Resnet-18 and the Resnet-

50. The batch size for the simulations was 2. The number of epochs for each architecture tested

was 40. The batch size is how many images are processed per iteration, and the epochs are an

entire cycle through all of the images in the training set. The learning rate was determined to be

most effective at 0.0005, so that is what was implemented. This number indicates how far the

weights will shift based on the feedback from gradient descent.

The loss function is a very critical part of implementing any type of machine learning. For this

project a combination of a sigmoid layer and a binary cross-entropy (BCE) loss function was used

to calculate loss. In python notation it is referred to as BCEwithLogitsLoss(). This loss function

is well-suited and frequently implemented on datasets that require both image segmentation and

classification. The BCE function can be seen Eq. 3.5. The y is a binary indicator and the p rep-

resents the probability that it belongs to either class. This function is combined with a sigmoid to

determine how accurately the weights in the network are categorizing the pixels between iterations.

The dice score cannot be used as a loss function because it is hard to differentiate it.

BCELossFunction =− 1
N

N

∑
i=1

yi · log(p(yi))+(1− yi) · log(1− p(yi)) (3.5)
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Figure 3.5: The results generated from the training of differing CNN architectures: (Top) The
resnet-18 (Bottom) The resnet-50 (Left) Y-axis is the intersection of union score and X-axis is the
number of epochs (Middle) Y-axis is the binary cross-entropy loss and X-axis is the number of
epochs (Right) Y-axis is the dice score and X-axis is the number of epochs

The models used for this work were trained on Googles’s AI platform on the cloud. The hardware

used was 8 CPUs with 30GB of ram. The GPU was an Nvidia Tesla T4. The coding was completed

with pytorch and several other common python packages under the GUI of jupyter notebook.

3.5 Results

As mentioned, two types of network architectures where used while training the model. They are

the Resnet-18 and the Resnet-50. The results from training the networks are shown in Figure 3.5.
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The results illustrate 3 critical factors which are the the IoU score, the loss, and the Dice score.

All 3 of these factors have been plotted against the epochs. The IoU and the Dice scores are very

similar, but both are plotted for reference for future works. A total of 40 epochs were run for the

training. The training took about 10 minutes per epoch for the Resnet-18 and about 20 minutes

per epoch for the Resnet-50. The final dice score for the Resnet-18 (the 40th Epoch) was 0.86 for

the training set and 0.77 for the validation set. The final dice score for the Resnet-50 was 0.91 for

the training set and 0.83 for the validation set. The final loss for the Resnet-18 was 0.85% for the

training and 2.1% for the validation. The final loss for the Resnet-50 was 0.85% for the training

and 2.3% for the validation.

Detected Defect Type 1

Detected Defect Type2

Detected Defect Type 3

Detected Defect Type 4

Figure 3.6: Color coded defects for the resnet-50 CNN. Defect type 1 is yellow, defect type 2 is
blue, defect type 3 is purple, and defect type 4 is red. Original images are from the test folder from
the dataset.

This kernel was submitted under the stipulations of the contest, after the contest was over with.
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One requirement is that the testing set images must be classified and segmented within one hour.

The testing set images are a set of images that the CNN has never seen during training. There are

about 1800 images in the public testing set. The code created for this work was able to do that,

however the initial training of the model was done separately. The initial training took over an

hour for both CNN architectures. Once trained though, both CNNs could analyze the 1800 images

in the test set in about 10-20 minutes. The Resnet50 was submitted late for the competition and

scored 0.86 on the public set, and 0.88 on the private set. The private set is a test set that Kaggle

users do not have access to. The scoring is shown in tabular form in Table 2.1. The top scores are

the top scores on the Kaggle competition. The Resnet18 and the Resnet50 are the scores acheived

in this work.

Table 3.1: Dice Scores Comparison Table

Model Public Private
Top Score 0.92 0.91
Resnet18 0.85 0.87
Resnet50 0.86 0.88

The Resnet50 model performed quite well for being so straight forward, it placed in the top 1000

submissions for the public set and top 500 on the private set. The highest score on Kaggle are 0.91

on the private and 0.92 on the public, as indicated in Table 3.1. The way that kagglers often achieve

these last couple decimal points is to run several models and perform a soft voting function. For

this work we only examined the capability of the Resnet 18 and 50 on this dataset, in order to

display more straight forward results that can be benchmarked.

In Figure 3.6 we can see some of the specific output files generated from this work. The defects are

highlighted and color coded to correspond to what defect it is. This steel dataset is far superior to

previous steel defect datasets in sample size, image quality, and defect diversity. Some noteworthy
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steel datasets include the one gathered by Northeastern University and the one gathered by Uni-

veristy of Califonia Irvine [73, 74]. Currently there is not a substantial amount of manufactured

part data from NDE methods available on Kaggle.

One interesting find in this paper is the area which the CNN finds as a defect. In Figure 3.6, we

can see some images that are generated from running them through our CNN. We can see that the

area around the defect is also marked as a defect. This is because of the way it was annotated.

The area around defects was circled by whoever annotated the steel defects. The area in the test

set was also annotated in this fashion. The neural network will try to annotate the images exactly

like the human did for the training set. It is possible that by more accurately annotating the defects

could lead to a higher Dice or IoU score. Essentially what these results say is that a CNN will do

whatever it is trained to do. In this case it is trained to grab and oversized area of the defect region,

so it grabs an oversized area of the defect. The fact that it can achieve such a high dice score with

this quality of annotation is extremely impressive.

3.6 Conclusion

Our models in this work achieved an accuracy of 0.88 on the private and 0.86 on the public test

sets for this competition. The results show that both of the Resnet architectures begin to overtrain

at around 20 to 25 Epochs. This is clear from the slight divergence in the loss functions. The

overtraining is very slight however (probably negligible), and the models still scored very well on

the testing data set.

The data set here is highly beneficial to the data science and computer vision community. It demon-

strates in a very clear fashion how powerful CNNs can be in this field. The annotation of defects

is a little larger than the actual defect in all of the images. This could be an area of improvement
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in the future. It could be determined if a more accurate defect annotation area would increase the

overall accuracy in the CNNs ability to detect and categorize defects. Also implementing CNNs

on CT images could provide some very interesting results in defect detection efficiency.

It is very easy to see how this type of technology could be transformative to the manufacturing

industry. The quantity and quality of data gathered from NDE industries continues to grow every

year. Computer vision systems can provide instant feedback on the quality of the part that is being

manufactured. It could also provide an excellent database of defects and help data scientists and

product engineers to collaborate and improve product manufacturing procedures. There are thou-

sands of parts that are manufactured for turbomachinery operation every year that could benefit

from this technology. It is also a good idea to try to implement computer vision for part inspection

during operation as well. This will lead to an increase in efficiency of operation. Artificial intel-

ligence is very capable in assisting, improving, and rapidly analyzing data generated from many

NDE techniques currently utilized for turbines inspections.
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CHAPTER 4: MACHINE LEARNING FOR MICROSTRUCTURE

ANALYSIS

4.1 Introduction

Grains are an observable unit in many materials, but are very useful for the examination of metallic

materials. For metals, a grain is a region within the material that has a uniform, crystalline struc-

ture. Grains are often measured by slicing a sample and observing it with either a SEM (Scanning

Electron Microscope) or a standard optical microscope. When grains are observed via a cross-

sectional image, they tend to have an irregular polygonal shape. The grains are dependent upon

the material and the processing method. For metals the three most common grains are Equiaxed,

Columnar, and Lamellar [75, 76]. Equiaxed grains are roughly the same size in all directions,

columnar grains tend to be elongated along on direction and lamellar grains are thin layers or

sheets. It is difficult to get the full three dimensional story that a grain wants to tell, when we are

only listening in two dimensions. It is difficult, but not impossible. There are many image process-

ing techniques that can extrapolate more data from these images than was previously possible.

Grains play a crucial role in the structure of a material. For metallic materials, grain size and

shape can have a significant effect on the mechanical properties. In general, metals with small,

uniform grains are stronger and more ductile than those with large, irregular grains[77, 78, 79].

In addition to strength and ductility, the grain size and shape of a metal can also affect other

properties, such as its electrical and thermal conductivity, corrosion resistance, and wear resistance

[80, 81]. Understanding the grain size and shape of a metal is critical for optimizing its properties

for specific applications. The role that grain size and shape play in material properties is still

being researched and discovered. Advances in the way we study or analyze the microstructure
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of materials can directly contribute to a more thorough understanding of this crucial relationship

grain size and shape to macro material properties.

Metallic components have traditionally been forged through casting, and then machining. Over

the past two decades the ability to 3D print metals has become a reality, with more and more

techniques becoming available. Metallic additive manufacturing is a process in which a three-

dimensional object is created by adding layers of metal material one on top of the other. Additive

manufacturing allows for the creation of complex shapes and geometries that would be difficult

or impossible to produce using traditional methods. It also allows for the creation of objects with

internal features and voids, such as channels and passages, these features can be very beneficial in

turbomachinery components. For producing small batches or customized parts, 3D printing can be

more efficient and cost-effective than traditional casting and machining methods. Alongside the

benefits that these new 3D printing techniques provide, there are also many new challenges. The

shrinkage that occurs during the sintering portions of manufacturing cycles is difficult to quantify,

making final geometric and material properties more difficult to quantify[82, 83, 84, 85].

In this work we analyzed how grains are measured and how image processing techniques can be

used to assist this process. We used both artifically generated grains and actual metallic grains

seen under a microscope. The generated grains were made with a voronoi tessalation pattern, and

then adding noise to the image in a variety of ways. The actual metallic grains are from optical

microscope images of stainless steel 316L that was printed on a ExONE BJT printer. A large

dataset of grains was created in this work, in order to implement a variety of machine learning

techniques. The grains observed experimentally in this work, can be classified as equiaxed grains.
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Grains

Grain
Boundaries

Pore or ImpurityPolishing Scratch

Small Grain
Fragments

Figure 4.1: An example image of a metallic grain structure. This image shows some of the chal-
lenges that are present in a typical grain image, when trying to classify pixels into either grains or
grain boundaries. These challenges include: polishing scratches, pores, impurities, and small grain
fragments.

4.2 Image Segmentation Techniques

In order to take measurements of the grains, first images of the microstructure must be taken. This

can be done with either an SEM or an optical microscope. After the images are taken they need to

be segmented into two components: the grains and the grain boundary. The section of the paper

will explain the four most common ways to segment an image into grains and grain boundary. The

four ways are: (1) Manual Thresholding (2) Gradient Based Methods (3) Holistically Based Edge

Detection (4) Manual Segmentation. In practice these methods can be combined in a variety of

ways to segment and image. The (HED) Holistically Based Edge Detection method is an example

of a neural network style approach. There are many new developing methods that use neural

networks to detect edges of an image, HED is just the most well known and popular at the time

of writing this paper. The HED method was developed specifically for detecting the edges of an

image in any image.
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4.2.1 Manual Thresholding

The coding for the manual thresholding was done using OpenCV [86]. All of the code for this

work is available on github and kaggle [87]. A step by step approach to manual thresholding can

be seen in Figure 4.2. The first image is one taken of 316L stainless steel printed on an EXone

printer from an optical microscope at 500X. Step 2: Convert the image to black and white. Step 3:

plot a histogram, the X-axis is pixel intensity and the Y-axis shows the number of times that pixel

intensity has occured. The histogram is used to determine a good approach for threshold. Step

4a and step 4b are both examples of thresholding. Step 4a is an example of standard thresholding

where all of the pixels (>130) are set to 255 (white) and all pixels (≤130) are set to 0 (black).

The value 130 is shown in red on the histogram. Step 4b is an example of an adaptive gaussian

threshold. The threshold value is a gaussian-weighted sum of the neighbourhood values minus the

constant C. The neighborhood values are a block of pixels, for this case it was (55x55), and the

constant subtracted was 2.

1.  Original Image 2.  Black and White Image 3.  Histogram of Pixels 4a.  Standard Threshold 

4b.  Adaptive Threshold 5.  Median Blur 4 Iterations 6.  Segmentation 7.  Filter Data

Figure 4.2: A step by step example of the manual thresholding technique being applied to a metallic
equiaxed grain boundary image.
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In step 5 a median blur is applied 2 times to a 5x5 pixel area, and then 2 more times to a 7x7

pixel area. In step 6 image segmenation is applied, and the grains are seperated from the grain

boundaries. In step 7 the grains are filtered, usable grains are shown in green and unusable grains

are shown in red. Unusable grains are grains that are too small or grains that have too much

perimeter per area. Too much perimeter per area indicates the grain did no get properly segmented

during the total process. Essentially two or more grains are connected by a small "neck" region.

Image segmentation via threshold is a simple but highly customizable process. There are several

steps in this process where the user has to select a value and check the results. For example,

threshold cutoff, block size for blurring, block size for the adaptive gaussian method, etc. All of

these values lead to different results, so the user must pick the one that looks the best in order

to automate the grain segmentation process. Different materials, imaging equipment, or image

settings can effect the images, and could easily require different variables for optimal segmentation.

4.2.2 Gradient Based Methods

Gradient based image segmentation is also possible to separate the grains from the grain bound-

aries. The gradient based approach will identify sharp changes in pixel intensity, and it will classify

those areas as an edge. There are several mathematical tricks to determine the best way to detect

this change in pixel intensity, many of which involve taking the first or second derivative. The

method often considered to be the most robust is the "Canny Edge Detection Method," developed

by John Canny [88]. The basic process is to first to convert the image to greyscale and then apply a

Gaussian filter to smooth the image. The gaussian filter makes the image slightly more blurry. This

reduces the amount of noise that will be detected in the process. Next the pixel intensity gradient

is calculated (the first derivative of the image). Lower changes in pixel intensity can be filter out,

unless they directly connected to a high change in pixel intensity.
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The application of the Canny Edge Detector can be seen in Figure 4.3. First the image was con-

verted to black and white. Next the Canny Edge Detector was used. In the third step, two Gaussian

blur iterations were applied to a 3x3 pixel block. In the fourth step, the image is thresholded into

0 and 255 (black and white). The threshold value was very high (200), meaning most gray pixels

were set to black. Step 5: segmentation occurs. Step 6: Filtering of the data occurs. The same

filters were used as the previous section. Too much perimeter per area were filter out, and too little

a grain size were also filter out.

Image segmentation via gradient detection is also a simple but highly customizable process. There

are several steps different gradient based methods to choose from. Also the pre and post filter

selected will lead to different results. Again the user must tailor the settings and parameters of the

algorthm for specific materials or image settings.

2.  Canny Edge Detector1.  Black and White Image 3.  Gaussian Blur 2 Iterations

4.  Standard Threshold 5.  Segmentation 6.  Filter Data

Figure 4.3: A step by step example of the gradient based technique being applied to a metallic
equiaxed grain boundary image.
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4.2.3 Holistically Nested Edge Detection

The next detection method involves machine learning and neural networks. The (HED) Holistically

Based Edge Detection method is an example of a deep learning approach.[89] This method uses

a (CNN) convolutional neural network architecture to classify the pixels of an image as an edge

or not an edge. CNNs are particularly well-suited for tasks involving image processing and anal-

ysis, such as object detection, image classification, and image segmentation o2015introduction,

albawi2017understanding, warren2021rapid. Essentially the CNN was just trained to detect edges

and works quite well.

In Figure 4.4, there is a layout of using the HED approach. First the image is converted to black

and white. Next it is fed into the HED model to determine the edges. The third step is to apply an

adaptive guassian threshold to convert all pixels to either 0 or 255 (white or black). The final two

steps are again segmentation and data filtration. The HED model works exceptionally well, and

provides the user with a pixel intensity that represents the confidence that the pixel is an edge or

not an edge. That is why step 3 (adaptive thresholding) is required.

So far the HED method seems to be the most effective, but there are some downfalls to it. The

HED is a robust edge detector, and is not specifically trained to detect edges of grain boundaries,

but is trained to detect edges of any possible image. It can be a airplane, an animal, or even

the microstructure of an additively manufactured piece of stainless steel. If a network is trained

specifically for grains and grain boundaries it would be able to outperform the HED method. Also

the next section is manual (human) segmentation, which is currently the most accurate.
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2.  HED Edge Detector1.  Black and White Image 3.  Adaptive Gaussian Threshold

4.  Segmentation 5.  Filter Data

Figure 4.4: A step by step example of the (HED) Holistically Nested Edge Detection neural net-
work technique being applied to a metallic equiaxed grain boundary image.

4.2.4 Manual Segmentation

The most arduous way to segment the grains of image is the manual segmentation. This is dont by

the user manually annotating the grains or grain boundaries. For this work this was done by mark-

ing the grain boundaries in a specific color, and then thresholding the image so that all annotated

pixels are 0 (black) and all others are 255 (white). After that the same process of segmenting the

image computationally and filtering out small particles occurs. This process is shown in Figure 4.5.

The process is very simple and straight forward. This method is the most accurate. The challenges

of avoiding polishing scratches and pores is easy if the person annotating the image is careful. The

only downfall to this method is that it cannot be automated. Each image requires human attention,

for one image it may be worth while, but for many it may not.

For this work the authors did manually segment all 480 images of grains, and this was used for

machine learning purposes that will be explained later. Also all of the previosly mentioned seg-
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mentation methods/algorthms were used (HED, Gradient, Threshold) on the dataset. All of this

data is available on Github and Kaggle.

2.  Threshold Image1.  Manually Segment 3.  Segment Computationally 4. Filter Data

Figure 4.5: A step by step example of the manual segmentation being applied to a metallic equiaxed
grain boundary image. This was done by hand, by a human.

4.3 Grain Measurement and Accuracy Quantification

There are a few ways to quantify how accurate the methods developed an implemented to segment

images the grains from grain boundaries in this work. One method is to look at the actual grain

data obtained. Traditional grain measurements techniques will be as a baseling to compare to.

The two most popular traditional measurement techniques are line intercept (Heyn method) and

the planimetric method (Saltykov method). These two methods will be explained in the following

sections.

Another way to quantify accuracy is to compare the actual pixels being segmented and classified.

The current standard is the dice score or the Intersection of Union (IoU) score. These two methods

are frequently used to determine how accurate a neural network is at segmentation, and they will

be explained in this section as well.
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4.3.1 Line Intercept Method

As stated before, the grain boundary image dataset gathered for this work is 480 images, and each

image is 400 x 300 pixels. The grain intercept method or line intercept method developed by Heyn,

has long been the standard way to get quick grain size measurements [90]. It works by drawing

a line through the image and counting the number of grains that the line is in contact with. The

average grain size is then calculated by dividing the number of grains by the length of the line. The

simple formula is shown in Equation 4.1. A simple code was written for to automate this process

and perform the measurement at every pixel. This was completed for all of the segmentation

techniques listed in section 2. That is a total of 144,000 X-direction measurements, and 192,000 Y-

direction measurements. The average grain size and the standard deviation for both the horizontal

and vertical direction is shown in Table 4.1. Although this grain intercept method can provide so

many measurements, it still lacks in capability. It is a rough 1-D measurement of a complex 3-D

structure. It is still used frequently today, so including is still relevant.

Grain Size =
Number o f Grains in Contact With Line

Total Length o f the Line
(4.1)

Table 4.1: Line Intercept Grain Measurements

Direction Manual Gradient HED Manual
Threshold Method Method Segmentation

X-Direction 41.45±6.42 20.86±10.90 33.05±6.53 36.87±4.84
Y-Direction 42.28±7.59 22.64±5.99 34.02±6.80 37.40±5.44
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4.3.2 Planimetric Method

The planimetric method is a 2-D method, and can provide data on the size and shape of the grains.

The more critical size and shape data that can be extracted from the segmented data was gathered.

The data is divided into size data in Table 4.2, and the shape data in Table 4.3. The data is available

for all for of the segmentation methods listed in section 2.

The planimetric size data includes four different measurements. The first is total grains, that is

the entire amount of grains found in all of the images. This is just for a comparison point. The

second is the individual grain area average. This is the average area of the grains plus or minus

the standarad deviation. The third and fourth items in Table 4.2 are the total grain area per image

and the total grain boundary area per image. These two values can be easily calculated from each

other, as shown in equation 4.2.

Total Image Area = Total Grain Area+Total Grain Boundary Area (4.2)

Table 4.2: Planimetric Size Measurements

Measurement Manual Gradient HED Manual
Threshold Method Method Segmentation

Total Grains 9,575 24,740 15,297 11,002
Individual Grain 844±1,314 248±1033 488±823 1068±929

Area Average µm2 µm2 µm2 µm2

Total Grain 53.3% 40.5% 49.3% 77.5%
Area %

Total Grain 46.7% 59.5% 50.7% 22.5%
Boundary Area %

The planimetric shape data includes five different measurements. Circularity is a simple geometric
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property of a shape that will be between 1 and 0, where 1 is a perfect circle and 0 is the opposite.

The closer to 0 the more rough the 2-D shape is. The equation for circularity is show in equation

4.3. The average max diameter, this is maximum distance from one side of the grain to another that

crosses through the centroid of the grain. The next 3 measurements are in the X and Y directions.

The first is the average width of the grains, referred to as the average X-diameter. The next is the

average diameter in the Y-direction or the average height. The final value is the aspect ratio, this is

just width over height, or average x-diameter divided by average y-diameter.

Circularity =
4πA
P2 (4.3)

Table 4.3: Planimetric Shape Measurements

Measurement Manual Gradient HED Manual
Threshold Method Method Segmentation

Circularity 0.55±0.18 0.28±0.15 0.50±0.18 0.61±0.12
Average Max 39.31±30.69 25.14±18.60 30.57±22.84 47.38±20.52

Diameter
Average 32.18±25.39 22.64±15.90 24.81±19.51 39.07±18.49

X-Diameter
Average 32.94±26.70 22.64±15.40 25.47±19.76 39.06±18.97

Y-Diameter
Aspect Ratio 1.09±0.55 1.06±0.53 1.07±0.51 1.11±0.58

X/Y

4.3.3 Evaluation of Segmentation

To evaluate the accuracy of the segmentation models, the dice score and the IoU score will be used.

There are four ways to classify a pixel of an image that has been segmented. TP is true positives,
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FP is false positives, TN is true negatives and FN is false negatives. The dice equation is given in

the form of these variables in equation 4.4. The probabilistic version of the equation is given in

equation 4.5.

Dice =
2T P

2T P+FN +FP
(4.4)

Dice(A,B) =
2∗ |A∩B|
|A|+ |B|

(4.5)

For this to be implemented a ground truth needs to be determined and indicated. The ground truth

for this work will be the manually segmented images. The only error in these images is the error

caused from a human while sketching the grain boundaries. The comparison of Dice and IoU

scores for the manually thresholded method, the gradient method, and the HED method can be

seen in Table 4.4. These scores can be used as bench marks along with the other specific grain

properties to quatify the accuracy of the machine learning methods developed in this work.

Table 4.4: Planimetric Shape Measurements

Scoring Method Manual Threshold Gradient HED
Dice 0.55±0.18 0.28±0.15 0.50±0.18
IoU 39.31±30.69 25.14±18.60 30.57±22.84

4.4 Artificially Generated Grains

Artificial grains and grain boundaries were generated using a voronoi tessalation pattern. This

tessalation pattern has a very similar pattern to equiaxed grain boundaries. The noise found in the
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images of the grains for this work was also simulated using various noise generation methods.

4.4.1 Voronoi Tessellation

A Voronoi tessellation pattern is generated by partitioning a plane into regions based on distance to

known points in the plane [91]. That set of points (also called seeds) have a corresponding region

consisting of all area in the plane that is closer to that point than to any other. Once the cell is

partioned into regions defined on proximity to a seed, the graph can be referred to as a Voronoi

Diagram. An example of a Voronoi Diagram used for this work, can be seen in Figure 4.6. The size

of the cells is based on the area measurements from the previous section. The average Voronoi cell

area is approximately equal to the inverse of the point density. For example, if the point density

is 10 points per unit area, the average cell area would be approximately 0.1 units. Based on this

simple calculation the average grain (cell) area for this generated data is 1000 µm2. This average

individual grain area for the manually segmented images was 1068 µm2, so 1000 µm2 was selected

for the generation to portray the actual data.

1.  Voronoi Tessellation 2. Pores and Scratches 3.  Final Image

Figure 4.6: Artificial grain generation via Voronoi Tessalation pattern: (1) randomly generated
voronoi tessalation pattern with centroids marked in green. (2) Polishing scratches marked in red
and large and small pores marked in blue (3) Gaussian Noise applied to simulate the black and
white grain color, this is also an example of a artificial grain generated through this method
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4.4.2 Artificial Noise

The noise generated for the Voronoi Tessellation pattern was performed to mimic the actual chal-

lenges seen in the images. The two biggest challenges are polishing scratches and pores, as shown

in Figure 4.1. Scratches were added by plotting random lines in the Voronoi graph, and pores were

added by plotting random dots of random sizes. An example of the pores and scratches is shown

in Figure 4.6. These defects could be eliminated from the data by more careful polishing and by

a better etching method. Polishing and etching are complex processes that are difficult to perfect,

so using machine learning methods to automatically ignore these defects is also a suitable path to

eliminating the undesired effects these defects inflict during the measurement process.

The total plot area is from 0 to 800, but the actual image is from 200 to 600. This creates a 400x400

pixel image (the same as the experimental data). This also allow for the scratches to sometimes

travel the entire sample image or just start and stop in the image. The amount of pores and scratches

was varied when creating the artificial data, this will be explained in the next section.

4.4.3 Artificial Dataset

The amount of scratches in the total plot was a uniform random number between 2 and 10. The

start and stop locations were also random (uniform random for both X and Y). The number of

randomly sized pores was a uniform random number between 2000 and 4000. There was also

random black pixels placed in the images, the amount was a uniform random number between

10000 and 20000. To give the grains the gray color all of the white pixels (255) had a number

subtracted from them. The number was a normal Guassian distribution of 100± 10. All of the

numerical values for the first round of noise distributions are given in Table 4.5. The goal is for

a convolutional neural network (CNN) to be able to take a noisey Voronoi tessellation and predict
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the mask (the initial noiseless Voronoi Tessellation). A CNN easily be able to do this, so to make

the model more robust more noise will be added.

Table 4.5: Applied Noise Distribution Table

Noise Type Distribution/Application
Added Black Pixels U ∼ (10,000, 20,000)
Added Black Dots U ∼ (1,000, 2,000)
Dot Size (Radius) U ∼ (5, 25)

Gaussian Noise Subtracted N ∼ (100, 10)
Total Scratches U ∼ (2, 10)

Scratch Start and End Point U ∼ (0, 800)
Total Area Plotted X and Y : (0, 800)

Area in Image (From Original Plot) X and Y : (200, 600)

The next round of noise added to the artificial dataset was the inverse of two of the segmentation

techniques listed Section 2. The two techniques are the Manual Thresholding and the Gradient

Based Method. The deficiencies of the these image processing techniques can be exploited to

further train and create a more robust CNN for image segmentation. The median blur technique

seen in section 2.1 was implemented, as was the Gaussian blur technique seen in section 2.2. The

inverse of an adaptive threshold is similar to an erosion technique, this was also used. These

techniques were applied in varied iterations and also used in conjuction with each other. The

application method can be seen in Table 4.6. The example of an original Voronoi tessalation with

the full applied noise for each set in Table 4.6, can be seen in Figure 4.7.

4.5 Machine Learning Methods

The method for machine learning is a convolutional neural network (CNN) that will be used to

identify whether a pixel is a grain or a grain boundary. The architecture will be a U-NET. The U-
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Table 4.6: Image Distortion Applications Table

Set of 100 Erosion and Dilation Gaussian Blur Median Blur
Images 256x256 Kernel [3,3] Kernel [15,15] Kernel [5,5]

1 YES NO YES (1 iteration)
2 YES NO YES (2 iteration)
3 YES YES (1 iteration) NO
4 YES YES (2 iteration) NO
5 NO NO YES (1 iteration)
6 NO NO YES (2 iteration)
7 NO YES (1 iteration) NO
8 NO YES (2 iteration) NO

Net used will be explained in the section U-NET. There were a few different methods of training

that were used and that will be explained in the section training styles.

4.5.1 U-Net

The U-NET architecture was recently developed in 2015 [60]. The U-Nets architecture is well-

suited for pixel segmentation because they are able to effectively capture both local and global

features in the input image. Another beneficial feature is the use of skip connections, which allows

the model to make use of both high-level and low-level features. In most image classification

problems both level of features carry critical information, that is needed for classification. We are

currently in a Artificial Intelligence growth period and there are many new spins on the classic

U-NET model. Rather than try 20 different models to see which one performs the best, in this

work we will use the standard U-NET as a benchmark. The selection of the best model can be

performed easily, since all the data is public.

The activation functions in between the layers was the Relu function. The final activation function
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Set 1 Set 2 Set 3 Set 4

Original Image:
MASK

Set 5 Set 6 Set 7 Set 8

Figure 4.7: Artificial grain generation method: The original mask is on the left hand side of the
figureand all of the different sets of generated grains are on the right and labeled set 1 through 8.
The method of noise generation for each set is given in Table 4.6

for the classification was a sigmoid. The optimizer function was ADAM and the loss function

was binary cross entropy. The batch size was 16, and training was conducted for 50 epochs. The

validation split was 10%. The layout for the U-NET used can be seen in Figure 4.8.

4.5.2 Training Styles

The training and testing set split was 80 percent training and 20 percent testing. The two critical

points are what is the training data and what is the desired outcome. The desired outcome is

referred to as the mask. The mask is the group of pixels that we want to classify. In this case we

want to classify specific pixels as either a grain or grain boundary. The mask is an image that has

all the grain boundary pixels valued at 0 (black) and all grains valued at 255 (white). The masks for

this work was always the manually segmented by human grain boundaries, except for the Voronoi

generated data. The mask for the Voronoi generated data is known, it is the original, unaltered
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Figure 4.8: This is a diagram of a UNET from the First and Original paper on the UNET. cap-
tion[60]

Voronoi diagram. One example of this mask is shown in Figure 4.6.

The next critical portion of this work is what composition of the data is used for training. The most

obvious method is too simply train the data using only data the has been manually segemented.

The question is, would including the Voronoi tessalation grain generated data make the model

more robust. This will be answered in the results section. The layout of the various training

set compositions can be seen in Figure 4.9. The first 5 training compositions are just varying

percentages of generated and manual segmentation. This was done to see the effect on just using

the Voronoi method and just using the Manual method and be able to compare them to using a
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combination two techniques.

The training sets 6-10 are a little more intricate. The use of the traditional segementation methods

in section 2.1, 2.2, and 2.3 were used to preprocess the data. This means that the mask remains

the same (manually segmented image), but the original grain image is altered. The original grain

image is altered by applying either the manual threshold method, the HED method, or the gradient

method. After the traditional method has been applied, the U-NET is trained to go from the man-

ually segmented image to the mask (manually segmented image). This was also done to see if this

would make a more robust model.

𝟏𝟎𝟎%

𝟐𝟓% 𝟕𝟓%

𝟓𝟎% 𝟓𝟎%

𝟕𝟓% 𝟐𝟓%
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Data
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Figure 4.9: A visual breakdown of the various sets of data used for training neural networks in
this work. The training sets are composed of either manually segmented data, artificially gener-
ated data, or preprocessed data through the HED method, Gradient Method, or Manual Threshold
method
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4.6 Results

In order to quantify the accuracy of the results of the different segmentation methods we need

to examine the results. There are essentially two paths from which to approach how to examine

the results. The first approach is a standard segmentation accuracy quantification method, known

as the Dice score. The second will be to look at the actual grain data and see how accurate the

measurements of various properties are. Both of these methods will be implemented and explained

in the following sections. After looking at the quantative results, there is a section on the qualitative

results of this work as well.

4.6.1 Dice Score

The dice score is a measure of the overlap between two sets of data. It is well suited for comparing

the results of an image segmentation method. It is often used in machine learning and computer

vision communities. This was used on all of the training set compositions for the U-NET seen in

Figure 4.9. The dice score is a simple score that ranges from 0 to 1, where 1 is a perfect overlap and

0 is no overlap. For this work, the grain boundaries were the region of interest, so the Dice score

was calculated based on how well the models could classify the pixels as grain boundaries. There

are two graphs in this section which show the dice score for the various methods presented in this

work. The dice score graph in Figure 4.10, shows the dice score for all of the traditional methods

given in section 2. The dice score graph in Figure 4.11, shows the dice scores for the various

UNET training compositions used in this work. The manually segmented image is regarded as

ground truth in this work, that is why it scores a perfect score in both figures.

In the graph in Figure 4.10, we can see that the traditional methods do not score very high. One

suprising piece of data is that the HED method actually scored the worst in the Dice score. The
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Figure 4.10: Bar graph for the Dice scores for the 3 traditional methods of grain segmentation:
Manual Thresholding, Gradient Based Thresholding, and HED method for Thresholding. The
ground truth for this measurement is the Manually Segmented images.

HED method does use a neural network model to detect edges, so the low Dice score was not

expected. In general, all three of the traditional segmentation methods scored much lower, but

that does not mean that these methods are completely useless. Noise can be generated using these

methods to create more robust models, like the various UNET training methods seen in this work.

In the graph in Figure 4.11, the scores are all around 90%. The inclusion of fully artificially

generated data in training sets 2, 3, and 4 did not have a negative effect on the score. The score did

drop to 87%, when using all artificially generated data, which was training set 5. The dice score for

training set 5 may be lower, but it is still an impressive score considering that the neural network

for this model was never trained on any real grain images.

The dice scores for the training sets 6 through 10 show that incorporating the noise generated from

the traditional methods does not have a negative impact in the dice score. This could be used

to train models to become more robust or immune to the noise generated from these methods.
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Figure 4.11: Bar graph for the Dice scores for the 10 training sets of data used to train the UNET
used in this work. The ground truth for this measurement is the Manually Segmented images.

Training set 10 did have the highest score, and it did include some noise generated from all three

of the traditional segmentation methods shown in section 2.

4.6.2 Grain Data

The dice score is a good metric for quantifying how well a neural network can classify pixels and

is used frequently in the computer vision community. The materials science community though,

should be more interested in how accurate are the geometrical measurements of the grains them-

selves. To get a basic view of how accurate all of the methods used in this paper are at grain

measurements, we can use the standard error equation in Equation 4.6. Typically the absolute

value is taken, but in order to see whether the method is over or under predicting the value, the

absolute value was not included. The measured value is the average of all of the grain measure-

ments and the true value is the average value for all of the grain measurements for the manually

segmented method.
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The error values are shown in Figure 4.12. On the X-axis of this figure, there are many im-

portant grain measurement values including: circularity, Average Maximum Diameter, Average

X-Diameter, Average Y-Diameter, Grain Intercept Method X-Direction, Grain Intercept Method

Y-Direction, Average Grain Area, and the Total Grains. The total grains counted is the only value

where the average was not taken just the total number of grains found in the entirety of the images

is given. All of the values in this table were calculated by measuring the grain data, taking the av-

erage, and then using Equation 4.6. The grain measurement values from the manually segmented

images are regarded as the true value. The colorbar in Figure 4.12 illustrates how under or over

the estimated value is. Blue indicates a positive error, this means the value has been overestimated.

Red indicates a negative error, this means the value has been underestimated.

Error Percent =
Measured Value−True Value

Measured Value
(4.6)

From the values in Figure 4.12, the three methods from section 2 (manual threshold, Gradient

Approach, and HED Method) have the most inaccurate results. The error percentage is higher in

these methods for all of the measurements. Of the three traditional methods, the manual threshold

method seem to have the lowest error. The Gradient approach method and the HED method also

both significantly overestimated the number of grains total in all of the images. This means that

most of the values should skew smaller than they are in reality, because these methods are predict-

ing so many grains. This is confirmed by looking at the average max diameter, average x-diameter,

and average y-diameter. The manual threshold method also underestimates these, but not as much.

The gradient method had the highest errors of all the methods.

The Unet training set variations all had much lower errors in general. The highest error of the

UNET was training set 5, which was trained entirely on artificial data. Training set 5 underpre-

dicted the amount of grains by about 38%. This is becuase some of the boundaries did not get
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Grain Dimensional  Measurements Error Percentages

Figure 4.12: A color map superimposed on the numerical values for the various grain dimensional
measurements used in this work. The measurement error is provided for the 3 traditional seg-
mentation methods and all ten of the UNETs trained on differing training sets. The training set
compositions are given in Figure 4.9. The manually segmented images are regarded as the true
value for this error measuremnt.

closed entirely causing too many grains to be connected, by small neck regions. This is also ev-

ident by looking at the circularity of the training set 5 predictions. The lower circularity means

that the regions of predicted grains were not enclosed in a circular manner, most likely having

extended neck regions that were not closed correctly. Training set 1 performed very well acroxx

the board, and the addition of artificial grains in set 2, set 3, and set 4 did slightly increase the

error percentages. Sets 2, 3 and 4 did outperform all of the traditional methods and some of the

other training sets. Training set 10 also performed well, this indicates including some of the noise

from the traditional methods can be beneficial to the training process, and including a variety of

this noise is beneficial as well.
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4.6.3 Qualitative Results

In order to take a deeper look into the capabilities of this approach, some qualitative results will be

supplied in this section. The qualitative results are given in the form of individual image results.

By looking at an individual grain boundary segmentation we can see what is happening on a case

by case level.

The first example images are given in Figure 4.13. The images in this figure are from the UNET that

was trained on data set 3. Data set 3 was composed of 50% real grains with manual segmentations

and 50% artificially generated grains from the Voronoi tessellation method created in this work.

Image 3 in Figure 4.13 shows the UNET prediction of the original mask (shown in image 2). The

UNET was able to predict mask after only receiving image 1. Image 1 was an image taken from the

testing set, which means the UNET had never seen this specific image, but was trained on similar

images.

This same UNET (from training set 3) was also able to predict the grain boundaries of a real grain

image as well. An example of this is also shown in Figure 4.13. Image 4 is an example of a real

grain image. Image 5 is an example of the manual segmentations, hand drawn by a human. Image

6 is the prediction that the UNET made of the same grain boundaries. The similarities between

image 5 and 6 is very striking. This grain image and manually drawn segmentation, are also from

the testing set, meaning the UNET never saw these images during training, but did see similar

images. The superior ability of neural networks for grain boundary segmentation is shown very

clearly in this figure.

In Figure 4.14, the results of a UNET that was trained entirely on artificially generated data (train-

ing set 5) is displayed. This UNET was never trained on actual grain boundary images, and only

trained on data created via the Voronoi tessellation grain generation method created in this work.
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1: Voronoi 
Tessellation with 

Added Noise

2: Original Voronoi 
Tessellation 

(MASK)

3: UNET (Set 3) 
Mask Prediction 
from Testing Set

4: Original Grain 
Boundary Image of 

Stainless Steel

5: Manually 
Segmented Image 

(MASK)

6: UNET (Set 3) 
Mask Prediction 
from Testing Set

UNET TRAINING SET 3:
PREDICTION EXAMPLES

Figure 4.13: Qualitative results from the UNET trained on training set 3. This training set is
composed entirely of artificial data. (1) An artificial grain generated from the Voronoi Tessellation
method. (2) The mask from image 1. (3) Prediction of the mask from UNET trained on data set 3.
(4) Real grain image. (5) Mask of the manual segmentation of image 4, complete by a human. (6)
UNET training set 3 prediction of the mask of image 4.

Images 1 in Figure 4.14, shows a real grain image of stainless steel (image was taken for this work),

and overlayed on the image in green is the predicted mask from UNET trained on data set 5. Even

though the UNET was not trained on this data at all, it was still able to make a fairly accurate

estimation of the grain boundaries. The grain boundaries with a manually drawn grain boundary is
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UNET TRAINING SET 5:
PREDICTION EXAMPLES

1: Grain Image From this 
Work with MASK 

prediction overlay

2: MASK prediction with 
no Background 
(from image 1)

3: Grain Image Not From 
this work with MASK 

prediction overlay

4: Grain Image From this 
Work with Manually 
Drawn Segmentation
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Segmentations with no 

Background (from image 4)

6: Grain Image Not From 
this work with MASK 

prediction overlay

Figure 4.14: Qualitative results from the UNET trained on training set 5. This training set is
composed of 50% manually segmented real grains and 50% artificially generated grains. (1) Real
grain with a prediction of mask from UNET overlaid. (2) The mask from image 1 with background
removed. (3) Image of grains this UNET did not train with predition of mask overlaid (4) Image 1
with manually segmentations overlaid (5) The mask from image 4 with background removed. (6)
Image of grains this UNET did not train with predition of mask overlaid

shown in image 4. Images 2 and 5 are the masks without the grain boundaries, they are provided

for comparison. They are not a perfect match, but UNET 3 did manage to not predict an voids as

grain boundaries, and also did not predict any polishing scratches as grain boundaries as well.

Images 3 and 6 are images of stainless steel manufactured via injection molding. These images
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were not taken for this work, and they were not used for training. They are just given to show how

this type of training using artificial data can be implemented to create more robust models. The

UNET trained on data set 5 was able to make fairly accurate predictions for the grain boundaries

in these images as well. In image six some of the grains are of a very dark color, and the UNET

was still able to get the grain boundaries around the darker grains as well.

4.7 Conclusion

The conclusions from this work will be broken down into the different approaches to keep the

statements organized and make it more clear.

The Traditional Methods: The traditional methods include manual thresholding, the gradient

based approach, and the HED method. All of these methods require a a determination of the best

settings for a given dataset of images, and cannot be applied universally. The inverse of portions

of these methods can be used for noise generation to create more robust models.

UNET Training Set 1: Training set 1 performed well on both the dice score and the actual grain

measurements, this should be expected. This UNET was trained only on the manually segmented

images. The manually segmented images were regarded as ground truth throughout this work, so

this UNET should be viewed as the best possible scores for this approach. The UNET training

hyperparameters were constant for the UNETs, only the training data was varied.

UNET Training Sets 2-4: Training sets 2-4 included varying amounts of artificially generated

Voronoi tessellation grains. At no point did the dice score or grain measurement accuracy drop

significantly. The inclusion of artificial data can be used to increase the amount of training data,

while not affecting the accuracy of the model.
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UNET Training Set 5: Training sets 5 did perform the worst of all the UNETs, but the scores

were still pretty reasonable. This is interesting because this UNET was trained entirely on arti-

ficially generated data. This shows it is possible to create or train a neural network to determine

grain boundaries entirely from artificial data. It is also possible for the results to be better than

the traditional methods such as gradient based approaches, manually thresholding, and the HED

method.

UNET Training Set 6-10: Training sets 6-10 incorporated a varying amount of data the was

filtered through the traditional methods. This means that the network was trained on some of the

noisey data generated from the traditional methods. All of the models score very well on the Dice

score and also had very accurate grain measurements. Set 10 included noise from all three of

the traditional methods and scored the best out of all of them. This means that incorporating noise

from all of these methods is beneficial to training. This could be used to create more robust models,

capable of determining grain boundaries on various grain image settings and materials. Including

artificial data can also assist in this goal.

Planimetric and Line Intercept Method: Planimetric and Line Intercept methods were both used

to obtain various grain measurements in this work. The line intercept method is not as accurate as

a full planimetric analysis, as should be expected. It can be used as a quick estimate, but more data

is available with a planimetric analysis. Also more accurate measurements are possible through a

planimetric analysis. A deep learning approach to image segmentation can create a suitable image

for planimetric analysis as well.

Final Statements: A novel approach to data generation for grain boundaries was developed in

this work. The artificial data included pores, polishing scratches and small grain fragments. The

qualitative results from the UNET trained only on artificial data showed an ability to avoid pol-

ishing scratches and pores when predicting the grain boundaries. One weakness of the UNET

66



trained on this data was the grains were not consistently closed, in other words, a small neck re-

gion would be opened connected two grains. This is the cause of the slightly lower dice score and

grain measurement capabilities of this model.

For future machine learning and artificial inteliigence applications in materials science to be pos-

sible, scientist should continue to try to publish their data for others to use. In this work, we

published a significant amount of grain data images from a fairly new method of additive manu-

facturing. Contributions to the data sets are just as important as the contributions to literature when

dealing with machine learning applications.
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CHAPTER 5: PARTICLE RECYCLE ITERATION DETECTION

5.1 Introduction

Laser Powder Bed Fusion (LPBF) is a 3D printing technique that uses a high-energy laser to melt

and fuse together layers of powdered material, to create a 3D object. Metals and metal alloys

are a difficult material to 3D print, but are able to be printed using LPBF [85, 28]. The process

begins with a thin layer of powdered material being spread evenly across a build platform. A high-

precision laser beam is then used to selectively melt the powder in the desired areas. As each layer

is melted and solidified, the build platform is lowered and a new layer of powder is spread on top.

This process is repeated layer by layer until the final 3D object is formed. LPBF enjoys all of the

usual advantages over traditional manufacturing techniques. It allows for the creation of complex

geometries and internal structures that cannot be produced using other methods [26]. It also has

the potential to reduce material waste and lead times, and can enable the production of customized

or one-of-a-kind parts.

Powder quality is critical parameter to the LPBF process. Powder quality has a direct affect on

the quality and integrity of the final 3D printed part [92]. In LPBF, unused powder is typically

reused for future builds. As a result, the powder quality can degrade over time due to oxidation,

contamination, and other factors [93]. It is important to monitor and maintain the quality of the

powder to ensure consistent quality of the printed parts. The size and shape of the powder particles

can affect the packing density, flowability, and surface area of the powder bed, which in turn can

affect the quality and consistency of the final part [94, 95]. Contaminants such as moisture, oxygen,

and other particles can negatively impact the melting and solidification behavior of the material,

leading to porosity, cracking, and other defects. Overall, the quality of the powder used in LPBF

is critical to the quality and integrity of the final 3D printed part [96].
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When powder is being reused in LPBF, it is important to evaluate its quality at each iteration of re-

cycling to ensure that it meets the requirements for producing high-quality parts. Visual inspection

of the powder can be used to detect any signs of contamination, clumping, or degradation [97, 98,

99]. With adequate visual images of the powder, a particle size distribution analysis can be com-

pleted. This analysis can be used to determine if the powder has changed in size distribution due

to repeated use. Changes in particle size distribution can impact the packing density, flowability,

and surface area of the powder bed. By monitoring the quality of the reused powder, it is possible

to determine if the powder is still suitable for use in LPBF, or if it needs to be replaced to ensure

the quality and integrity of the final parts. It is important to establish a consistent powder quality

control process to ensure the quality of the powder is maintained over time [100, 101].

The recycling powder process typically involves sieving the powder to remove any clumps or large

particles, and then mixing it with fresh powder to restore the desired particle size distribution and

chemical composition. The excess unmelted powder is removed from the build chamber. This

powder is typically collected and stored separately from the used powder that has been melted.

The used powder is sieved to remove any clumps or large particles. This helps to ensure that the

powder has a consistent particle size distribution and flowability, which is important for achieving

consistent quality in future builds. The recycled powder is then evaluated for quality using visual

inspection methods. The development of these visual inspection quality determination methods is

on-going, and is the focus of this work. Powder quality determination will ensure that the recycled

powder meets the necessary requirements for producing high-quality parts.

Machine learning (ML) is a very efficient tool for processing, classifying, predicting, identifying,

and analyzing data. ML techniques can be implemented on powder quality images to better deter-

mine powder quality, which can lead to more efficient and accurate quality control in LPBF [99,

102, 82]. By training a neural network on a large dataset of powder quality images, the model
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can quickly learn to identify patterns and features that are indicative of good or bad powder qual-

ity. This will enable faster and more accurate quality control of the powder. Lower resolution

images and even fewer images will be required, if this methodology is correctly implemented. The

images must be analyzed to identify the features that are most relevant for determining powder

quality. This can be done by using convolutional neural networks (CNNs) to automatically extract

features from the images. CNNs are currently the best method in ML at image segmentation and

classification.

A machine learning model must be trained on microstructure images and extract visual features to

predict the quality of the powder. This work will use both supervised learning, where the model is

trained on labeled data, and unsupervised learning, where the model is trained to identify patterns

in the data without explicit labels. The performance of the machine learning models trained in

this work are evaluated using metrics such as accuracy, precision, and recall. The trained machine

learning models can be deployed in the LPBF process to automate quality control of the powder.

Overall, setting up a framework for machine learning in this field requires a significant amount

of data collection, preprocessing, and model development. Once the framework is established, it

can provide significant benefits in terms of efficiency and accuracy of powder quality control in

LPBF [103]. There is a significant amount of authentic LPBF recycled powder microstructural

data gathered processed in this work. The standard CNN models implemented in this work, show

great promise, while also providing much need baselines for future researchers [23, 104].

5.2 Data Collection Methods

LPBF recycles and reuses powder after prints to save on material costs, and the powder bed is

so large, that much of the powder is not in contact or even near contact with the laser. For this

work, images of the powder were collected from a scanning electron microscope (SEM). For each
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category a total of 20 (1024 x 7968) images were collected at 500X. To better prepare these images

for machine learning applications, and to expand the dataset, the images were split. The images

were split 4 in the X and 3 in the Y. This makes 12 (256 x 256) images for every image. This

brings the total images per category to 240, and each of these images is 256 x 256 pixels. This

entire preprocessed dataset, along with all of the coding used in this work is available on kaggle

[12].

50 µm

Length Scale

Cycle - 0 Cycle - 1 Cycle - 2 Cycle - 3 Cycle - 5Cycle - 4

Cycle – 3B Cycle – 5BCycle – 4B Cycle – 5SCycle – 4S

Figure 5.1: This is one example for all eleven powder categories that had images gathered in this
work. The images are in black and white and are 256X256 pixels. The length scale is the same for
all the images and is provided in the lower left image.

There were a total of 11 categories of powder were collected. An example of a 256 x 256 image

from each category is shown in Figure5.1. At the top of the figure, from left to right we can see

cycles 0 through 5. Cycle-0 is fresh powder, and after each print the powder is filtered through a

40 micron sieve and reused. Cycles 1 through 5 are labeled based on how many prints the powder

has been recycled from, and that it was also filtered each time through the 40 micron sieve. Cycles

0 through 5 powder, can currently be classified as "acceptable" powder.

In this work, "unacceptable" powder images were also collected. Examples of these images are
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shown at the bottom of Figure5.1. The powder that was collected in the 40 micron sieve after each

print was saved. This is the powder that could not fit through the sieve. Cycles 3B, 4B, and 5B

indicate the powder that was collected in the sieve after the powder had been recycled 3, 4, or 5

times. The final two categories are 4S and 5S. These categories are the soot from the print chamber.

This is powder that was left over in the print chamber. This powder typically sticks to the walls of

the print chamber and during a material change it will get washed off and not reused. The soot is

not considered to be acceptable or unacceptable, but is just typically expelled in common practice,

because it is not worth the effort to retrieve.

5.3 Preliminary Data Analysis

There are many ways to conduct a particle analysis with microscopic images. In this work, machine

learning methods are used to increase the accuracy of standard image thresholding methods. A

large portion of the challenge is to segment the particles from the background and from each other.

To tackle this challenge the Holistically Nested Edge Detection (HED) neural network was used in

conjunction with other standard thresholding methods to get a fairly accurate segmention for the

particles [89]. An example of the process used is shown in Figure5.2.

In the first image (top-left) on Figure5.2, there is a 256x256 image from the cycle 2 dataset. To

the immediate left of this is the image that results from applying an HED neural network. To

the immediate left of that image is the result of subtracting image 2 from image 1. The value

of the pixels ranges from 0 (black) to 255 (white). The result of this subtraction yields a much

more clear perimeter for the particles. The outer wall of the particles will be easier to threshold

from the particles. This is shown in image 4, where an adaptive mean threshold is applied to the

image with a kernel size of 11x11. Image 5 shows the result of the computational segmentation of

the particles from image 4. When the segmentations are overlayed on the original image (shown
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Figure 5.2: Step by step example of the particle segmentation method used for particle analysis in
this work. Image 2 is the application of the Holistically Nested Edge detection (HED) neural net.
Image 3 is the subtraction of image 2 from image 1. Image 4 is an adaptive mean threshold of with
a kernel size of 11x11. Images 5 and 6 show the final segmentation of individual particles.

in image 6), it shows a fairly accurate segmentation. The particles are slightly under predicted

in total size, but this is necessary to ensure multiple particles do not get merged together in the

segmentation process. It is easy for overlapping particles to get counted as a single particle and

throw off the average area measurement. For the purposes of this work it is preferred that the

overlapping particles are definitely not counted as a single particle.

After the segmentation process is complete, the total particles are counted and analyzed. The

average area and perimeter are tallied and stored. Prior to plotting the particles, some of the

data must be filtered out. In some cases a small speck, can be mistaken for a particle. The only

filter method for this preliminary data analysis was a minimum area filter. Any particle that was
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Preliminary Particle Data Analysis

Figure 5.3: Three box plots are provided, one for area, one for perimeter, and one for inverse
circularity. The whiskers are set to 1.5 times the interquartile range (IQR). Associated numerical
data is provided in Table 5.3.

less that 100 µm2 was not counted. This is equal to a particle of radius 5.6 µm. The inverse

circularity of the particles can also be calculated from the area and perimeter. The equation for

inverse circularity is given in equation 5.1 [105]. The inverse circularity ranges from 1 (perfect

circle) to infinity (absolutely not a perfect circle). For reference, an equilateral triangle has an

inverse circularity of 1.67, a square has an inverse circularity of 3.14, and an equilateral pentagon

has an inverse circularity of 4.32. The inverse circularity function is a good method at detecting

satellites, fractures, and ablations in the particles.

Inverse Circularity =
P2

4πA
(5.1)

To conclude the preliminary data analysis, box and whisker plots will be made for the three most

important descriptors of the particles: area, perimeter, and inverse circularity. The whiskers for

these plots are set to 1.5 times the interquartile range (IQR). The box and whisker plots were made
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for all eleven of the powder categories. Examples of the eleven powder categories can be seen in

Figure5.1, and the box and whisker plots can be seen in Figure5.3. The numerical results for the

average and standard deviation of the area, perimeter, and inverse circularity are given for all the

particle categories in Table 5.3. The total number of particles counted over the entirety of the data

for each category is provided in Table 5.3 as well.

Table 5.1: Particle Size Measurements

Category Area µm2 Perimeter µm Inverse Circularity Total Count
Cycle 0 2,500±2,418 215.2±131.6 1.72±0.79 7,550
Cycle 1 2,749±2,308 230.8±133.9 1.78±0.83 6,801
Cycle 2 2,792±2,314 234.8±133.5 1.81±0.84 6,700
Cycle 3 2,882±2,668 232.6±142.1 1.74±0.77 6,532
Cycle 4 2,653±3,321 230.1±198.9 1.85±1.13 8,172
Cycle 5 5,253±4,037 339.1±185.7 2.09±0.96 4,280
Cycle 3B 10,711±12,911 464.4±294.3 2.12±1.01 2,136
Cycle 4B 10,167±12,874 444.2±327.4 2.05±0.98 2,191
Cycle 5B 13,253±16,907 504.4±374.2 2.09±1.23 1,623
Cycle 4S 6,978±9,775 340.9±264.1 1.88±0.89 3,147
Cycle 5S 6,766±7,997 333.2±218.7 1.79±0.78 3,070

The box and whisker plots are useful at displaying how the data skews larger area, longer perimeter,

and higher inverse circularity for the particles. It is clear that all three of the variables skew larger

as the recycle iteration goes from 0 to 5. The one outlier is the 4th recycle iteration, which seems

to be comparable to the fresh powder. This could possibly be explained from the experimental

side, in either imaging or the handling of the powder. The differences between the 3B, 4B, and

5B particle data with the rest of the data is clear. These particles are easily detectable as unusable

powder. The 4S and 5S does skew higher than the majority of the good recycled powder, with the

exception of the 5th iteration of recycled powder.

The numerical data for the powder is given in Table 5.3. The total particl count does go down for

the larger powder datasets (3B, 4B, and 5B) and also for the soot (4S and 5S). This is a result of

less particles being in each image because of the larger average size of the particles. This can be
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confirmed by looking at the average area and perimeter of these categories as well. The "good"

powder (Cycles 0 - 5) does show an increase in area, perimeter, and inverse circularity as the cycle

recycle iteration count increases. Again the only exception is cycle 4. The data from this table is

the same data that is plotted in the box and whisker plots in Figure5.3.

5.4 Machine Learning Approach

A Convolutional Neural Network (CNN) is a type of artificial neural network commonly used for

image classification, object detection, and segmentation tasks. Unlike traditional neural networks,

CNNs are designed to automatically identify and extract features from image data using a series

of convolutional layers [106]. CNNs have an ability to automatically learn and identify complex

features within images, making them an ideal candidate for image classification tasks. The uti-

lization of convolutional layers, which apply a filter to the image and output a feature map that

highlights areas of the image, allows CNNs to capture complex spatial relationships between the

pixel intensities in a given image.

ResNet (Residual Network) is a type of CNN architecture that was introduced in 2015 to improve

the performance of deep neural networks [72]. ResNet introduced a new building block called the

residual block, which allows for easier training of deep networks by addressing the problem of

vanishing gradients. This block can be seen in Figure5.4. The residual block includes a shortcut

connection that allows the network to bypass one or more layers, which helps to prevent the gra-

dients from becoming too small during training. This enables the ResNet architecture to achieve

very deep networks, with over 100 layers, while still maintaining high accuracy on image clas-

sification tasks. The Resnet18 will be the convolutional neural network architecture used for the

classification and segmentation tasks in this work.
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Figure 5.4: A basic residual building block diagram that makes up the resnet architecture. Relu is
a rectified linear unit. This diagram details how the identity function passes through the layers of
a given neural network.

The Resnet18 is very good classification neural network because it has a deep architecture with skip

connections that allow for better feature extraction, and it uses batch normalization and ReLU acti-

vation functions to help prevent the vanishing gradient problem during training [72]. The Resnet18

will be used for all of the models in this work. The dataset that was gathered in this work, will be

split in a variety of ways to examine the Resnet18’s ability to classify the images. In Figure5.5, the

layout of all of the training sets can be seen. There is a total of 4 different training set compositions.

The increase in difficulty with each training set. Training set 1 is good powder vs bad powder, set

2 is early cycles vs late cycles, set 3 is 4 categories, and set 4 is 7 categories. Training set 3 is

broken into early cycle, late cycle, soot, and bad powder. Training set 4 is broken down into every

cycle (from fresh to cycle 5) and also has a category for bad powder. All of the specific powder

examples are given in Figure5.1, and the specific powders in each training category are listed in

Figure5.5.
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Training Set Data Compositions

GOOD
Cycle 0  Cycle 3
Cycle 1  Cycle 4 
Cycle 2  Cycle 5

BAD
Cycle 3B  Cycle 4S
Cycle 4B  Cycle 5S 

Cycle 5B

EARLY
Cycle 0  
Cycle 1
Cycle 2

LATE
Cycle 3  
Cycle 4
Cycle 5

Training Set 1 
(2 Categories)

Training Set 2 
(2 Categories)

Training Set 3 
(4 Categories)

EARLY
Cycle 0  
Cycle 1
Cycle 2

LATE
Cycle 3  
Cycle 4
Cycle 5

SOOT
Cycle 4S
Cycle 5S

BAD
Cycle 3B  
Cycle 4B
Cycle 5B

Training Set 4 
(7 Categories)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

BAD
Cycle 3B  
Cycle 4B
Cycle 5B

Figure 5.5: Training set data composition for the 4 different training sets. The categories provided
in this figure had examples of images provided in Figure5.1.

The CNN used was a Resnet18. The loss function was cross entropy loss. The batch size was

16. The image size was 256 x 256, and the images were in black and white. The optimizer for

training sets 1 and 2 was Adam, the learning rate was 0.001, and the epsilon value was 1e-8. The

optimizer for training sets 3 and 4 was stochastic gradient descent (SGD), the learning rate was

0.001, and the epsilon value was 1e-8. All of the code for the training is provided on publicly

available notebooks on kaggle under the dataset [12]. The amount of epochs was 12 for training

set 1 and 15 for trainings sets 2, 3, and 4. The test train split was 80-20, and this process was
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random.

The reason for splitting the data into good vs bad powder, is because this is essentially the most

important classification for the printer user. The early and late training set is also tested to see if

the CNN can determine between low recycle iteration and high recycle iteration powder. These

differences are not clear from the preliminary dataset analysis. Training set 3 was tested to see

the CNNs ability to classify into multiple categories. Training set 4 is the biggest challenge for

the CNN. This training set will determine if the CNN can identify powder based on what recycle

iteration it is in, and determine if the powder is still usable. The training results and predictive

capabilities will ge given in the next section. The accuracy of every training set composition, epoch

vs loss graphs, and confusion matrices will be provided in Section 5: Results and Discussion.

5.5 Results and Discussion
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Figure 5.6: The accuracy of the Resnet18 classification after training. This is given for all 4 training
sets provided in Figure 5.5. The training set, testing set, and combined accuracy are provided for
each.
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The Resnet18 classification accuracy of training set, testing set, and the combined set for all of

the different dataset compositions is provided in Figure5.6. The composition of sets 1 through 4

was already provided in Figure5.5. The more critical accuracy is the testing set accuracy, because

this is data that the CNN never trained on, and therefore never saw until testing. The good vs bad

accuracy was near perfect. This indicates that this style of powder classification could be very

beneficial in just determining whether powder could be used or not. On set 2, the classification is

between early and late cycle powder. The testing set accuracy is still quite high at around 96%.

This indicates that it is possible to determine a differences in the powder based on how many times

the powder has been recycled. Training sets 3 and 4 did see a further drop in accuracy for their

associated testing sets. These training sets were more complex and had more categories, so this

should be expected.

A confusion matrix is a table used to evaluate the performance of a classification model by compar-

ing its predictions against actual outcomes. It shows the number of true positives, false positives,

true negatives, and false negatives. The confusion matrices for training set 3 and training set 4

are provided in Figs 5.7 and 5.8. These confusion matrices are only providing the prediction data

for the testing sets of the associated dataset. The results from these confusion matrices are quite

promising. There is a possibility that because of the (black-box) nature of a CNN, that these mod-

els are making predictions based on criteria that is not completely based on powder characteristics.

Maybe the contrast in the SEM was set to a different lighting, maybe the powder was put on the

slide a certain way, or some other unknown and unseen criteria is allowing these CNNs to make

the predictions with such high accuracy. The confusion matrix in Figure5.7, shows that the CNN

is much more likely to confuse high cycle with low cycle and soot with bad powder. The confu-

sion matrix in Figure5.8, shows that if a powder is confused for another category it is most likely

confusing it with a powder in a recycle iteration count close to the one that it is. Cycle 1 might

be confused with fresh or cycle 2, but not confused with bad powder. This does indicate that the
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Figure 5.7: Confusion matrix for the results of the testing set for training set 3. Training set 3 has
four classes as shown in Figure 5.5.

CNNs are at the very least partially identifying powder features and using those to classify the

images. At best, they would be only considering powder related features. The classification for

bad powder was 100% and only 3 images from cycle 5 (the highest recycle count) were classified

as bad powder.

An epoch vs loss graph shows how the loss function of a machine learning model changes over

the course of training, which can help to evaluate how well the model is learning. The x-axis

represents the number of epochs (one epoch is one full pass through the training dataset), and the

y-axis represents the value of the loss function. The graph can provide insights into how quickly
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Figure 5.8: Confusion matrix for the results of the testing set for training set 4. Training set 4 has
seven classes as shown in Figure 5.5.

the model is learning, whether it has converged to a good solution, and whether it is overfitting or

underfitting the training data. Overfitting is indicated if the training set loss is consistently down

and the testing set loss is increasing. The final testing set accuracy indicates that these models

trained in this work were not overfitted. The epoch vs loss graphs for all of the training set data

compositions are provided in Figure5.9. The good vs bad dataset used 12 total epochs and all of

the rest used 15 epochs during the training process.
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Epochs vs Loss Graphs

Figure 5.9: Epochs vs Loss graphs for all 4 of the different data set training composition organiza-
tion methods.

5.6 Conclusion

Key differences were found in the extensive datasets of powder images for laser powder bed fusion

printing in different conditions. These differences were present in the preliminary dataset analysis

in the form of specific geometric properties such as average area, perimeter, and inverse circularity

ratio. The differences in these properties were substantial for "usable" vs "unusable" powder, but

much more modest for different iterations of recycled powder. It may be possible to determine the

difference between "usable" and "unusable" powder using direct measurements of these geometric
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properties, but to determine iteration of recycling would not be possible with sufficient accuracy.

The training and implementation of the Resnet18 CNN architecture in this work displayed an abil-

ity to classify this powder in several different ways. The powder could be classified as sufficient

for printing, classified into multiple categories, or classified based on number of iterations of recy-

cling. This means that although the geometric differences in the powder after each iteration of use,

may be very slight, a CNN can still manage to classify this with great accuracy. Because of the

black box nature of a CNN, these differences should still be further explored and quantified using

traditional methods, but machine learning could be implemented to help give quality engineers

additional tools in the qualification of powders for various purposes.

It may be possible that the CNNs trained in this work are picking up clues about the different

categories from unseen features that are irrelevant to powder quality. The confusion matrices for

training sets 3 and 4 do confirm that they are at least in part picking up some features that are

directly based on the features of the powder. The proximity of prediction to recycle iteration

confirms that there is some relationship between the recycle iteration count, and how the network

chooses to classify a given image. The machine learning models trained in this work can be

deployed in the LPBF process to automate quality control of the powder, increase efficiency of

the process, and decrease the amount of data required to make these key determinations of powder

health.
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CHAPTER 6: Martian AND LUNAR BINDER JETTING APPLICATIONS

6.1 Introduction

The prohibitive cost of transporting raw materials from the Earth to either the Moon or Mars is the

driving factor for pursuing in-situ resource utilization (ISRU). The lack of oxygen, extreme thermal

cycles, solar and cosmic radiation are significant challenges when attempting to construct a base

in these harsh environments [107, 108, 109, 110]. Such bases, would most likely be constructed

using a variety of materials, architectures and shapes as depicted in Figure 6.1. Among these,

and primarily due to their natural abundance, Martian and Lunar regolith would remain the first

choice for parent materials. Regolith has also shown promise in it’s ability to withstand the thermal

cycles and radiation in their respective environments [111, 112, 113]. However, using regolith for

construction remains a formidable challenge for ISRU. Several materials in the masonry processing

typically done on earth are missing in these harsh and desolate extra terrestrial environments in

addition to the environmental conditions themselves [99].

In spite of this, many techniques have been proposed to utilize this material for realistic construc-

tion. These include using a brick making process that implemented a polymer material to bind the

regolith powder together [114]. Work has been done to focus and magnify solar energy in order

to sinter Lunar regolith in a layer by layer fashion [115]. This method is similar to the additive

manufacturing method known as Selective Laser Sintering (SLS). Binding methods and materials

have also been examined by recent research. Some works have been done that introduced a natu-

rally occurring biopolymer (guar gum) to act as a binding agent [116, 117, 118]. The biopolymer

could be potentially grown in situ, and the bricks constructed using this binding agent showed

promising results. Some studies have experimented with bricks formed using liquid sulfur[119,

120, 121]. The process is similar to concrete formation, so it is often referred to as "MarsCrete."
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Figure 6.1: Depiction of a concept habitat of a Martian outpost. The outpost shows complex-
ity of shapes and materials that must be constructed using ISRU. Additively manufactured sub-
components can speed up time and reduce energy for assembly procedure that would involve work
by astronauts and robots.

All the proposed methods, do require transportation of either raw materials or equipment from

earth to complete the proposed manufacturing processes.

These exciting advances suggest the crucial benefit of an organic or inorganic binding material to

realize higher quality masonary. More interestingly, such binder materials can also form the basis

of extra terrestrial binder jet printing technology (BJT). BJT is an additive manufacturing (AM)

method that was developed in the early 1990s and is currently being used to manufacture both

ceramic and metallic components [32, 85]. It is now steadily gaining attention due to its versatility.

BJT has a less complicated design that does not use any high powered lasers and has demonstrated

low cost scalability as a manufacturing platform [122]. The components are manufactured by
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accurately distributing a binder material onto a powder bed, lowering the powder bed, rolling out

a new layer of powder, and then distributing the binder material again [123, 122]. The green part

or green state refers the point in the manufacturing process at which the part has been printed but

not sintered. This means the particles are only held together by the binder material, so the part is

still fragile. After the initial print, the green component must undergo a sintering phase in order to

bond the powder material together by reaching near melting temperatures of the powder material.

The selection of an adequate binder is a challenging portion of this endeavor. An optimal binder

needs to be both capable of holding regolith together while the component is in the green state,

and also would ideally be available in-situ. The simplistic salt water binder proposed in this work,

exhibit the necessary qualities that are demanded of a binder solution. Binder material and sintering

play a crucial role in BJT’s success. More interestingly, other binder based technologies mentioned

above can also potentially benefit from sintering since significant densification, which is critical

towards high final strength occurs during the sintering process [124]. However, the sintering also

causes significant microstructural changes and sample shrinkage. Thus, it has a critical impact on

the overall accuracy and quality of the final manufactured product.

Considering this centrality of sintering, this work investigates the effect of sintering temperature

on green regolith parts made using a simple yet potentially sustainable salt water binder. The mi-

crostructural evolution of Martian and Lunar regolith samples with sintering temperature, shrink-

age and strength improvements are reported in detail.
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6.2 Materials and Methods

6.2.1 Regolith Simulant

There have been about 400 kg of Lunar regolith retrieved and brought to earth during the apollo

missions [125]. There has not currently been any Martian regolith retrieved from Mars, all study

has been performed in situ. Therefore the quantity of Lunar regolith is insufficient for significant

research and the quantity of Martian regolith is nonexistent [125]. This has driven the need for

simulants. There have been around 30 different variants of the Lunar regolith and 40 types of

Martian regolith developed [126, 127]. Variations in the regolith could cause variations in the final

material properties of any manufactured component. For this work, we will be using MGS-1 (Mars

Global Simulant) and LMS-1 (Lunar Mare Simulant) from Exolith labs [128, 129].

MGS-1 was selected as the simulant to be used for our work because is the currently the closest

representation of Martian simulant, based on the soil that was analyzed by the Curiosity Rover

[128]. The design philosophy behind MGS-1 was to create a regolith simulant that is the closest

match mineral and chemical composition of actual Martian regolith. JSC Mars-1 has been used

frequently in similar, and is a very close spectral analog match to Martian regolith. This material

is mostly composed of volcanic ash from the Island of Hawaii [130]. The Lunar regolith used in

this study (LMS-1) was selected because it is good match to the mineral and chemical composition

of actual Lunar regolith. LMS-1 also matches some of the irregular shapes and sizes of particles

that are found in Lunar regolith. The small irregular sharp particles that are present in Lunar

regolith are the result of space weathering over millions of years, which includes meteor impacts,

solar wind, and cosmic radiation [131]. Our work implements the regoliths as is, with no powder

preprocessing, so the regoliths selected had to be very similar in powder distribution to actual

conditions.
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6.2.2 ISRU Binder

A pure distilled H2O mixed with a pure iodized salt is used as the binder material for this study.

The ratio of NaCl to H2O was 1/16 or 6.25% NaCl. A binder material that can be found in-situ is

optimal. A salt-water solution has not been implemented as a binder material in any of the previous

works reviewed by the authors of this study. Salts have been found preserved in the rocks and soil

on Mars, from when the planet was wetter [132]. Sodium is less prevalent on the Moon, but trace

amounts have been detected in the regolith [133]. Water deposits have recently been reported on

both Mars and the Moon, although accessing the water would be challenging [134]. The salt-water

binder examined in this work is a simplistic and effective ISRU material. Retrieval of salt and

water in an extraterrestrial environment would certainly have challenges, and is not the focus of

this work. Any material that has the potential to be harvested in-situ should be receive adequate

consideration and study as a potential candidate for construction materials.

6.2.3 Manufacturing method

The manufacturing method in this work will be injection molding. The molding itself was made

from 3D printed PLA components, which are cylindrical in shape. The regolith is mixed with the

salt water binder prior to being placed into the PLA printed molds. The regolith mixture is not

compressed into the mold, just packed gently into it. Injection molding is a good replication of the

binder jet printing method. It is a good replication because the green part is composed of binder

and powder for both binder jetting and injection molding.
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6.2.4 Molding Method

The samples were molded using 3D-printed molds out of a thermoplastic. The molds were 3D-

printed on an Ultimaker S5 ®. A Tough PLA material of the translucent color was used for the

molds. The samples made were cylindrical in shape and had a length of 1 inch and a diameter of

0.5 inch. The PLA 3D-printed molds can be seen in the bottom half of Figure 6.2. They have two

components one is the cylindrical molds which were 3D-printed in two halves. The other is the

base plate which can hold the two halves of the cylindrical mold in a secure fasion. The regolith

and binder mixture can then be added to create the desired cylindrical shape.

The binder material was made from pure distilled water and pure iodized salt. The ratio of NaCl

to H2O was 1/16 or 6.25% NaCl. The addition of salt to the water made a noticeable difference

in the binding of the material together. An attempt was made to produce these samples with just

water, and it failed. During extraction from the PLA molds, the regolith cylinders would crumble

apart. The addition of salt to the water made the extraction of the samples from the molds much

easier and held the regolith together for both the Martian and Lunar versions quite well.

The regolith and binder ratio was 3.5 parts regolith to 1 part binder. This was selected from

observation of the stability of the green part. If too much binder liquid is added the sample will

collapse. Also if there is too little binder liquid added the sample will be too brittle and crumble.

The regolith and binder mixture was loosely packed into the molds to mimic the behavior of the

BJT printing method. They did not sit to allow the water to evaporate either. Immediately after

packing the regolith and binder mixtures into the molds they were then extracted and the sintering

process was initiated. The same conditions were applied to both the Lunar and Martian regoliths

in order to create the data that could be compared upon completion of the manufacturing process.
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Figure 6.2: (Top Left) Sintering oven used for in operation, closed and latched shut (Rapidfire
Standard Pro I ®). (Top Right) Oven opened after sintering a set of samples placed on Alumina
pads. The oven is heated via two electical heating coils that run along the sides and top of the
sintering oven.(Bottom) Photograph of the cylindrical samples in the 3D-printed halved cylindrical
shell PLA molds. The samples are composed of MGS-1 Martian regolith and the binder material
is salt water solution. The cylindrical molds are 0.5 inch in diameter and 1 inch in height. The grid
line spacing is 1 centimeter.
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6.2.5 Sintering Protocol

The sintering oven used to sinter the samples, is manufactured by the Tabletop Furnace Company

and the model is the Rapidfire Standard Pro I ®. The furnace has a maximum temperature of

1200◦C. The oven has 0.2% accuracy over the entire input range of the furnace. This furnace has

two induction coils that run the full length of the sides and top of the furnace. This can be seen

in the top half of Figure 6.1. The samples were placed on alumina blocks during the sintering

procedures. All of the samples were pre sintered directly after the molding process. The presin-

tering was performed at 200◦C for a total of 1 hour. After completion of the presintering step, the

samples were then sintered at high temperatures. The Martian and Lunar sintering conditions were

again kept consistent with each other. A total of 15 samples were molded using the aforementioned

molding methods. The 15 samples were split into groups of 5 after the presintering was completed.

5 samples were sintered at 1000◦C for 1 hour, 5 samples were sintered at 1100◦C for 1 hour, and

5 samples were sintered at 1200◦C for 1 hour. Again this conducted for both Martian and Lunar

regolith samples, creating a total of 30 samples. The heating ramp rate for both the presintering

and sintering was 25◦C per minute. The cool down was just completed by turning the oven off

and allowing the temperature of the surrounding environment to bring the temperature of the oven

back down. The cool down was relatively rapid and took about 10 minutes.

6.2.6 Material Testing

The material was tested on an MTS machine following the ASTM C1314 - Standard Test Method

for Compressive Strength of Masonry Prisms [135]. The tensile test machine was an MTS Criterion

Model 43, and the load cell was a 50 kN load cell model LPS504 C. The displacement rate of

the compression pad was 0.2mm per second. Each of the samples were tested giving a sample

weight of 5 to each category. The compression modulus was calculated for the samples sintered
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at 1200◦C, and will be given in the results section. The samples that were sintered at 1000◦C and

1100◦C were too brittle to have a compression modulus of any significance. The material would

fail under a relatively small load. The compression modulus testing set up is shown in Figure 6.3.

This image was captured after the compression was performed to illustrate how the sample failed.

1in

Figure 6.3: Experimental set-up for the compression testing for the sintered Martian and Lunar
Regolith samples. The sample was painted white and then black dots were applied to make it
possible to apply DIC measurements. The image was taken after failure of the sample had occurred.
There is black duct tape on the lower compression pad to help prevent glare, which effects the DIC
system.
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6.2.7 Digital Image Correlation

Digital Image Correlation (DIC) was only performed on the samples sintered at 1200◦C. The sam-

ples sintered at this temperature were more smooth and had less texture than the pre-sintered sam-

ples. The samples were painted with white and black spray paint to create speckle pattern on the

samples to provide features for the Digital Image Correlation (DIC). This is often referred to as

the speckle pattern. The DIC system was Dantec Dynamics Q-400 Digital 3D Image Correlation

System. The DIC measurements provide a full 3D view of the strain map of the samples while they

were under applied compressive load. 3D DIC was selected because the samples are cylindrical,

therefore the curvature of the cylinder can be examined more in depth with the 3D method.

The compression pads are metal and the lights used for DIC are very bright and the glare affect the

data gathered from the camera. Then, the tape on the compression pad seen in Figure 6.3 was put

there to prevent the glare from affecting the DIC cameras. The DIC system used was a two camera

setup with Dantec Dynamics software. The facet size was 19 pixels, the accuracy was 0.3 pixels,

the residuum was 35 gray value, the 3D residuum was 0.4 pixels, and the grid spacing was set to

15 pixels, which equates to 1.1mm for the given camera resolution. Most of the values here are

standard practice, except for facet size and grid spacing. These values are standard practice, but

require a little optimization. Facet size was varied from 15-21 pixels and grid spacing was varied

from 12-18. The DIC generated strain map which covered the specimen the most was selected.

6.2.8 Microstructure Inspection

At every stage of the manufacturing process the material was examined under a microscope. The

examinations took place at the powder stage, after the molding phase, and after the sintering phase.

The microscope used was a Keyence VHX-900F ®. Images were taken at 10X and 200X mag-
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nification. The 10X magnification gives a view of the entire top of the sample, and the 200X

magnification provides a view of the particles that the samples are comprised of. The images will

be given in the results section.

6.3 Results and Discussion

6.3.1 Microstructure Images

Digital images were gathered at both 10X magnification and 200X magnification using the Keyence

VHX-900F ®. In Figure 6.4, we can see the top view of all of the samples. These images were

recorded at 10X magnification. In this image, we can see both the Lunar and Martian samples at

the green state, sintered at 1000◦C, 1100◦C, and 1200◦C. The images show a very clear distinction

between sintering at 1200◦C and the other two lower temperatures for both the Martian and Lunar

samples. The difference in coloring between the 1000◦C and 1100◦C is not substantial.

The images that were taken at 200X magnification display the rocky mixture of the composition

very well. The images of the Lunar samples at 200X magnification are shown in Figure 6.5. In

Figure 6.5, the powder state, the green state, and the three different sintering conditions are all

displayed. These states are shown in the same order for the Martian samples in Figure 6.6. The

temperature sintering conditions applied were one hour of at either 1000◦C, 1100◦C, and 1200◦C.

This was completed directly after the presintering portion of the cycle. Again we clearly see the

distinction of sintering samples at the temperature of 1200◦C. The 1200◦C sintered image shows

a glassy encasement of rocky particles. These samples also felt smooth and glass like to touch for

both the Martian and Lunar samples.

In Figures 6.5 and 6.6 we can also observe the comparison between Lunar and Martian (respec-

tively) regolith samples in the powder form (A) and in the green state (B). The green state is the
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Figure 6.4: Microscopic images of the top view of the cylindrical regolith brick samples at 10X
magnification: (A) Lunar prior to any sintering (green). (B) Lunar sintered for 1 hour at 1000◦C.
(C) Lunar sintered for 1 hour at 1100◦C. (D) Lunar sintered for 1 hour at 1200◦C. (E) Martian
prior to any sintering (green). (F) Martian sintered for 1 hour at 1000◦C. (G) Martian sintered for
1 hour at 1100◦C. (H) Martian sintered for 1 hour at 1200◦C.

state at which the binder material was mixed with the powder, but no sintering has occurred yet.

The comparison between the powder state and the green state shows how the binder material is

able to hold the regolith together. The salt water binder and smaller regolith particles combine to

form a bonding agent and hold the larger regolith particles together. The binder material used was a

6.25% salt-water solution, as explained in Section 6.2.4. A more significant green state bond could

be formed if the powder material was composed of smaller and more uniform particles. This could

be achieved by using a milling machine on the powder prior to addition of the binder material.
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Figure 6.5: Microscopic images of the Lunar samples collected at 200X magnification: (A) Lunar
sample during the green state, after molding, prior to sintering. (B) Lunar sample sintered for 1
hour at 1000◦C. (C) Lunar sample sintered for 1 hour at 1100◦C. (D) Lunar powder prior to any
sintering or molding. (E) Lunar sample sintered for 1 hour at 1200◦C.

6.3.2 Compression Testing

Compression testing was performed on all of the sintered samples. A total of 5 measurements were

taken for each regolith and sintering category. All of the samples went through a curing portion

directly after being molded which was 200◦C for one hour. The samples were tested at this stage

as well. After being sintered at 200◦C for one hour the samples were sintered for another hour

at either 1000◦C, 1100◦C, or 1200◦C. All of the numerical data is available for the shrinkage and

the compressive properties in Table 6.3.2. A graph that compares the compressive strength of the

various sintering paths is shown in the top bar plot in Figure 6.7. The samples sintered at 1000◦C

and 1100◦C did not achieve a very high compressive strength. The compressive strength increased

by about 15 MPa for the samples sintered at 1200◦C for both the Martian and Lunar samples.

The Martian samples had a slightly higher compression modulus and compressive strength than the

97



A) B) C)

D) E)

500 𝜇𝑚

500 𝜇𝑚 500 𝜇𝑚

500 𝜇𝑚 500 𝜇𝑚

Figure 6.6: Microscopic images of the Martian samples collected at 200X magnification: (A) Mar-
tian sample during the green state, after molding, prior to sintering. (B) Martian sample sintered
for 1 hour at 1000◦C. (C) Martian sample sintered for 1 hour at 1100◦C. (D) Martian powder prior
to any sintering or molding. (E) Martian sample sintered for 1 hour at 1200◦C.

Lunar samples. These values (for both the Martian and the Lunar samples) are in a similar range

to that of brick, if not slightly higher. Brick has an compressive strength of around 6 MPa - 82

MPa [136, 137, 138]. This would indicate that this material is a suitable material for construction

of load bearing structures.

As mentioned in the introduction, other researchers have looked into the mechanical properties of

in situ extraterrestrial constructed samples. In Table 6.3.2 the values are given for the compressive

strength of some of the previous manufacuring methods used. The focused solar ray method was

similar to using a laser to raster across a powder bed in a layer by layer fashion [115]. This was a

proven, direct 3D printing method. Lunar concrete and sulfur Lunar concrete both showed promis-

ing results, the sulfur-based has more materials available in situ [139, 140]. One study compared

samples sintered in air at 1100◦C for 3 hours and in a vacuum at 1125◦C for 3 hours[141]. No

binder was used for this study, but the samples were pre-pressed at 255 MPa in a 20-mm diame-
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Figure 6.7: (Top) Bar graph that compares the average compressive strength of the Martian
and Lunar samples after curing (200◦C), 1000◦C sintering, 1100◦C sintering , or 1200◦C sinter-
ing.(Middle) Bar graph that compares the average radial and height shrinkage that occured at the
different sintering profiles for the Martian samples.(Bottom) Bar graph that compares the average
radial and height shrinkage that occured at the different sintering profiles for the Lunar samples.

ter die. Another method performed successful D-shape 3D printed of a Lunar regolith[142]. The

method used in this work did not pre-compact our samples and the powder was not milled either.

The powder was used directly as is, and the binder material was a simple salt-water solution.

The Martian regolith used in this work was also not pre-pressed or milled prior to sintering. The

regolith was used as is, and the binder was a simple-salt water solution. Other works that have

99



Table 6.1: Material properties of sintered Lunar and Martian samples.

Martian Sample Lunar Sample
1000◦C Radial Shrinkage Percentage 1.06% 0.84%
1000◦C Height Shrinkage Percentage 0.57% 1.16%
1100◦C Radial Shrinkage Percentage 2.34% 1.85%
1100◦C Height Shrinkage Percentage 2.52% 3.15%
1200◦C Radial Shrinkage Percentage 10.54% 6.17%
1200◦C Height Shrinkage Percentage 16.03% 18.13%
1200◦C Compression Modulus 67.80 MPa 55.73 MPa
1200◦C Compressive Strength 25.46 MPa 21.73 MPa
1100◦C Compression Modulus 10.17 MPa 9.06 MPa
1100◦C Compressive Strength 3.52 MPa 2.94 MPa
1000◦C Compression Modulus 8.06 MPa 6.56 MPa
1000◦C Compressive Strength 2.51 MPa 2.25 MPa
Cured Compression Modulus 5.54 MPa 5.34 MPa
Cured Compressive Strength 0.78 MPa 0.83 MPa

Table 6.2: Comparison of Compressive Strength of Lunar Materials

Manufacturing Technique Regolith Composition Compressive Strength
Focused Solar Ray Sintering [115] JSC-1A 2.31 MPa
Lunar Sulfur Concrete [139] 35% Sulfur 65% JSC-1 31 MPa
Lunar Concrete [140] 1.75:1.0:0.485 74 MPa

(JSC-1:Cement:Water)
1100◦C Vacuum 3 hour [141] JSC-1A 152 MPa
Dry Pressed at 255 MPa No Binder
1125◦C Air 3 hour [141] JSC-1A 98 MPa
Dry Pressed at 255 MPa No Binder
D-Shape 3D Printing [142] DNA 20 MPa
1200◦C Air 1 hour 1:3.5 21.73 MPa

(Salt-Water:LMS-1)
Standard Brick Clay or Shale 6-82 MPa

used various methods to produce and test Martian brick samples are seen in Table 6.3.2. A lot

of work has been done into the feasibility and ultilization of the Martian concrete formed from

liquid sulfur [119, 120, 121]. One work did sinter at 1130◦C for 10 hours, and showed a very high

compressive strength. The work did mill the regolith for 48 hours prior to sample manufacturing,

and also filtered so that all particles were between 25 and 50 µm. A dry pressed sample at 70 MPa
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Table 6.3: Comparison of Compressive Strength of Martian Materials

Manufacturing Technique Regolith Composition Compressive Strength
Dry Pressed 70 MPa 3 min [143, 124] MGS-1 1.64 MPa
Layerwise Slurry Deposition [143, 124] MGS-1:Proprietary Binder 30.8 MPa
Sintered at 1130◦C for 10 hour [144] 51:49 (Weight) 51 MPa
Powder was milled 48 hours JSC-Mars-1A powder:Water
Sulfur Martian Concrete [119] 50:50 (Volume) 54.4 MPa

Sulfur:MGS-1
1200◦C Air 1 hour 1:3.5 (Volume) 25.46 MPa

Salt-Water:MGS-1
Standard Brick Clay or Shale 6-82 MPa

for 3 minutes has been done [144]. Also a layerwise slurry deposition method was developed with

good success, the component was sintered at 1150◦C for 3 hours[124]. The binder material was

proprietary. All of the reviewed research show a compressive strength range from about 1 MPa -

200 MPa, with the majority falling under 50 MPa. The values found in this work are in agreement

to the values found in other research. The small variance among the research out there is a result of

differences in the manufacturing method. Our simplistic approach achieved a compressive strength

that is in the same range as common brick used in terrestrial applications[136].

6.3.3 Digital Image Correlation

DIC (Digital Image Correlation) was implemented in this work to obtain real-time strain maps, as

the compressive force was being applied to the samples. The failure mechanism of the samples

(both Lunar and Martian) was the formation and rapid propagation of a vertical crack. The crack

propagated through the samples leading to a complete failure in less than 0.2 seconds. This oc-

curred between 2 and 3 percent engineering strain for all of the samples sintered at 1200◦C (both

Martian and Lunar).

In Figure 6.8, we can see 5 DIC images for one of the Lunar samples sintered at 1200◦C. These
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DIC images show the strain pattern directly before failure of the sample. The regions of high strain

are in a straight vertical line, beginning at the top of the samples. These high strain regions caused

the crack to initiate and propagate down the sample very rapidly (<0.2s). This is an indication that

the material is a brittle material and underwent a axial splitting brittle material failure [145]. The

engineering strain percentage is plotted against stress (MPa) at the top of Figure 6.8. There are red

dots the are marked on this plot which correlate to the exact times that the DIC images were taken.

The same figureis provided for a Martian sample sintered at 1200◦C in Figure 6.9.

In this case, the Martian sample also failed from a vertical crack formation, which also propagated

through the sample very rapidly (<0.2s). There are also red dots on the stress-strain curve to

correspond with the time that DIC images were taken. The formulas for engineering stress and

engineering strain are given in Equations 6.1 and 6.2 respectively. The engineering strain can be

represented as a percentage by multiplying by 100, and this is how it is represented on the X-axis

of Figures 6.8 and 6.9

σeng =
F
A0

(6.1)

εeng =

∣∣∣∣L−L0

L0

∣∣∣∣ (6.2)

A brittle material cylinder will fail in either shear or a columnar direction or a combination of

the two when receiving a sufficient compressive force. No cracks formed in the shear direction,

all cracks formed parallel to the force applied (vertical through the length of the cylinder). This

could be due to the shape of the particles in the regolith, as they were not preprocessed in any way.

Another possibility is the rounded tops of the samples. It was also recorded that there was more

shrinkage in the vertical direction during sintering, for both the Martian and Lunar samples. This
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Figure 6.8: (Top) Engineering strain percentage plotted against stress for a Lunar sample. (Bottom)
5 DIC images that correspond to the red dot indicated on the stress strain curves above. The
principal strain is shown on the DIC images in millistrain. Below the DIC images are the actual
images in black in white. The DIC images were selected just before and during failure.

is caused by the gravitational force that is applied during sintering. It is possible that this leads to

anisotropic properties in the samples.
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Figure 6.9: (Top) Engineering strain percentage plotted against stress for a Martian sample. (Bot-
tom) 5 DIC images that correspond to the red dot indicated on the stress strain curves above. The
principal strain is shown on the DIC images in millistrain. Below the DIC images are the actual
images in black in white. The DIC images were selected just before and during failure.

6.3.4 Shrinkage Behavior

The shrinkage was calculated for all of the samples before and after sintering. This measurement

was completed with digital calipers. There was negligible shrinkage for the samples sintered at
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1000◦C and 1100◦C (about 1% - 2% in both directions). There was however a significant amount

of shrinkage in both the radial and vertical directions for the samples sintered at 1200◦C. These

values are reported in Table 6.3.2. The values are also plotted in the middle and lower plots in

Figure 6.7. The Lunar samples sintered at 1200◦C experienced more shrinkage in the vertical

direction than the Martian samples sintered at the same conditions. The Lunar samples sintered

at 1200◦C also experienced less radial shrinkage than the Martian samples sintered at the same

conditions. All of the samples were sintered standing straight up, as seen in the top half of Figure

6.2.

The dimensional shrinkage reported in this work has a statistical weight of 5 for both the Lunar

and Martian samples at each sintering condition, because 5 samples were manufactured at each

condition. If this material is to be additively manufactured via BJT the shrinkage behavior has to

be accurately predicted prior to sintering and scaled up accordingly. This is already a common

practice in BJT additive manufacturing for both metallic and ceramic parts [146, 84]. Shrinkage

in each direction must be accurately predicted. It is clear from this work that inequalities between

vertical and horizontal shrinkage were significant for both the Martian and Lunar samples.

6.3.5 Mineral Composition

The mineral composition that is found in the regolith is shown for the LMS-1 simulant in Ta-

ble 6.3.5 and for the MGS-1 simulant in Table 6.3.5 [128, 129]. A full chemical and mineral

composition of the simulants is available on the Exolith Labs simulant website [147]. Pyroxene,

plagioclase, and anorthosite are fusible minerals, and olivine is not [148]. It has been shown in

previous research that an increase in plagioclase and anorthosite will increase the melting temper-

ature. It was also shown that an increase in pyroxene will decrease the melting temperature [148].

Our study shows this same pattern. The Lunar simulant had a lower melting point in our study. The
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Lunar simulant had more pyroxene content than the Martian simulant. The Lunar simulant also had

less anorthosite than the Martian simulant had. The Martian simulant also has more plagioclase.

All of these factors are in agreement as the sintering shrinkage measurements confirm the Lunar

simulant had a lower melting point. The Lunar samples underwent more vertical shrinkage during

sintering than the Martian samples. The Lunar samples contain about 10% more pyroxene than the

Martian samples. The Martian samples contain about 8% more plagioclase than the Lunar has in

anorthosite.

Table 6.4: Lunar Simulant LMS-1 Mineral Composition

Component Wt.%
Pyroxene 32.8
Glass-rich Basalt 32.0
Anorthosite 19.8
Olivine 11.7
Ilmenite 4.3

Table 6.5: Martian Simulant MGS-1 Mineral Composition

Component Wt.%
Plagioclase 27.1
Glass-rich Basalt 22.9
Pyroxene 20.3
Olivine 13.7
Mg-sulfate 4.0
Ferrihydrite 3.5
Hydrated silica 3.0
Magnetite 1.9
Anhydrite 1.7
Fe-carbonate 1.4
Hematite 0.5
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6.4 Conclusion

This study has shown that both Martian and Lunar regolith have the potential to be implemented

in an additive manufacturing method referred to as binder jetting. The binder material used in

this work was a 6.25% salt water solution by volume, and it held the material together adequately.

The regolith simulants did not undergo any preprocessing procedures for this study, allowing for

a more uncomplicated implementation. After sintering it was found that the compressive strength

and compressive modulus of the Martian samples was slightly higher than the Lunar samples. The

compressive strength and compressive modulus of both the Lunar and Martian samples was found

to be in the range of brick, which indicates that the material is capability for the construction of

load bearing structures. The material failure mode and stress strain behavior showed that the ma-

terial is brittle and ceramic, for both the Lunar and Martian samples. The DIC data also showed

sudden catastrophic failure in the form of vertical crack formation and rapid propagation. A BJT

method of additive manufacturing could be implemented in either a Martian of Lunar extrater-

restrial environments. The final printed and sintered components would be well suited to laying

foundation, erecting structures, and fabricating miscellaneous components.

It was also determined that the most optimal sintering temperature is somewhere between 1100◦C

and 1200◦C. The shrinkage was around 15% - 20% in the vertical directions and 5% - 10% in

the radial direction when sintered at 1200◦C. Most of the shrinkage during sintering occurred be-

tween the temperatures of 1100◦C and 1200◦C. The Lunar samples did undergo more shrinkage

and deformation during sintering, this indicates a lower sintering temperature will be required for

the Lunar samples for optimal properties. The Martian material had a slightly higher compres-

sion modulus and compressive strength than the Lunar material under the given manufacturing

conditions. This is the result of differences in the mineral composition of the regoliths.

The microstructure of the samples was also analyzed via microscope at each of the manufacturing
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stages. After it was determined that water alone would not work as a binder material for either

Martian or Lunar regolith, a 6.25% salt-water solution was used. The bond that occurred between

the particles in both powders was seen to be driven primarily by the smaller particles (less than 50

microns). This mixture of binder and small particles is what holds the larger particles together. It

would be beneficial to explore the effect of milling the regoliths (both Martian and Lunar) prior

to manufacturing to decrease the average size of the particles that make up the powder. It is also

seen that the samples that were sintered at 1200◦C are very smooth in texture and appearance.

This work also confirmed previous findings that showed that an increase in pyroxene content can

decrease the melting temperature, and that an increase in anorthosite or plagioclase will increase

the melting temperature.

The cost of transportation of earth based materials is astronomically higher than simply utilizing

materials that are readily available in these environments. The need for adaptive manufacturing

in these challenging environments is critical to design and construct habitats capable of housing

equipment and possibly people. This need can be met through the implementation of additive

manufacturing techniques. The development of additive manufacturing methods which utilize

materials found in such environments would greatly assist in the exploration and establishment

of settlements in these unforgiving environments. Additive manufacturing provides much needed

versatility in an extraterrestrial setting. The ability to manufacture components rapidly to solve

challenges that may arise on the Moon or on Mars is vital to ensuring success of such formidable

endeavors.
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CHAPTER 7: SHRINKAGE PREDICTION FOR METALLIC ADDITIVE

MANUFACTURING

7.1 Introduction

Effective predictive models for shrinkage during sintering would provide an immediate benefit

to a myriad of industries. High temperature ceramic and metallic materials typically have to go

through a sintering phase during manufacturing [149]. The conditions of the sintering oven will

have a direct effect on the final dimensions and final properties of the component of interest [46].

Sintering models have been a desire of industry for almost a century and that desire will continue

to grow. Additive manufacturing methods will require more sintering models than the traditional

injection methods. This requirement is the result of a substantial increase in the amount of key

variables to an already untenable equation [149].

Over the years, academic research has focused on several different avenues for researching sin-

tering simulations. In the 1960’s research was predominantly focused on the interaction between

two particles in contact with one another during sintering. A neck will form in this region con-

necting the two particles [46]. The problem is fascinating from an experimentation and modeling

perspective, but has little application to industrial needs. Throughout the 1970’s and 1980’s, re-

search was more focused on one-dimensional shrinkage and prediction of density [46]. This period

of research was tailored more to industrial needs, but still industries were unable to leverage this

research for comprehensive modeling for shrinkage prediction. The 1990’s was filled with finite

element simulations of varying shapes and sizes [150]. Finally, more recent research points to

artificial intelligence and hybrid simulations to tackle the problem. In theory, problems which

appear untenable due to having a surplus of key variables and parameters, are well suited for ar-
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Figure 7.1: Graphical illustration of the process of utilizing artificially generated data to train a
model and develop and accurate scaling method for STL (Stereolithography CAD) files to counter
act the deformation that will occur during sintering.

tificial intelligence and machine learning assistance[52]. The industry requirements for sintering

will most likely be solved through a hybrid of physics-based modeling combined with machine

learning assistance.

Sintering models have lacked accuracy due to the high degree of difficulty in describing the physi-

cal phenomena that occur during the process. There are also a significant amount of factors that can

affect this complex process. Some of the major parameters are particle size, material composition,

original component geometry, sintering duration, maximum temperature, hold time, ramp rate, and

oven conditions. These variables expand in complication due to material property dependence on

temperature, exothermic reactions, microstructure changes, phase changes, residual stresses, and

many more factors [46]. All of these factors are the reason that a comprehensive sintering model

has eluded researchers for such a long period of time. Simplifications must be made in order to
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model the behavior. Some research has just looked at grain boundaries, surface area, and grain

size as a method of prediction with good results[151]. Numerical simulations are effective, but

difficult to have accurate material properties over the wide temperature range that occurs during

sintering [152, 153]. Metal injection molding (MIM) can be easier to predict the final geometry,

than additive manufactured components. This is because MIM parts are packed tight into molds

and the binder jetted components are loosely held together by a binder. This means that sintering

models will have to become more accurate to support the needs of the end user.

There are several new and innovative types of additive manufacturing methods, and this has led

to a capability to 3D print more different materials. High temperature materials are much more

complex to 3D print than thermoplastic materials. Many additive manufacturing techniques exploit

the melting point to manipulate the material being printed. This means that high temperature

materials have to be raised to higher temperatures during the manufacturing stage. 3D printing

of ceramic and metallic components will always involve some form of sintering. The three most

common 3D printing methods for metallic materials and ceramics are binder jet technology (BJT),

selective laser sintering (SLS), and fused filament fabrication (FFF)[154]. All of these methods

include a sintering phase.

BJT and FFF both involve a distinct printing phase and a distinct sintering phase during the manu-

facturing process. The BJT printing method involves dripping a binder onto a powder bed to hold

the particles together during the “green" stage. The green stage refers to the stage during manu-

facturing prior to sintering, where the part is still fragile. The FFF method has the metallic powder

bound together in a filament and then prints the component by rapid heating and extrusion [155,

156]. The printing stage of the FFF method is almost identical to a fused deposition method for a

thermoplastic. After the printing stage, both FFF and BJT printed components will be processed

and sintered. During the sintering phase the part or components will densify and shrink. The sin-

tering modeling methods can be used to help predict this shrinkage. The SLS method uses a laser
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to rapidly heat up a powder and bind the powder together. This method does not require a sintering

oven [157]. There are parts of this work that could assist in prediction of shrinkage during the rapid

laser heating process in SLS method, but the developed method in this work is mostly focused on

the oven sintering.

The turbomachinery industry can benefit greatly from additive manufacturing. The rapid pro-

duction of intricate components, which are application specific, will allow for rapid prototyping

and testing. The modeling of thermally grown oxides and other phenomena could provide more

accurate information of the turbine health during operation [158, 159, 160].This increase in exper-

imentation efficiency will increase problem solving capability and innovation for turbomachinery

industry. Turbine blades are very intricately designed to help balance several competing perfor-

mance parameters. Additive manufacturing could increase the capability of producing more intri-

cate cooling patterns [161, 162]. The roughness could also be tailored to specific flow situations to

help control the general cooling of the turbine blades[163]. In order to have these capabilities, the

control over the additive manufacturing sintering process must first be better understood and gain

better control on the process.

Because of the complexity of the physical phenomena that occur during sintering, modeling of

shrinkage has been difficult. A more data driven approach that uses machine learning could help

to fill in the gaps to create more comprehensive models. A graphical illustration of that process is

given in Figure 7.1. This work will propose a framework for gathering data to help in modeling

the sintering shrinkage trajectories. The main parameters that end users are concerned with are

density and shrinkage, which are correlated. This work will aim to help predict these parameters

based on data gathered before, after, and during sintering. The physics model used in this work

is straight forward and simplistic to generate data for machine learning algorithms to create ac-

curate models for shrinkage prediction. Machine learning and artificial intelligence approaches to

additive manufacturing have been investigated in a variety of ways. Image processing techniques
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have been implemented to discover and classify defects during the manufacturing process [102].

Also, machine learning methods have been used to balance input parameters for optimal material

properties [24]. Non destructive evaluation methods continue to advance and produce more data.

This data is well suited to be more efficiently processed via machine learning techniques [7, 10].

7.2 Sintering Physics

It is very difficult to create a model which utilizes the temperature-dependent material properties to

predict the amount of shrinkage that occurs. Many models assume material constants, however the

constants change drastically with temperature. There are other temperature induced phenomena

that make modeling difficult as well, like phase transformation, microstructural coarsening, and

exothermic reactions. [46]. Simplifications are necessary with so many interacting parameters.

Some of those parameters could be included as elasticity, plasticity, surface energy, particle size,

particle shape, and many more. The models used in this work will be based on 3 measurable

parameters including particle surface area, grain size, and density. It has been shown that these

parameters can accurately model sintering trajectories on their own [164]. The end-users (industry)

would prefer simpler formulas that are more focused on an accurate prediction on the amount of

shrinkage that occurs.

Grain size, grain boundary, surface area, porosity, and density are all correlated parameters that can

assist in sintering shrinkage modeling. A schematic of some of the aforementioned parameters are

shown in Figure 7.2. Grain size is the average diameter of the grains. Grain boundary is indicated

by the red area, which shows two particles in contact with each other, this is where necking occurs.

The surface area is shown in purple, and that is the area where the particle is exposed to a pore

and not in contact with another particle. All of these measurements can be taken from an SEM

(Scanning Electron Microscope) image through various methods of image processing. ImageJ is
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Grain Size Grain Boundary

Pore Surface Area

Figure 7.2: Sintering particle schematic: Grain size is the average diameter of the grains. Grain
boundary is indicated by the red. Surface area is indicated by the purple. Porosity is the percentage
of white area compared to total area.

one software that is capable of this[165].

Surface area could be measured by SEM images, but it can also be measured through gas absorp-

tion or fluid permeability. Surface area per unit mass (SM) would be measured via gas absorption

or fluid permeability and have the units m2/g. The volumetric surface (SV ) area could be measured

from an SEM image and would have the units m2/m3 [46]. The types of surface areas are inter-

changeable and related to the current sintered density ρs in Equation 7.1. Sintered density ρs is the

theoretical maximum density ρT divided by the fractional density f. This is shown in Equation 7.2.

SM =
SV

ρS
(7.1)
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ρS =
ρT

f
(7.2)

A way to model a given sintering trajectory is by plotting surface area against density. The con-

stants a and b are dependent upon material and sintering conditions. Equation 7.3 shows this rela-

tionship. SO represents initials surface area, fS is current sintered fractional density, and SM/SO is

often referred to as the normalized surface area. This relationship has seen experimental validation

for various material configurations [166, 167, 46].

SM

SO
= a−b fS (7.3)

Density is directly related to shrinkage in Equation 7.4. fG represents the density of the "green"

component. Green means the component has not yet been sintered. Y represents the shrinkage

(△L/Lo). This shrinkage term assumes uniform shrinkage in all directions.

fS =
fG

(1−Y )3 (7.4)

As sintering occurs, the surface area will slowly reduce. At the same time the grain size and grain

boundaries will increase. A physical intuition of this can be obtained by looking at Figure 7.2. The

relationship between grain size and sintering time is inverse cubic as shown in Equation 7.5. G is

current grain size, GO is green grain size, K is a material and temperature dependent parameter,

and t is sintering hold time. If we solve for current grain size in Equation 7.5, we can get Equation

7.6. Equation 7.6 is given in a forward time step format [46].
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G3 = GO
3 +Kt (7.5)

G2 = [G3
1 +△t1−2K)]1/3 (7.6)

A quick conversion between fractional porosity ε and fractional density f is given in Equation 7.7.

Porosity is the ratio of total volume of pores to the total volume of the given component.

ε = 1− f (7.7)

A conversion between grain size G and fractional porosity ε is given in Equation 7.8. Here, G0 is

initial grain size, and θ is a geometric constant that is near 0.6 [164].

G = θ
G0√

ε
(7.8)

It is possible to use more complex equations and relationships to describe sintering, however the

end goal is to create a simplistic model that can be implemented by the additive manufacturing

industry to accurately predict shrinkage and maximize density. Surface area, grain size, and grain

boundaries can all be used to help predict the sintering duration versus densification relationships.

Densification is directly related to shrinkage, so scaling prior to sintering could be done more

accurately.
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7.3 Sintering Data Measurement and Data Generation

There are some generated plots of the values obtained experimentally in Figure 7.3. The values are

from stainless steel 17-4 PH, printed from a Markforged Metal-X printer. The parts were sintered

with the specifications selected by the software. This means for this work the oven conditions

and material were held constant. The values for the plots are K = 5.5µm3/min, GO = 2.5µm, G =

20µm, a = 3.3, and b = -3.6. These plots help to illustrate the relationship between time, density,

grain size, and surface area. The plots were generated using Equation 7.3, Equation 7.5, Equation

7.7, and Equation 7.8. The plots show that during sintering grain size increases. As the density

increases, grain size will increase at a faster rate, and as sintering time increases, grain size will

increase at a slower rate. Density will increase quickly during the beginning of the sintering, but it

slows down as the sintering time increases. Normalized surface area has a linear relationship with

fractional density. Surface area decreases as the density increases, and therefore will decrease as

the sintering time increases. The relationship between grain size versus time is inversely cubic,

and the relationship between grain size and density is cubic. Moreover, the relationship between

density versus time is also inversely cubic in these plots.

All parameters can be measured, ultimately the end user will want to optimize sintering time and

conditions to ensure high uniform density. Surface area, density, and grain size can all be measured

experimentally. These measurements will have some errors which will be explored in this work.

The error will be simulated via adding Gaussian noise to the measured variables. The parameters

that we want to calculate from the simulated measurements are a, b, and K. These parameters help

to describe the relationships between surface area, grain size, and density. The measurement of

surface area and grain size can be done from SEM image pixels in a variety of ways. The most

simplistic is to draw a line and and use the scale provided by that line to determine how long the

line is. Then you count how many particles that the line touches. The grain size is equivalent to
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Figure 7.3: Artificially generated sintered data: (Top Graph) fractional density (normalized) and
average grain size (µm) are plotted against sintering duration (minutes). (Bottom Graph) surface
area (normalized) and average grain size (µm) are plotted against fractional density (normalized).

the number of particles divided by the length of the line. This is shown in Equation 7.9 as follows:

Grain Size =
Number o f Grains in Contact With Line

Total Length o f the Line
(7.9)

The process is also illustrated in the SEM pictures in Figure 7.4. The top images are green Mark-

forged Metal-X 17-4 PH stainless steel. The bottom images are the same components after sinter-
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ing according to the Markforged proprietary algorithm. For the line in the top right, the grain size

calculation is about 2.5 µm and for the bottom left the line indicated provides a grain size of about

20 µm.

The surface area measurement is more complex. The perimeter of the particles must be measured

for this. This can be done through pixel threshold adjustment and pixel clustering. This can be

done fairly easily using ImageJ software [165]. The surface area of the post-sintered components

is almost zero. In the bottom left image of Figure 7.4, we can see only a few voids, which will

provide a very low surface area. In the bottom right image of Figure 7.4, there are a few particles

which remain unsintered. This image is taken at the interface between two layers of the 3D print.

The surface area will be higher in this region and the grain size will be smaller. This means there

is a lower density in that region as well.

The measurements from the Markforged 17-4 PH stainless steel gave a pre-sintered grain size of

2.5 µm and after sintered grain size of 20 µm. This is for the red lines shown on Figure 7.4. ImageJ

could do this for every pixel line in the image. The images are 1280 × 960 pixels. There is the

black bar with data that would need to be cropped out making it 1280 × 860 pixels. This is 1280

lines for measurement in the vertical direction and 860 lines in the horizontal that could be used to

calculate the grain size. This was done through ImageJ for the image on the top right which led to

a grain size of 2.5 ± 0.6 µm. 0.6 µm is the standard deviation. It was more difficult to have ImageJ

do this automatically for the post-sintering because the brightness is different in different regions of

the image. This was completed by hand with 20 lines in both the vertical and horizontal directions.

The measurements for horizontal were 23.3 ± 1.2 µm and 20.1 ± 1.5 µm in the vertical direction.

If we use the number 20 µm for post-sintered and 2.5 µm for pre-sintered, and the total sintering

time was 24 hours (1440 minutes), then K would be equal to 5.5 µ3

min . The grain size measurements

are shown in Table7.1. The global coordinates for the horizontal would be the X-direction and the

vertical would be the Z-Direction. All the data used for the machine learning approach suggested
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in this work is derived from this experimental data. The data is created by adding Gaussian noise

to the measured data that was determined through the process described in this paragraph.

Table 7.1: EXPERIMENTAL GRAIN SIZE MEASUREMENTS.

Time Before Sintering After Sintering
Grain Size Horizontal 2.5 ± 0.6 µm 23.3 ± 1.2 µm

Grain Size Vertical 2.4 ± 0.5 µm 20.1 ± 1.5 µm

The uncertainty in the measurements for grain size is in the form of microns. This was demon-

strated in the measurements recorded in Table7.1. In order to generate artificial data for this paper,

Equation 7.5 and Equation 7.6 will be used. The Gaussian noise will be applied to the grain size

measurements to simulate reality. The parameter that will be calculated is K, and the degree of

accuracy with which this parameter can be calculated will be recorded. For the surface area, the

problem is slightly different. There is still uncertainty in the measurement of both density and

surface area, but they are different. To combat this, the Gaussian noise will be applied to the nor-

malized surface area and the fractional density. This means the Gaussian noise is dimensionless

as both properties are normalized. The parameters to be determined will be a and b, and again

the degree of accuracy of these parameters will be reported. The surface area equation is listed in

Equation 7.3.

7.4 Machine Learning Prediction Methods

In this work I developed a machine learning method that uses regression on supplied data to deter-

mine the relationship between sintering time, grain size, surface area, and density. The data was

mostly generated artificially, but it was based on the measurements taken from the sample seen

in Figure 7.4. The data was generated by adding Gaussian noise to the data that was measured
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Figure 7.4: SEM images of the markforged metal X printed components from 17-4 PH stainless
steel: (Top 2 Images) green components, after extrusion and prior to sintering. (Bottom 2 images)
after sintering at the markforged specifications.

experimentally. The grain size, sintering time, surface area, and density relationships were then

determined using linear regression and polynomial regression. The input for this model is the ma-

terial properties (grain size, surface area, and density). This was produced from adding Gaussian

noise to the experimental data to supplement the data set. The output for this model is the sintering

trajectory parameters (a, b, or K). If an accurate sintering trajectory is to be defined for a given

material and oven condition, the uncertainty of measurements must be quantified. This can be done

by preemptively inserting uncertainty into the measurements and determining what effect this has

on the final outcome of the parameters of interest. All code for this work is available in a Github
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repository [87]. The code is broken into three parts: one is for generating plots with various pa-

rameters, one is for the prediction of surface area parameters, and the last one is for the prediction

of grain size parameters. The language of the code is python and it was written in Anaconda GUI.

If sintering trajectories can be produced with quantifiable uncertainty, then they can be imple-

mented and optimize sintering times for material properties, like density. The prediction of shrink-

age is essential and is directly related to density through Equation 7.4. The graphs in Figure 7.5

show the uncertainty in the predictions for the a and b parameters associated with surface area. The

standard deviation is indicated by StD in the legends of the graph. The error percentage is given

by the Y-axis and the number of measurements is given by the X- axis. The standard deviation was

applied equally to the fractional density and normalized surface area. A total of 10,000 simulations

were run for all 4 of the standard deviations in the legend. The machine learning method applied

to the generated data was linear regression. It is clear that a reduction in the uncertainty within the

measurements will decrease the error. Another solution would be to simply take more measure-

ments. Taking measurements requires the user to stop the sintering process, take measurements,

and then restart the sintering process. This will most likely affect the sintering process, so fewer

measuring points should be desired. When the standard deviation is significantly low, very few

measurements are required. It is also clear the number of measurements does not produce less

error in the a and b parameters at around 7 or 8. Parameters a and b are described in Equation

7.3, they relate density to surface area. If you count the final measurement, this would mean stop-

ping the process about 6 or 7 times. The beginning is not counted because all measurements are

normalized with respect to the first measurement for surface area.

The uncertainty in measuring the fractional density should only occur in the measuring of the sin-

tered density according to Equation 7.2. The theoretical density should be well known (unless it is

a new material). Therefore the uncertainty will occur during the measuring of the current sintered

density. The surface area measurement uncertainty will depend on both the sintered density mea-
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surement as well as the volumetric surface area according to Equation 7.1. The error equation is

shown in Equation 7.10 as follows:

Percent Error = |True Value−Measured Value
True Value

| · 100% (7.10)
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Figure 7.5: Prediction error for parameters in equation 7.3 from artificially generated data by
adding Gaussian noise to experimentally gathered data. The data is then modeled through linear
regression to determine a and b: (Top Graph) Prediction error in material parameter a (Bottom
Graph) Prediction error in material parameter b

The error quantification calculations were also performed for the grain size. The grain size equa-

tions used were Equation 7.5 and Equation 7.6. The standard deviation was varied for the input
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grain size for K = 5. For these results, 10,000 simulations were run at each standard deviation

increment. The standard deviation increment was 0.1 µm from 0.1 µm to 2.9 µm. The unit for

grain size was µm. K was determined through polynomial regression. The Gaussian noise was

added to both the current and original grain size. Total sintering time was set to 1440 minutes or

24 hours. The relationship from the sintering model between the standard deviation in grain size

measurement and the accuracy of K prediction is shown in Figure 7.6. The standard deviation

range is compatible with most FFF and BJT printing materials and sintering configurations. The

standard deviation could be higher values if the user starts with particles of varying size, but this is

not very common for additive manufacturing where everything needs to be highly controlled.

The number of measurements for grain size was varied from 1 to 4. This is shown in the legend

of Figure 7.6. 1 measurement indicates measuring before and after sintering. The additional mea-

surements were taken 1 hour prior to completion of sintering. This means that for 4 measurements,

the grain size was recorded at 3, 2, and 1 hour(s) before sintering completion, and then again when

sintering was completed. It was determined that measuring the grain size in the latter part of the

sintering treatment produced higher accuracy in the K parameter. This is caused by the cubic na-

ture of the function. The increase in measurement does increase the accuracy in which K can be

predicted. Decreasing the standard deviation in the grain size seems to have a greater effect. The

accuracy of an SEM image can provide the grain size with a fairly low standard deviation for the

system examined in this work. This was the FFF Markforged 17-4 PH stainless steel. More SEM

images would provide a better picture of the grain size distribution. In addition, this method could

be expanded into 3 dimensions by changing the orientation of where the SEM is taken. This will

be shown in the next section.
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7.5 Expansion to Three Dimensions

The sintering process for additive manufactured components and metal injected molding com-

ponents is very similar. One main difference is that the additive manufactured components will

have anisotropic properties due to the layer-by-layer print style. This is especially true for the

highlighted methods in this work, which are FFF and BJT. In between the layers of 3D print, the

properties will not be the same as in the middle of the layer. This will require the equations that

describe the sintering process to be expanded into three dimensions. There is also a need to format

these equations to operate on the STL (stereolithography CAD) data that is used for 3D printing

software. Expansion of Equation 7.5 is shown in 3D in Equation 7.11, Equation 7.12, and Equa-
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tion 7.13. This leads to 3 separate Ks (one for each direction) that can be used to predict and then

control the shrinkage during sintering.

The same expansion process can be applied on Equation 7.3. From this system of equations,

the density could be solved for in each Cartesian direction using Equation 7.8 or Equation 7.3.

Ultimately 3D printing pre-sintering scaling algorithms will need to conform and adapt to the

discrepancies in shrinkage in different directions or optimize 3D printing and sintering parameters

to minimize these differences or a combination of the two. We propose the solution will be a

combination of the two.

G3
x = GxO

3 +Kxt (7.11)

G3
y = GyO

3 +Kyt (7.12)

G3
z = GzO

3 +Kzt (7.13)

File formats for 3D components that are about to be sliced, are typically STL, OBJ, or AMF. There

are others but the most common are STL and OBJ. STLs are stored in the form of a triangulated

mesh. The mesh consists of 3 points in Cartesian coordinates. These points form a triangle and

the normal of that triangle indicates the outer or inner surface of the CAD. Scaling the STL files is

done by directly multiplying a scaling factor to the points in the vertices of the triangulated mesh.

If a component was going to shrink by uniformly by 20% in all directions during sintering, then the

software should just scale up the component by 20% prior to sintering. The issue is that the scale

factors are not uniform with additive manufacturing. By measuring grain sizes in each direction
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the scale factors could also be retroactively determined and applied preemptively in future prints.

The difference in grain size growth during sintering was clearly shown in Table7.1.

The method of measurement for the grain size growth in the different Cartesian coordinate’s is

illustrated in Figure 7.7. If the user takes at least 3 different SEM images of the component from

the 3 different planes, the grain size growth can be determined. It could even be completed with

just 2, but 3 is more thorough. Each image provides the ability to measure grain size using the line

method shown in Equation 4.1. The line can go pixel by pixel as shown in Figure 7.4. 3 Images

provide the ability to take the measurements for each direction twice, and for each pixel in that

dimension. If all the images are 500×500, that would yield 1000 lines to measure grain size per

direction.

Using this 3D format to predict shrinkage could allow the user to implement the algorithm on a

variety of geometries. The effect of different geometries could be measured and computed via

Equation 7.11, Equation 7.12, and Equation 7.13. The parameter K can account for discrepancies

in shrinkage that come with manufacturing different geometries. This machine learning approach

is a framework that can be used if given a substantial data set.

7.6 Conclusion

A framework was produced in this work to utilize the capabilities of machine learning on the data

generated from sintering data experiments. This data can be extrapolated and fed into machine

learning models to help to predict the trajectory at which a component will densify during sintering.

If accurate pathways are known for sintering, accurate scaling and modifications can be applied to

the pre-sintered component for optimal output results. The models in this work generate thousands

of artificial data points and then feed these points into machine learning algorithms. The models
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Figure 7.7: Visual schemative of measurement of grain size in a specific cartesian direction. Three
SEM images would provide the opportunity to measure grain size twice in the X, Y and Z direction.

were also supported and verified by experimental data. The method created in this work is a good

foundation to apply machine learning to this kind of data. In the future more data could be included

to further refine the method and account for a change in material or oven condition. More machine

learning methods, such as neural networks might also be necessary if more and more different

types of data are to be utilized.

The effect that accuracy of measurement has on the prediction of key sintering parameters was
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shown in this work. The relationship between the number of measurements during sintering with

the final prediction accuracy was also shown. These parameters need to be balanced in order to

determine the optimal number of measurements required to ensure a given level of confidence in

the sintering parameter of interest. Stopping the oven and taking measurements is not convenient

and may affect the sintering process. This work has shown a way to determine the minimum

amount of stops and measurements required for the end user to make an accurate prediction of

deformation and other properties during sintering.

Additive manufacturing of metallic and ceramic components typically needs to undergo sintering

prior to manufacturing completion. This requires an accurate knowledge of the sintering process.

The components need to be scaled correctly in order to ensure geometric accuracy in the final

component. The method presented in this work has been shown that it can expand to 3-dimensions

to help predict the shrinkage and deformation more accurately. Additive manufactured compo-

nents do not shrink uniformly and need to be scaled up prior to sintering accordingly. The models

presented in this work can predict the amount of shrinkage in each direction and scale files accord-

ingly. This will be essential moving forward for the additive manufacturing of high temperature

metallic and ceramic components.
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