
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1984

Pilot Study of Applicability of a Generic Microprocessor Assembly Pilot Study of Applicability of a Generic Microprocessor Assembly

Language Language

Joseph H. Bartlett
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Bartlett, Joseph H., "Pilot Study of Applicability of a Generic Microprocessor Assembly Language" (1984).
Retrospective Theses and Dissertations. 4673.
https://stars.library.ucf.edu/rtd/4673

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4673?utm_source=stars.library.ucf.edu%2Frtd%2F4673&utm_medium=PDF&utm_campaign=PDFCoverPages

PILOT STUDY OF THE APPLICABILITY OF A GENERIC
MICROPROCESSOR ASSEMBLY LANGUAGE

BY
JOSEPH HENRY BARTLETT

B.s., University of Central Florida, 1978

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Graduate Studies Program
of the College of Engineering
University of Central Florida

Orlando, Florida

Fall Term
1984

ABSTRACT

The purpose of this investigation is to research

the utility of a standardized generic microprocessor

assembly language. More precisely, use of a generic

language implementation on a given microprocessor and

its effect on programmer productivity will be

investigated. Programmer productivity will be scored in

terms of an inverse function of the time taken to

complete a programming task correctly. Shorter times

imply better programmer productivity and longer times

imply the opposite.

AC KN OWL EDG EM ENT S

I wish to thank my friend, Ron Elliott, for all of

the assistance, guidance, encouragement and motivation

which he provided at the appropriate times and without

which this thesis could not have been completed.

I also wish to thank Dana Welch for being such a

good friend.

iii

TABLE OF CONTENTS

Chapter
I.

I I.

I I I.

IV.

v.

VI.

VI I.

INTRODUCTION

THE PROBLEM

STATISTICS

EQUIPMENT.

SUBJECTS

EXPERIMENTAL

RESULTS.

VIII. DISCUSSION OF

Appendices
A.

B •

BIBLIOGRAPHY • •

METHODOLOGY

•

RESULTS.

• •

iv

l

7

9

l 3

l 5

16

19

• 22

28

• 56

• 89

CHAPTER 1

INTRODUCTION

The emergence of a wide assortment of

microprocessors in recent years has presented a variety

of challenges to those responsible for software

development. This uncontrolled proliferation of

microprocessors and their associated assembly languages

have been the key obstacles to wider usage of the

Although latest microprocessors in new applications.

the . sophistication and number of high order

microprocessor languages, which are essentially machine

independent, have been hot topics in today's literature,

the need for assembly language programming will always

be with us. The improvement in speed and memory economy

possible with assembly language programming make it the

language of need and/or choice in hardware intensive

applications and in real time situations.

The phenomena of today's microprocessor industry is

not only the proliferation of faster and more efficient

microprocessors, but also that hardware costs are

continuing to decrease while software costs are

increasing at escalating rates. Companies face the no

win battle of deciding between adopting a new

microprocessor because of its more desirable

1

capabilities (and thus abandoning their existing

assembly language software base) or maintaining their

current microprocessor configuration (and thus facing

the consequences of forfeiting a possible competitive

edge).

Assembly languages are, more of ten than not,

determined by the manufacturers with little regard for

the software problem at hand. Microprocessor

2

manufacturers copywrite their mnemonic instruction lists

to help preserve proprietary software. This has forced

the use of nonstandard instruction mnemonics, assembler

directives, addressing modes, etc. upon the programmer.

It is obvious that the inconsistencies between assembly

languages for microprocessors need to be transformed to

provide a more workable software environment.

A large body of microprocessor assembly language

programmers--hobbyists, students, teachers and

professional programmers--should benefit greatly from

use of a standardized generic microprocessor assembly

language.

Time spent on the learning curve to become

proficient with assembly language programming on a new

microprocessor should be reduced considerably. The fact

that the programmer is already knowledgeable of the

instruction mnemonics, data and addressing formats, and

assembler directives would allow him to concentrate on

3

learning only the differences in the particular assembly

language standard instruction subset implemented on the

current microprocessor.

Elaborate algorithms coded in a nonstandard

assembly language on one microprocessor would no longer

be essentially unintelligible to someone experienced

with another instruction set. This would thus allow,

and prob ab 1 y enc our a g e, a f re er f 1 ow of info rm at ion in

the literature.

Programming environments on dedicated development

systems and mini or mainframe computers could be used

more effectively. The time to develop a resident

assembler and/or cross assembler would be reduced.

Increasing efficiency in the development of a

programming environment for a new microprocessor would

allow quicker release of hardware and software support

and development facilities.

So f t w a re main t en an c e, w hi ch can a c c ou n t f o r a v e ry

large portion of the total software cost, should also

benefit from a standardized generic microprocessor

assembly language. Maintenance is often performed by

someone not familiar with the application being

maintained and not experienced with the assembly

language itself.

4

There would, of course, be problems associated with

putting a standardized microprocessor assembly language

into effect on a large scale. Actual implementation

would be a relatively large if not impossible task.

The repertoire of instructions for specific

microprocessors could sometimes be very different. A

microprocessor dedicated to signal processing would

probably have only a few instructions similiar to those

of the more common microprocessors.

The number and types of condition codes or status

flags, and setting and resetting of these codes are all

microprocessor hardware dependent.

Each programmer shall need to be thoroughly

familiar with the functional operation and the

standardized generic assembly language subset

implemented on the given microprocessor.

The actual degree of effectiveness of a

standardized microprocessor assembly language can only

be truly,ascertained after its extended use.

5

The IEEE Task P694/Dll (Fischer et al. 1979) is a

standard which proposes to consolidate existing assembly

language features and conventions for present and future

m i c r op r o c e s s o r s • Its goal is to standardize the usage

of instruction names, mnemonics, address modes, labels,

comments and assembler directives. The standard should

help to improve programmer productivity.

Cross assemblers that are used to generate and

communicate software from the host computer to the

target system have been in constant demand. Methods to

generate an automated cross assembler development

facility for new microprocessors are currently in use

(Johnson et al., 1977, Korn, 1975 and Cohen et al.,

1 9 7 9) •

High level languages such as UCSD Pascal, which

compile to P-code, are in widespread use on a variety

of different microprocessors. The P-code instructions

for the given implementation are converted to machine

code via the microprocessor dependent P-code compiler

(Crespi-Reghizzi et al., 1980).

The actual usage of given operations in instruction

sets has been investigated (Fairclough, 1982). It was

found that even with the large instruction sets now

available on microprocessors, a relatively small number

of instructions comprise the most widely used.

The "ease of us e" of current mnemonic-based

microprocessor assembly languages may be outclassed by

symbolic assemblers and structured programming

techniques (Kriger, 1979 and Crespi-Reghizzi et al.,

1980).

Implementation on the Zilog Z80 microprocessor of

the Intel 8080 mnemonic instruction set has been

accomplished by Technical Design Labs. The TDL

assembler provides an extension of 8080 mnemonics to

include the entire Z80 instruction repertoire. This

assembler has been in widespread usage ever since the

beginning of the Z80's popularity.

6

CHAPTER II

THE PROBLEM

The purpose of this investigation is to research

the utility of a standardized generic microprocessor

assembly language. More precisely, use of a generic

language implementation on a given microprocessor and

its effect on programmer productivity will be

investigated. Programmer productivity will be scored in

terms of an inverse function of the time taken to

complete a programming task correctly. Shorter times

imply better programmer productivity and longer times

imply the opposite.

Of particular interest is the investigation of this

productivity when the microprocessor is unfamiliar to

the programmer. The manufacturer's assembly language

would then be a new language to learn. The standardized

g en e r i c 1 an g u a g e w o u 1 d a 11 ow kn ow 1 e d g e of i t s p r ev 1 ou s

use to be carried over to the current application.

This report investigates the significance of the

following hypothesis:

H0 : There is no difference in programmer

"productivity" when using a manufacturer's assembly

language versus using a standardized generic

7

assembly language when both are implemented on an

unfamiliar microprocessor.

H 1 : There is a difference in programmer

productivity when using the above described assembly

languages.

Instead of investigating an actual standardized

generic assembly language applicable across several

8

mi c r op r o c es s o rs (a s ou t 1 i n e d i n App end ix A) , the u s e of

one of the generic assembly languages implemented will

be investigated. It will be considered a generic

language with extensions specific to a given

mi c r op r o c es s o r •

Technical Design Labs released their TDL mnemonics

when the Zilog Z80 microprocessor first came on the

scene. TDL assembly language is simply a superset of

the Intel 8080 assembly language extended to include the

entire Z80 instruction set. The term generic assembly

language will be used in the remainder of this paper

when referring to TDL assembly language.

Inference shall be made by induction that a

standardized assembly language (such as IEEE Task

P694/Dll) does or does not improve "productivity" as

p r ev i ou s 1 y d e f i n e d •

CHAPTER III

STATISTICS

A testing procedure was designed to determine

whether or not there was a difference in programmer

"productivity" when using the generic assembly language

(TDL Z80) versus the manufacturer's assembly language

(Zilog Z80). This testing procedure consisted of one

test program which the subjects coded using the generic

assembly language (TDL Z80) and the manufacturer's

assembly language (Zilog Z80). The purpose of this

program was to locate the first occurrence of the ASCII

1 e t t e rs " AB" i n a m em o ry b 1 o ck • The memory block starts

at location lOOOH and continues through and includes

lOFFH. The memory block is first searched for the

character "A". When an "A" is found, the next location

is compared with the letter "B". If a "B" is found in

this ~ucation the address of the start of the "AB"

character sequence is written into locations llOOH and

1101H (least significant byte first). The search is

continued at most 255 times if no match is found.

The test population was divided into two groups at

random, each containing approximately half of the

subjects. Group 1 programmed first using the

manufacturer's assembly language (Zilog Z80) and then

9

10

the generic assembly language (TDL Z80). Group 2

programmed first using the generic assembly language

(TDL Z80) and then the manufacturer's assembly language

(z il 0 g ' z 8 0) • The programmer "productivity" was

calculated by using the mean of each of the two groups

of test times. That is, the mean time of the test usin g

the generic assembly language (TDL Z80) was compared to

the mean time of the test using the manufacturer's

assembly language (Zilog Z80). The larger mean time

imp 1 i e s 1 ow e r p r o du c t iv i t y • The standard deviation was

used to give a quantitative figure for how large an

experimental spread existed in each group about its

mean. The t-test was used to ascertain statistical

significance of the experiment results.

The mean time for each group was calculated as

f 011 ow s:

where

n =

N = n

t
mn

Nn
L:

i=l
N

n

t.
in

1 Manufacturer group

2 Generic group

Number of subjects for group n

Time of successful completion for
the ith subject for group n

1 1

and the standard deviation for each group was determined

by:

s
(t. - t) 2

in out

N - 1
n

The statistical significance of the two sets of data was

found by calculating the t-value:

t

where

N1
t) 2

N2
2

E (til - + E (ti2 - tm2)
82 i=l

ml
i=l

Nl + N2 - 2

The degrees of freedom were found by

l 2

A significance level of 0.20 was used to indicate a

correlation in the experimental data. The large

significance value was used in this pilot study to

better decrease the likelihood of making a type II error

(test does not actually show a difference when there is

a real one) for small N. This significance choice

increased the chances of finding a difference if there

really was one, which was the purpose of the pilot

study.

CHAPTER IV

EQUIPMENT

An Altos Z80 based microcomputer using the CP/M

operating system was used to conduct the research. A

Hazeltine 1500 video terminal was used for input and

output, and a Qume printer was available to produce

hardcopy.

A Z80 assembler capable of using either Zilog

mnemonics (manufacturer) or TDL mnemonics (generic) was

used to generate machine code from a stored assembly

language source file. A word processor editor was used

to enter and edit the source file.

Command files were used to initiate the assembler,

load the object file, execute it, and display the

results of each program run. The full screen editor is

relatively straightforward to use, has a help function

available for command reference, uses cursor control

keys to facilitate moving the cursor to any position on

the screen, and allows insertion and deletion of

characters and lines.

The primary reason this equipment and system

software was chosen is because it was readily available

13

on a day-to-day basis. Learning to use the assembler

and editor was anticipated to be and was of little

concern.

14

CHAPTER V

SUBJECTS

To achieve statistically valid conclusions, as

large a population as possible should be used. It would

have been advantageous to have had a large subject

sample, but only five were found who were available.

There was no requirement as to age, sex or experience.

It was required, though, that subjects be familiar

with Intel 8080 assembly language mnemonics (which acted

as the generic language in this study), and who were

relatively unfamiliar with the Z80 Zilog mnemonics,

(which acted as the manufacturer's new assembly

language).

A pretest interview was used to ascertain

information from each subject as to their experience

with assembly language, familiarity with the Z80 and

8080, and software expertise in general.

15

CHAPTER VI

EXPERIMENTAL METHODOLOGY

The test population was divided into two groups at

random, each containing approximately half of the

subjects. Group 1 programmed using the manufacturer's

assembly language (Zilog Z80) first and then the generic

assembly language (TDL Z80). Group 2 programmed using

the generic assembly language (TDL Z80) first and then

the manufacturer's assembly language (Zilog Z80).

Information on both Z80 assembly language

instruction sets, the editor, the assembler and the

debugger was supplied to each participant one hour prior

to the start of the timed test. This fixed time

provided sufficient instruction study time for all

subjects to become familiar with the instruction sets,

equipment and software tools to be used.

Each subject was asked to write a given program in

both Z i 1 o g Z 8 0 and TD L Z 8 0 m n em on i cs. A 11 subj e ct s were

given the same program to implement in both languages.

The program algorithm was outlined in written form,

Program Design Language form and flowchart form.

16

1 7

Information on each Z80 assembly language instruction

set, editor, assembler and debugger were also available

during testing.

The study's dependent variable was the time needed

t o c or rec t 1 y c om p 1 et e the g iv en p r o g ramming task. Thi s

is related to productivity as previously discussed.

The independent variable was the language being

used in the given programming task, the manufacturer's

assembly language or the standardized generic assembly

language.

Unfortunately other variables may well have

affected this study drastically. Variables that the

author had some degree of control over through the

subject selection process include the subjects software

experience and previous experience with either Z80 or

8080 assembly languages.

Because the subject population was small, it was

decided that each individual would program the same

algorithm in each of the two languages to increase

sample size for each language. This of c ours e

introduced other problems. One was in test learning. A

learning process was bound to occur due to the

experience gained from the use of the first language.

This problem was minimized by having half the population

start by using one language, and the other half start by

18

using the other language. Therefore, learning during

the test was effectively eliminated as a concern.

Also, in planning it was recognized that there may

have been particular individuals who would have problems

understanding the program algorithm. To help alleviate

this po s s i bi 1 i t y , the a 1 go r it h m was described in sever a 1

different ways, in verbal form, in a flow chart and in

Program Design Language form.

It was also thought that problems might have

cropped up concerning ease of use of the equipment for

particular subjects. The assembler and editor were user

friendly which helped to reduce possible problems in

this area.

Most of the problems mentioned above would not be

significant if a large enough population were available.

The effect of one subject (or a small number of

subjects) on the statistics would not then be so

catastrophic to the study.

CHAPTER VII

RESULTS

Th e f o 11 ow in g tab 1 e s h ow s the t i m e ea ch s u b j e c t

took to succussfully complete the given programming task

using both Zilog mnemonics and standardized generic TDL

mnemonics.

SUBJECT TIME (MI NUTE S)
ZILOG TDL

MNEMONICS MNEMONICS

1 31 28

2 27 25

3 42 35

4 22 23

5 45 37

AVERAGE 3 3. 4 29.6
STD DEV 9.8 6.1

19

20

The following histogram compares the time taken to

successfully complete the program task using both Zilo g

and standardized generic TDL mnemonics for all subjects.

50

40

Time 30-

(mi n)

20

10

0

l

Zi log

2 3 4 5

Subject

TDL

D

The t value is computed as described in the

statistics section.

t

It is found as follows:

385.2 +151.2
8

=

33.4 - 29.6 I 2(67s05)

67.05

.73

The experimental t-test value for 8 degrees of

freedom is 0.73.

21

CHAPTER VIII

DISCUSSION OF RESULTS

This pilot study was conducted with the gracious

aid of its five subjects who donated several hours of

their time. Each subject was given the program and

instructions included in Appendix B. The subjects were

given one hour to become familiar with the editor,

assembler and debugger, as well as the individual

mnemonic instruction sets.

No particularly insurmountable problems were

encountered, although each subject spent about two to

three hours overall on the test. All subjects had very

little trouble becoming familiar with the editor,

assembler and debugger.

All five subjects used in this pilot study would be

considered "expert" programmers, but they have varying

degrees of assembly language experience. Subjects l, 2

and 4 had extensive experience with both Intel 8080 and

Zilog Z80 microprocessors. Subjects 3 and 5 had passing

knowledge of Intel 8080 assembly language only.

Subjects 1, 3 and 5 were given the task to program

using TDL standardized generic mnemonics first, and then

Zilog. Subjects 2 and 4 were given the tests in the

opposite order.

22

The literature search turned up no examples of

experimental investigation into the use of generic

standardized assembly language.

The general trend of the data shows slightly

shorter times when using the standardized generic TDL

23

mnemonics. But in most cases there did not seem to be a

very significant di ff ere n c e in programming time. The

standard deviation for each set of samples was

calculated to be fairly large.

One subject successfully completed the task in a

shorter time using Zilog mnemonics. This particular

case is probably attributible to the fact that this

subject was extremely familiar with Zilog assembly

language.

Formally, the statistical t-test pilot study value

was considerably smaller (0.73<<1.387) than the value

f ou n d i n t h e t - t es t t ab 1 es (Sh n e id e rm a n , 1 9 8 0) •

Therefore, no significant statistical difference can be

shown in this study. The pilot study hypothesis is thus

left unconfirmed.

Although the null hypothesis was not disproven,

further investigation into the problem area has much

m er i t. The s ma 11 p op u 1 a t i on s i z e a 11 ow e d the 1 a r g e

variety of assembly language experience in the sample

population to become the major factor controlling the

outcome of the study.

24

The t-test is a powerful statistical test, but

the re a r e s ev e r a 1 c on di t i on s , h ow eve r, w hi ch mu s t b e

satisfied to insure confidence in its probability

statements. The following are the major conditions:

1) observations must be independent

2) observations must be normally distributed

3) observations must have the same variance.

Except for the condition of equal sample variances,

these conditions are not normally tested. They a re

generally presumed to be true unless there is evidence

t o t h e c on t r a ry (D av i e s , 1 9 6 0) •

For this investigation, Condition 1 is inferred

from the nature of the experiment. Condition 3 can be

verified from the experimental data and Condition 2 can

only be achieved by using enough study subjects.

The number of observations required in the t-test

to compare mean values is dependent upon their standard

deviation, and the desired significance of type I (a)

and II (S) errors. This number is determined from a

t ab 1 e of N v a 1 u e s v e rs u s a, S , a a n d o (o is the

smallest time that can be assumed to be significant in

cS
the study). If a = S = 0.05 and D = 0 = 5/9.8 0.5,

then the number of observations needed in at-test to

determine the significance of the difference between two

sample means is 110 (Davies, 1960).

The current pilot study does not provide for

acceptance of the hypothesis, but does provide the

25

sample group's standard deviation which is necessary to

estimate the s amp 1 e size to be used in a more comp 1 et e

study.

It is recommended that a future investigation of

this type, comparing the use of Zilog and standardized

generic TDL mnemonics, be implemented. This proposed

study should follow the guidelines of the current pilot

study. The sample size for each assembly language task

group should be at least on the order of 110 to insure

accuracy of the t-test statistics.

A second proposed study should eventually

investigate the IEEE standardized assembly language

implementation on a number of 8- and 16-bit

mi c r op r o c e s s o rs • Perhaps a performance test of

comprehension can be better used to study a very

subject sample set than the pilot study's test

procedure.

large

Given a particular program implemented on all

available microprocessors, fill-in-the-blank questions

could be asked concerning output for given inputs,

inputs necessary to achieve a given output, impact of

minor program alterations, and sequence of procedures

executed (Shneiderman, 1980). Scoring could be less

26

subjective by using several graders and the test would

be made less time consuming to the subject participants.

A number of problems will probably show up when a

portable generic microprocessor assembly language is

implemented. The microprocessor machine architecture

will probably not lend itself easily to assembly

language standardization. The problems involved

include: differing word lengths, addressing modes and

byte versus word addressing, flags and status, separate

instruction and data spaces, total memory addressing

space available, and the wide assortment of register and

input-output configurations.

The complete study of programmer productivity when

using a standardized generic microprocessor assembly

language is overwhelming. It shall require many

programmer subjects, encompass many processors and

extend over several years of study. It is a task that

shall probably be attacked in a piecemeal fashion, one

facet at a time.

APPENDICES

APPENDIX A

IEEE GENERIC INSTRUCTION SET

This section describes the functional operation of

each standard inst ruction. The operation described may

be implemented in any microprocessor (independent of

word length) with the appropriate conditions. This

standard does not necessarily define the circumstances

under which microprocessor conditions are set or

cleared, but implies possible usage. The grouping of

instructions in this section is arbitrary, and is not

intended to imply necessary relationships.

INSTRUCTION NAMES: The naming of instructions

shall be in accordance with the following rule:

instruction names shall begin with an action verb.

Exam p 1 es are : Add w it h Carry , Rot ate Right, Br an ch if

Les s Than, An d , Re turn i f Z e r o , Shi f t Le f t , Tes t , e t c •

Certain exceptions, the results of common usage, are

noted herein.

INSTRUCT ION MNEMONICS: The selection of mnemonics

for instructions not contained in this standard shall be

in accordance with the following rules (exceptions are

noted herein):

28

29

a) The first character of the mnemonic shall be

the first letter of the action verb.

b) Addressing modes shall not be embedded in the

mnemonic.

c) Operand designations shall not be embedded in

the mnemonic.

d) Conditions shall be embedded in the mnemonic.

e) Operand type may be indicated, where

appropriate, by the last character of the

mnemonic as shown below (the default operand

type is word):

B: Byte
H: Halfword
L: Long (Double Word)
D: Decimal
F: Floating Point
l : Bit
4: Nibble or Digit
M: Multiple

SYNONYMOUS MNEMONICS: Depending on the

microprocessor architecture, several standard mnemonics

may assemble into the same machine instruction. In

those cases, all such mnemonics shall be included in the

assembly language.

MULTIFUNCTION INSTRUCTIONS: The representation of

multifunction instructions shall be by the use of two or

more standard mnemonics on the same line, unless a

standard mnemonic exists which describes the

30

multifunction instruction, in which case that mnemonic

shall be used in the assembly language.

CONDITIONAL INSTRUCTIONS: Conditional instruction

mnemonics shall be constructed by concatenating the

generic instruction name with the condition name. An

example would be "Branch if Zero" (BZ), which is formed

from an abbreviated Branch (B-) and "if Zero" (Z-).

When the opposite condition state is used, then the

1 e t t e r " N" f o r " No t T r u e" o r " N o" s h a 11 b e i n s e r t e d

between the instruction mnemonic and the condition

mnemonic to define the false condition as in "Branch if

Not Zero" (BNZ).

Conditions are generally utilized with the

following instruction types:

a) Branch (B-)
b) Skip (SK-)
c) Call subroutine (CALL-)
d) Return from subroutine (RET-)
e) Increment and Branch (IB-)
f) Increment and Skip (!SK-)
g) Decrement and Branch (DB-)
h) Decrement and Skip (D SK-)

The standard condition mnemonics are defined in

this section. The dash character "-" represents the

i n s t ru c t i on m n em on i c 1 et t e r (s) t o b e rep 1 a c e d w i th the

generic instruction name.

3 1

1. Zero (-Z) The instruction is executed if the zero

c on di t i on i s t ru e. Note that this condition may be the

same as the Equal condition.

2. Not Zero (-NZ) The instruction is executed if the

zero conditioon is false. Note that this condition may

be the same as the Not Equal condition.

3. Equal (-E) The instruction is executed if the

e qua 1 c on di t i on i s t ru e. Note that this condition may

be the same as the Zero condition.

4. J!.2.!. Egual (-NE) The instruction is executed if

the equal condition is false. Note that the condition

may be the same as the Not Zero condition.

s. Carry (-C) The instruction is executed if the

c a r ry c on di t i on i s t ru e.

6. lI_2 Carry (-NC) The instruction is executed if the

c a r ry c on d i t i on i s f a 1 s e.

7. Positive (-P) The instruction is executed if the

positive condition is true.

8. Negative (-N) The instruction is executed if the

negative condition is true.

9. Ov e r f 1 ow (- V) The instruction is executed if the

arithmetic overflow condition is true.

1 o. No Overflow (-NV) The intruction is executed if

the arithmetic overflow condition is false.

32

11. Greater Than (-GT) The instruction is executed if

an arithmetic (signed) greater than condition exists.

This condition is not equivalent to the Higher

condition.

1 2. Greater Than Q.!: Egual (-GE) The instruction is

exectued if an arithmetic (signed) greater than or equal

condition exists. This condition is not equivalent to

the Not Lower condition.

1 3. Less Than (-LT) The instruction is executed if an

arithmetic (signed) less than condition exists. This

condition is not equivalent to the Lower condition.

14 • .!:.~Than 01:_ Equal (-LE) The instruction is

executed if an arithmetic (signed) less than or equal

condition exist. This condition is not equivalent to

the Not Higher condition.

1 5. Higher (-H) The instruction is executed if an

unsigned greater than condition exists. This condition

is not equivalent to the Greater Than condition.

1 6. .fu!!. Higher (-NH) The instruction is executed if

an unsigned less than or equal condition exists. This

condition is not equivalent to the Less Than or Equal

condition.

1 7. Low er (-L) The instruction is executed if an

unsigned less than condition exists. This condition is

not equivalent to the Less Than condition.

33

18. The instruction is executed if an

unsigned greater than or equal condition exists. This

condition is not equivalent to the Greater Than or Equal

condition.

1 9. Parity Ev en (-PE) The instruction is executed if

the even parity condition exist.

negation of Parity Odd.

This condition is the

2 o. Parity Odd (-PO) The instruction is executed if

the odd parity condition exist.

n e g a t i on o f Pa r i t y Even.

ARI THM ET IC INSTRUCTIONS:

arithmetic instructions.

This condition is the

The f o 11 ow in g a re

1.

2.

Add (ADD) This instruction performs an addition.

Add Rith Carry (ADDC) This instruction performs

an addition and adds any previous carry to the result.

3. Subtract (SUB) This instruction performs a

subtraction.

4. Subtract Reverse (SUB R) This instruction performs

a subtraction in reverse order.

s. Subtract ~ith Carry//Borrow (SUBC) This

instruction performs a subtraction and incorporates a

p r ev i ou s b or row int o the res u 1 t.

not be related to the carry.

The b or r ow may or may

6. Inc rem en t (INC) This instruction causes a one to

be added to the specified operand.

34

7. Decrement (DEC) This instruction causes a one to

be subtracted from the specified operand.

8. Multiply (MUL) This instruction performs a

multiplication.

9. Divide (DIV) This instruction performs a division.

10. Compare (CMP) This instruction does a comparison

and sets the appropriate condition(s) according to the

results.

1 1. Negate (NEG) This instruction causes the specified

operand to be replaced with its arithmetic negative

(t w o's comp 1 em en t).

1 2. Extend (EXT) This instruction extends an operand

to fill a specified larger field.

LOG IC AL INST RU C TI 0 NS : The f o 11 ow i ng a re 1 o g i ca 1

instructions.

1. (AND) This instruction performs a logical

"AND".

2. Or (OR) This instruction performs a logical "OR".

3 • . Ex c 1 u s iv e Or (XOR) Thi s i n s t r u c ti on p e r f o rm s a

1ogica1 "Exclusive 0 R". Note that this instruction

mnemonic violates the mnemonic naming rule, but is

retained in deference to common usage.

4. li.21. (NOT) This instruction causes the specified

operand to be replaced with its one's complement

(logical not).

5. 1!.2.!. C a r ry (NOTC) This instruction causes the

carry condition to be complemented.

6. Shift Right (SHR) This instruction causes the

specified operand to be shifted one or more places to

the right (toward the LSB), with the most significant

bit(s) being replaced with zero(s).

7. Shift Left (SHL) This instruction causes the

specified operand to be shifted one or more places to

the left (toward the MSB), with the least significant

bit(s) being replaced with zero(s).

8. Shift Right Arithmetic (SHRA) This instruction

35

causes the specified operand to be shifted one or more

places to the right with the most significant bit (sign)

being preserved and propagated to the right.

9. Rotate Right (ROR) This instruction causes the

specified operand to be shifted one or more places to

the right, with the MSB being replaced by the LSB on

each shift.

1 o. Rotate Left (ROL) This instruction causes the

specified operand to be shifted one or more places to

the left, with the LSB being replaced by the MSB on each

shift.

11. Rotate Right Through Carry 1 Link (RORC) This

instruction causes the specified operand to be shifted

one or more places to the right with the previous state

36

of the link being loaded into the MSB, and the LSB being

loaded into the link. Note that the link may be

associated with the carry flag.

1 2. Rotate Left Through Carry 1 Link (ROLC) This

instruction causes the specified operand to be shifted

one or more plaes to the left with the previous state of

the link being loaded into the LSB, and the MSB being

loaded into the link.

1 3. Test (TEST) This instruction causes the specified

operand to be tested and sets the appropriate

condition(s) according to the result.

DATA TRANSFER INSTRUCTIONS: The following are data

transfer instructions.

1. Load (LD) This instruction causes the contents of

a memory location specified as the source to be

transferred to a register specified as the destination.

2. Store (ST) This instruction causes the contents of

a register specified as the source to be transferred to

a memory location specified as the destination.

3. Move Jl:!OV) This instruction causes the contents of

a register to be transferred to another register, or the

c on t en t s of a m em o ry 1 o ca t i on t o b e t rans f erred t o

another m em o ry 1 o ca t i on.

4. Move Block _lliOVBK) This instruction causes the

transfer of a block of data.

37

s. Move Multiple (MOVM) This instruction causes the

c on t en t s of a m om o ry 1 o ca t i on t o b e c op i e d i n t o mu 1 t i p 1 e

m em o ry 1 o ca ti on s •

6. Exchange (XCH) This instruction causes the

specified operands to be exchanged.

7. Input (IN) This instruction causes the data at an

input port to be transferred to a register or memory

location.

8. Output (OUT) This instruction causes the contents

of a register or a memory 1 o cation to be transferred to

an ou t p u t p o rt.

9. Clear (CLR) This instruction causes the specified

operand to be replaced by zero(s).

1 o. Clear Carry (CLRC) This instruction causes the

carry to be set to the not true or no carry state.

1 1 • C 1 ea r Ov e r f 1 ow (C LR V) Thi s ins t ru c t i on ca u s es th e

overflow to be set to the not true or no overflow state.

1 2. Set (SET) This instruction causes the specified

operand to be replaced by one(s).

1 3. .§.il Carry (SETC) This instruction causes the carry

to be set to the true or carry state•

1 4. .§.il Overflow (SETV) This instruction causes the

overflow to be set to the true or overflow state.

BRANCH INSTRUCTIONS:

instructions.

The following are branch

38

1. Branch (BR) This instruction causes the contents

of the program counter to be replaced by the effective

address, thereby transferring control to the memory

location specified by that address. The condition(s)

for execution of the following instructions were

described earlier. For brevity, only the instruction

titles and mnemonics of the branch instructions are

given here.

2. Branch If~~ (BZ)

3. Branch If .liE..!, Zero (BNZ)

4. Br~ch .li. ~al (BE)

S. Branch If No!_ .fu!..!!.al (BNE)

6 •]..!:~ n c h I f .£2...!.ll (B C)

7. Bra11ch If l!.2 ~ll JJiNC)

8. Branch If Positive (BP)

9~ Branch If Negative (BN)

10. Branch If Overflow (BV)

11. Branch If].£. Overflow (BNV)

12. Branch If Greater Than (BGT)

13. Branch If Greater Thab .Q.!: Egual (BGE)

14. Branch If Less Than (BLT)

15. Branch If Less Than Q.!: Equal (BLE)

16. Branch If Higher (BH)

1 7. Branch If 1'!Sl!, Higher (BNH)

18. Branch If Lower (BL)

19. Branch If 1'!Sl!, Lower (BNL}

39

2 0. Br an ch If Parity Even (BP E)

21. Branch If Parity Odd (BPO)

SKIP INSTRUCTIONS: The following are skip

i n s t ru c t i on s •

1. Skip (SKIP) This instruction causes the program

counter to be incremented such that the execution of the

next instruction(s) is skipped. The condition(s) for

execution of the following instructions were described

earlier. For brevity, only the instruction titles and

mnemonics of the skip instructions are given here.

2. Skip .li. Zero (SKZ)

3. Skip If Not Zero (SKNZ)

4. Skip If Egual (SKE)

5 • S k i p .1.f. N .Q!. E q u a 1 .i.§. KN E)

6. Sk.!J?. If Carry .i.§.KC)

7. Skip If Not £arry, ilKNC)

8. Skip If Positive (SKP)

9. Skip If Negative (SKN)

1 O. Skip If Ov e rf 1 ow (SKV)

11. Skip If No Overflow (SKNV)

12. Skip If Greater Than (SKGT)

13. Skip If Great er Than Or Egua 1 (SKG E)

14. Skip If Less Than (SKLT)

15. Skip If Less Than ..Q!:. Equal (SKLE)

1 6. S k i p_ I f Hi &J!g (SK H)

40

1 7. Skip If .li.Q.t Higher (SKNH)

18. Skip If Lo~ (SKL)

1 9. Skip If Not Lo~ (SKNL)

2 o. Skip If Parity Even (SKP E)

21. Skip If Parity Odd (SKPO)

SUBROUTINE CALL INSTRUCTIONS: The fol lowing are

subroutine call instructions.

1. Call Subroutine (CALL) This instruction causes the

program counter to be saved and replaced by the

specified operand, thereby transferring control to the

memory location specified by the operand. The

condition(s) for execution of the following instructions

were described earlier. For brevity, only the

instruction titles and mnemonics of the call

instructions are given here.

2. Call If ~..Q. (CALLZ)

3. Ca 11 If Not ~~ .i.£ALLNZ)

4 • C a 11 1..f. E ..9J! a 1 (C AL L E)

5. Call If Not Equal (CALLNE)

6 • C a 11 I f .!l~ll (C ALL C)

7. Call If No Carry (CALLNC)

8. Call If Positive (CALLP)

9. Call If Negative (CALLN)

1 0. C a 11 I f Ov e r f 1 ow (C ALL V)

11. Ca 11 If 1i£ Overflow (CALLNV)

12. Call If Greater Than (CALLGT)

13. Call If Greater Than Or Equal (CALLGE)

14. Call If Less Than (CALLLT)

15. Call If Less Than .Q.!. Equal (CALLLE)

16. Call If Higher (CALLH)

17. Call If Not Higher (CALLNH)

1 8. Ca 11 If Low er (CALL L)

19. Call If ~ ~~ (CALLNL)

2 0. C a 11 I f Pa r i t y Ev en (C ALL P E)

21. Ca 11 If Parity Odd (CALLPO)

RETURN INSTRUCTIONS: The following are return

instructions.

1. Return From Subroutine (RET): This instruction

41

causes the previously saved contents of the program

counter to be restored, thereby returning control to the

routine that called the subroutine or was interrupted.

The condition(s) for execution of the following

instructions were described earlier. For brevity, only

the instruction titles and mnemonics are given for the

conditional instructions.

2. Re !J!..!.!l If Zero (RETZ)

3. Return If ~ Zero (RETNZ)

4. Return If Egual (RETE)

5. Return If ~ Egual (RETNE)

6. Return If Carry (RETC}

7. Return If li£ Carrv. ~RETNC2

42

8. Return If Positive (RETP)

9. Return If Negative (RETN)

1 O. Return If Overflow (RETV)

1 1 • Re tu r n I f N o Ov e r f 1 ow (RE TN V)

12. Retrun If Greater Than (RETGT)

13. Return If Greater Than Or Equal (RETGE)

14. Return If Less Than (RETLT)

15. Return If Less Than Q.!. Equal (RETLE)

16. Return If Higher (RETH)

17. Return If 1i£! Higher (RETNH)

18. Return If Low er (RETL)

19. Return If Not Lower (RETNL)

20. Return If Parity Even (RETPE)

21. Return If Parity Odd (RETPO)

22. Return With Skip (RETSK) This instruction causes

the previously saved contents of the program counter to

be incremented some amount and restored, thereby

returning control to the routine that called the

subroutine at some point after the subroutine call.

2 3. Return From Interrupt (RETI) This instruction

returns control to the routine that was interrupted.

MISCELLANEOUS INSTRUCTIONS: The following are

miscellaneous instructions.

1. No Operation (NOP) This instruction causes the

processor to take no action other than to advance to the

43

next instruction. This instruction's name violates the

naming rules, but is kept in deference to common usage.

2. Push (PU SH) This instruction causes the contents

of the specified operand(s) to be transferred to the top

of a stack •

3. .f..9.1?. (p 0 p) This instruction causes the contents of

the top of a stack to be transfered to the designated

operand(s).

4. Halt (HALT) This particular instruction causes the

microprocessor to stop executing instructions until an

external condition occurs.

s. Wait (WAIT) This particular instruction causes the

microprocessor to stop executing instructions until an

external or internal condition occurs or changes.

6. Break (BRK) This instruction causes an interrupt

sequence to be initiated by the microprocessor.

7. Ad j u s t (AD J) This instruction makes an adjustment

such that the operand or implied accumulator contents

will represent the correct result, usually a binary

coded-decima l representation.

8. Enable Interrupt (EI) This instruction causes the

d es i g n a t e d in t e r ru p t (s) t o b e en ab 1 e d •

9. Disable Interrupt .i!L.!2- This instruction causes the

designated interrupt(s) to be disabled.

44

1 o. Translate (TR) This instruction references a

specified table to replace an operand with value(s)

selected from the table on the basis of the value of

that operand.

OPERANDS AND SYNTAX: The following are operands

and syntax.

1. Addressing Modes Addressing modes in

microprocessors with more than one addressing mode shall

be specified by special character(s). The special

character(s) shall precede the address expression except

where pre or post specification implies an operational

sequence. note that the address expression (addr) may

refer to either a memory location or register. The

following prefix and postfix characters shall be used to

define the specified address modes:

MODE SYMBOL EXAMPLE

Absolute prefix I /addr
Base page prefix !add r
Indirect prefix @ @addr
Relative pref ix $ $addr
Immediate prefix fl flvalue
Index enclosing addr(index)

parenthesis ()

Register pref ix. .add r
Auto-pre-increment prefix + +addr
Auto-post-increment postfix+ addr+
Auto-pre-decrement prefix - -addr
Auto-post-decrement postfix - addr-
Indirect-pre-indexed pref ix () @ addr(index)@
Indirect-post-indexed pref ix @,

postfix () @addr(index)

45

Assemblers may have the option of coercing the

addressing mode for instructions that have only one

addressing mode. As an example, a branch instruction

which allows only relative addressing may be coded

without the "$" character preceding the address

designation in the operand field. Such coercion should

be flagged in the assembly listing.

For microprocessors that have several address

modes for a particular instruction, the assembler may

select the address mode if the programmer does not

specify it. The means used to indicate which address

mode was selected shall be specified. The default

address mode should be relative.

2. Expressions An assembler should allow the use of

expressions which are evaluated at assembly time. When

expression evaluation capabilities are included in the

assembler, those expressions operators that are

implemented shall be designated by the following infix

special symbols:

SYMBOL(S)

+

*
I
I I
.AND.
.OR.
.XOR.
.NOT.
• SHL.
• SHR.

OPERATION

Add
Subtract
Multiply
Divide (Signed)
Divide (Unsigned)
AND
OR
Ex c 1 u s iv e 0 R
NOT
Left Shift
Right Shift

SYMBOL(S)

.MOD.

**
<:>

A bit alignment example:

OPERATION

Mo du lo
Exponentiate
Bit Alignment

the expression A<p:q>

46

means align bits p through q inclusive of A. Hierarchy

is not specified. Parenthesis may be used to group

expressions.

A S S EM BL ER D IRE C T IVE S : The f o 11 owing are ass em b 1 er

directives.

1. General Assembler directives are commands to the

assembler instead of instructions for the

m i c r op r o c es s o r. They direct the assembler to perform

specific tasks during the assembly process.

This standard does not specify the syntax necessary

to support macros or conditional assembly.

Naming of assembler directives and of assembler

directive mnemonics shall follow the rules used for

instructions. If the following functions are

implemented, the specified mnemonic shall be used.

2. Originate (ORG) This assembler directive sets the

current location counter to the value specified by the

operand. The assembler shall initialize all location

counters to zero at the beginning of the program.

3. Equate

symbol to a

(EQU) This assembler directive equates a

constant, an address, or an expression.

4. End (END) This assembler directive informs the

assembler that the end of source has been reached.

5. Page (PAGE) This assembler directive causes the

47

assembler to advance the assembly listing to the top of

the next page.

6. Title (TITLE) This assembler directive causes the

assembler to advance the assembly listing to the next

page and to insert the specified title into the header

of that and each of the following pages.

7. Date (DATA) This assembler directive causes the

assembler to fill the next memory location(s) with the

specified value(s). A letter may be appended to the

mnemonic as specified earlier to indicat~ data type.

8. Reserve Memory (RES) This assembler directive

reserves a block of storage locations. The number of

locations reserved is specified by a constant or an

expression. The content of the reserved storage

location(s) may be unspecified.

9. Base (BASE) This assembler directive causes the

assembler to change the current implied number base.

STANDARD INSTRUCTION MNEMONICS FOR 6800

INSTRUCTION

ARITHMETIC

Add
Add with Carry
Subtract
Increment

Decrement

Compare

Negate

LOGICAL

And
Or
Exe lu sive Or
NOt
Shift Right
Shift Left
Shift Right Arithmetic
Rotate Right
Rotate Left
Test

DATA TRANSFER

Load

Store

Move

Clear
Clear Carry

LD

ST

STANDARD
MNEMONIC

ADD
ADDC
SUB
INC

DEC

CMP

NEG

AND
OR
XOR
NOT
SHR
SHL
SHRA
ROR
ROL
TEST

MOV

CLR
CLRC

48

MOTOROLA
MNEMONIC

ADD, AB A
ADC
SUB, SBA
INC,INS,

INX
DEC, DES,

DEX
CMP,CBA,

CPX
NEG

AND
ORA
EOR
COM
LSR
ASL
ASR
ROR
ROL
BIT,TST

LDA,LDS,
LDX

STA,STS,
STX

TAB, TBA,
TAP,TPA,
TSX,TXS
CLR
CLv

49

Clear Ove rf 1 ow CLRV CLV
Set Carry SETC SEC
Set Overflow SETV SEV

BRANCH

Branch 'BR 'BRA,JMP
Branch if Zero BZ B EQ
Branch if Not Zero BNZ BNE
Branch if Equal BE BEQ
Branch in Not Equa 1 BNE BNE
Branch if Carry BC BCS
Branch if Positive BP BPL
Branch if Negative BN BM!
Branch if Ove rf 1 ow BV BVS
Branch if No Overflow BNV BVC
Branch if Greater Than BGT BGT
Branch if Greater Than or Equa BGE BGE
Branch if Less Than BLT BLT
Branch if Higher BH BHI
Branch in Not Higher BNH BLS
Branch if Lower BL BCS
Branch if Not Low er BNL BCC

SUBROUTINE CALL

Call Subroutine CALL B SR, JSR

RETURN

Return from Subroutine RET RTS
Return from Interrupt RETI RTI

MISCELLANEOUS

No Operation · NOP NOP
Push PUSH PSH
Pop POP PUL
Wait WAIT WAI
Adjust Decima 1 ADJ DAA

Enable Interrupt EI SEI
Disable Interrupt DI CLI
Break BRK SW!

so

STANDARD INSTRUCTION MNEMONICS FOR Z80, 8080,8085

INSTRUCTION STANDARD ZILOG INTEL
MNEMONIC MNEMONIC MNEMONIC

ARITHMETIC

Add ADD ADD ADD, AD I,
DAD

Add with Carry ADDC ADC ADC,ACI
Subtract SUB SUB SUB, SU I
Subtract with Carry SUBC SBC SBB,SBI
Increment INC INC INX,INR
Decrement DEC DEC DCX,DCR
Compare CMP CP,CPI, CMP,CPI

CPD
Comp a re, Multiple CMPM CPIR,CPDR
Negate NEG NEG

LOGICAL

And AND AND ANA,ANI
Or . OR OR ORA,ORI
Exclusive Or XOR XOR XRA,XRI
Not NOT CPL CMA
Not Carry NOTC CCF CMC
Shift Right SHR SRL
Shift Left SHL SLA ADD,DAD
Shift Right Arithmetic SHRA SRA
Rotate Right ROR RRCA,RRC RAR
Rotate Left ROL RLCA,RLC RAL
Rotate Right Through Carry RORC RR, RRA RRC
Rotate Left Through Carry ROLC RL,RLA RLC
Rotate Right Decima 1 ROR4 RLD
Rotate Left Decimal ROL4 RLD
Test Bit TESTl BIT

DATA TRANSFER

Load

Store

Move

Move Block
Exchange

Input

Input Block
Output

Ou t p u t B 1 o ck
Set Bit
Clear Bit
Set Carry
Set Interrupt Mode

BRANCH

Branch
Branch if Zero
Branch if Not Zero

Branch if Equal
Branch if Not Equal

Br an ch i f Ca r ry
B ranch i f No Ca r ry

Branch if Positive
Branch if Negative
Branch if Parity Even
Branch if Parity Odd
Branch if Low
Branch if Not Low
Decrement and Branch
if Not Zero

CALL

Call
Call if Zero
Call if Not Zero
Call if Equal

LD

ST

MOV

MOVBK
XCH

IN

INBK
OUT

OUT BK
SETl
CLRl
SETC
SETI

BR
BZ
BNZ

BE
BNE

BC
BNC

BP
BN
BPE
BPO
BL
BNL

DBNZ

CALL
CALLZ
CALL NZ
CALLE

LD

LD

LD,LDI,
LDD
LD IR, LDDR
EX, EXX

IN, INI,
IND
INIR, INDR
OUT, OUT I,
OUTD
OTIR,OTDR
DET
RES
SCF
IM

51

MOV,LXI,
LHLD,
LDA,MVI
MOV,STAX,
SHLD,
STA
MOV,MVI,
SPHL

XCHG,
XTHL
IN,RIM

OUT, SIM

STC

JP JMP,PCHL
JP Z, JR Z JZ
JP NZ, JNZ
JR NZ
JP Z,JR Z JZ
JP NZ, JNZ
JR NZ
JP C,JR C
JP NC, JNC

JR NC
JP p
JP M
JP PE
JP PO
JP C
JP NC

DJNZ

CALL,RST
CALL Z
CALL NZ
CALL Z

JP
JM
JPE
JPO
JC
JNC

CALL, RST
CZ
c z
CZ

52

Call if Not Equal CALLNE CALL NZ CNZ
Call if Carry CAL LC CALL N cc
Ca 11 if No Carry CALL NC CALL NC CNC
Call if Positive CAL LP CALL p CP
Ca 11 if Negative CALLN CALL M CM
Call if Parity Even CALLPE CALL PE CPE
Call if Parity Odd CALL PO CALL PO CPO
Call if Low CAL LL CALL c cc
Call if Not Low CALL NL CALL NC CNC

RETURN

Return RET RET RET
Return if Zero RETZ RET z RZ
Return if Not Zero RETNZ RET NZ RNZ
Return if Equal RETE RET z RZ
Return if Not Equa 1 RETNE RET NZ RNZ
Return if Carry RETC RET c RC
Return if No Carry RETNC RET NC RNC
Return if Positive RETP RET p RP
Return if Negative RETN RET M RM
Return if Parity Even RETPE RET PE RPE
Return if Parity Odd RETPO RET PO RPO
Return if Lower RETL RET c RC
Return if Not Low er RETNL RET NC RNC
Return from Interrupt RETI RETI
Return from In te rru pt

Non-Maskable RETIN RETN

MISCELLANEOUS

No opera ti on NOP NOP NOP
Push PUSH PUSH PUSH
Pop POP POP POP
Wait WAIT HALT HLT
Adjust Decima 1 ADJ DAA DAA
Enable Interrupt EI EI EI
Disable Interrupt DI DI DI

53

IEEE STANDARD INSTRUCTION MENEMONICS FOR THE 8086

INSTRUCTION

ARITHMETIC

Add
Add with Carry
Subtract
Sub t r a c t w i th Ca r ry
Inc rem en t
Decrement
Negate
Multiply
Multiply, Unsigned
Divide
Divide, Unsigned
Compare
Compare, Byte
Compare, Block
Compare, Block, Byte
Extend
Extend, Long

LOGICAL

And
Or
Exclusive Or
Not
Shift Right
Shift Left
Shift Right Arithmetic
Rotate Right
Rotate Left
Rotate Right Through Carry
Rotate Left Through Carry
Test
Not Carry

STANDARD
MNEMONIC

ADD
ADDC
SUB
SUBC
INC
DEC
NEG
MUL
MULU
DIV
DIVU
CMP
CMPB
CMPBK
CM PB KB
EXT
EXTL

AND
OR
XOR
NOT
SHR
SHL
SHRA
ROR
ROL
RORC
ROLC
TEST
NOTC

INTEL
1NEMONIC

ADD
ADC
SUB
SBB
INC
DEC
NEG
IMUL
MUL
IDIV
DIV

CMPW
CMPB
SCAW
SCAB

CBW
CWD

AND
OR
XOR
NOT
SHR
SHL, SAL
SAR
ROR
ROL
RCR
RCL
TEST
CMC

54

DATA TRANSFER

Load LD MOV, LEA,
LES,
LODS,
LODW

Load, Byte LDB LODB
Store ST MOV
Store, Byte STB STOB
Move MOV MOV,LAHF
Move, Byte MOVB MOVB
Exchange XCH XHCG
In IN INW
In, Byte INB IN
Out OUT OUTW
Out, Byte OUTB OUT
Clear Carry CLRC CLC
Set Carry SETC STC
Clear Direction CLRD CLD
Set Direction SETD STD
Break BRK INT
Break on Ove rf 1 ow BRKV INTO
Escape ESC ESC
Lock LOCK LOCK

BRANCH

Branch BR JMP
Branch if Zero/Equal BZ, BE JZ,JE
Branch in Not Zero/Not Equa 1 BNZ, NB E JNZ,JNE
Branch if Positive BP JS
Branch if Negative BN JNS
Branch if Overflow BV JNO
Branch if No Ove rf 1 ow BNV JNO
Branch if Greater Than BFT JNLE/JG
Branch if Greater Than or Equa 1 BHE JNL/ JG E
Branch if Less Than BLT JL/ JNG E
Branch if Less Than or Equa 1 BLE JLE/JNG
Branch if Higher BH JNBE/JA
Branch if Not Higher BNH JBE/JNA
Branch if Lower BL JB/JNAE
Branch if Not Lower BNL JNB/JAE
Branch if Parity Even BPE JNP/JPE
Branch if parity Odd BPO JNP/JPO
Branch if ex Zero BCXZ JCXZ
Decrement and Branch if
Not Zero DBNZ LOOP
Decrement and Branch if
Not Zero and Equa 1 DBNZ E LOOP/

LOOPE

Decrement and Branch if
Not Zero and Not Equal

SUBROUTINE CALL

Call

RETURN

Return
Return from Interrupt

MISCELLANEOUS

Halt
Wait
Enable Interrupt
Disable Interrupt
Adjust Nibble Subtract
Adjust Nibble Add
Adjust Byte Subrtact
Adjust Byte Add
Convert Binary to Decimal
Convert Decimal to Binary
Push

Pop
Repeat
Translate

DB NZ NE

CALL

RET
RETI

HALT
WAIT
EI
DI
AUJ4S
ADJ4A
AD JBS
ADJBA
CVTBD
CVTDB
PUSH

POP
REP
TR

55

LOOPNZ/
LOOPNE

CALL

RET
IRET

HLT
WAIT
STI
CLI
DAS
DAA
AAS
AAA
AAM
AAD
PUSH,

PUS HF
POP,POPF
REP
XLAT

APPENDIX B

MATERIAL PROVIDED TO SUBJECTS

The purpose of this program is to locate the first

occurrence of the ASCII letters "AB" in a memory block.

The memory block starts at location lOOOH and continues

through and including lOFFH. The memory block is first

searched for the character "A". When an "A" is found,

the next location is compared with the letter "B". If a

"B" is found in this location the address of the start

of the "AB" character sequence is written into locations

llOOH and 1101H (least significant byte first). The

search is continued at most 255 times if no match is

found.

56

PROGRAM DESIGN LANGUAGE

Sta rt
BC<--OFFH
HL<--lOOOH
Do While BC>O

A<--" A"
If A=M (HL)

Then HL<--HL+l
A<--"B"
If A=M (HL)

Then HL<--HL-1
Exit Do

End If
Else HL<- -HL+ 1

End If
C<--C-1

End Do
(1100)<--HL

Finish

57

The Z80 microprocessor contains three groups of

registers.

registers.

The first group consists of a set of 8 bit

Th e 8 b i t r e g i s t e rs (A, B , C , D , E, H, L) may b e

used individually or as 16-bit registers in pairs

58

(BC,DE,HL). In addition, there is an 8-bit accumulat or

and a flag register.

The second group is an exact duplicate of the

first. The alternate register set (A' ,B' ,C' ,D', E' ,H' ,L')

and (B'C', D'E', H'L') is made available to the

programmer via the "exchange" instruction group.

The third group of registers consists of two 16-bit

index registers (IX and IY), the stat.:k pointer (SP), the

program counter (PC), as well as the interrupt vector

(I) and the dynamic memory refresh register (R) •

59

MAIN REGISTER SET ALTERNATE REGISTER SET

A Accumulator A' Accumulator

F Flag Register F' Flag Register

B General Purpose B' General Purpose

c General Purpose c' General Purpose

D General Purpose D' General Purpose

E General Purpose E' General Purpose

H General Purpose H' General Purpose

L General Purpose L' General Purpose

<--------- 8 bits---------->

<--------------------- 16 bits ----------------------->

IX Index Register

IY Index Register

SP Stack Pointer

PC Program Counter

I Interrupt Vector R Memory Refresh

<--------- 8 bits---------->

REG I STER SIZE
(bits)

A,A' Accumulator

F, F' Flags
(P SW, PSW')
B, B' General purpose

c, c' General Purpose
D,D' General Purpose

E, E' General Purpose
H, H' General Purpose

L, L' General Purpose

I Interrupt Register

R Refresh Register

IX Index Register
IY Index Register
SP Stack Pionter

PC Program Counter

8

8

8

8
8

8
8

8

8

8

1 6
16
1 6

16

REMARKS

Stores an operand or the
results of an of an
operation.
See instruction set.

60

Can be used separately or as
a 16-bit register with C.
See B, above.
Can be used separately or as
a 16-bit register with E.
See D, above.
Can be used separately or as
a 16-bit register with L.
See H, above.
Note: The (B,C),(D,E), and
(H,L) sets are combined as
fol lows:
B High byte C - Low byte
D - High byte E - Low byte
H - Hi g h by t e L Low by t e
Stores upper eight bits of
m em o ry a d d r es s f o r v e c t o r e d
interrupt processing.
Provides user-transparent
d y n am i c me m o ry r e f r es h.
Automatically incremented
and placed on the address
bus during each instruction
fetch cycle.
Used for indexed addressing.
Same as IX, ab ave.
Stores addresses or data
temporarily. See Push or
Pop in instruction set.
Holds address of next
instruction.

SYMBOL

r

n

ii

d

zz

nn

rr

qq

s

IFF

CY

ZF

tt

uu

61

ZILOG Z80 MNEMONICS

OPERATION

one of the 8-bit registers A,B,C,D,E,H,L

any 8-bit absolute value

an index register reference, either X or Y

an 8-bi index displacement, where
-1 28 < d < 127

B for the BC register pair, D for the DE
pair

any 16-bit value, absolute or relocatable

B for the BC register pair, D for the DE
pair, H for the HL pair, SP for the stack
pointer

B for the BC register pair, D for the DE
pair, H for the HL pair, PSW for the
A/Flag pair.

any of r (defined above), M, or d(ii)

interrupt flip-flop

ca r ry f 1 i p - f 1 op

zero flag

B for the BC register pair, D for the DE
pair, SP for the stack pointer, X for
index register IX

B for the BC register pair, D for the DE
pair, SP for the stack pointer, Y for
index register IY

b

PC

b{n}

vv/H

vv/L

Iv

Ov

w <-- v

w <--> v

a bit position in an 8-bit byte, where
the bits are numbered from right to left
0 t 0 7.

program counter

bit n of the 8-bit value or register v

the most significant byte of the 16-bit
value or register vv

the least significant byte of the 16-bit
value or register vv

an input operation on port v

an output operation on port v

the value of w is replaced by the value
of v

62

the value of w is exchanged with the value
of v

63

8 BIT LOAD GROUP

ZILOG
MNEMONIC OPERATION

LD r,r
,

<-- r
,

r
LD r, (HL) r <-- (HL)
LD r, (Iii + d) r <-- (ii + d)

LD (HL),r (HL) <-- r
LD (Iii + d) , r (ii + d) <-- r

LD r,n r <-- n
LD (HL) , n (HL) <-- n
LD (Iii + d) , n (ii + d) <-- n
LD A, (nn) A <-- (nn)
LD (nn),A (nn) <-- A
LD A, (zz) A <-- (z z)

LD (z z) , A (z z) <-- A

LD A,I A <-- I
LD A,R A <-- R
LD I,A I <-- A
LD R,A R <-- A

64

1 6 BIT LOAD GROUP

Z80
MNEMONIC OPERATION

LD rr,nn rr <-- nn
LD ii,nn ii <-- nn
LD BC,(nn) B <-- (nn + 1)

c <-- (nn)
LD DE, (nn) D <-- (nn + 1)

E <-- (nn)
LD HL, (nn) H <-- (nn + l)

L <-- (nn)
LD IX, (nn) IX/H <-- (nn + 1)

IX/L <-- (nn)
LD IY,(nn) IY/H <-- (nn + l)

IY/L <-- (nn)
LD SP, (nn) SP/H <-- (nn + 1)

SP/L <-- (nn)
LD (nn),BC (nn + l) <-- B

(nn) <-- c
LD (nn),DE (nn + l) <-- D

(nn) <-- E
LD (nn) , HL (nn + 1) <-- H

(nn) <-- L
LD (nn),IX (nn + 1) <-- IX/H

(nn) <-- IX/L
LD (nn), IY (nn + l) <-- IY /H

(nn) <-- IY/L
LD (nn), SP (nn + l) <-- SP/H

(nn) <-- SP/L
LD SP,HL SP <-- HL
LD SP,IX SP <-- IX
LD SP, IY SP <-- IY
PUSH qq (SP-1) <-- qq/H

(SP- 2) <-- qq/L
SP <-- SP- 2

PUSH ii (SP-1) <-- ii/H
(SP-2) <-- ii/L
SP <-- SP-2

POP qq qq/H <-- (SP-1)
qq/L <-- (SP)
SP <-- SP-2

POP ii ii/H <-- (SP+ 1)
ii/L <-- (SP)
SP <-- SP + 2

65

66

EXCHANGE, BLOCK TRANSFER, AND SEARCH GROUP

Z80
MNEMONIC

EX DE, HL
EX AF,AF'
EXX
EX (SP),HL

EX (SP) , IX

EX (SP) , IY

LDI

LDIR
LDD

LDDR
CPI

CPIR
CPD

CPDR

OPERATION

HL <--> DE
PSW <--> PSW'
BCDEHL <--> BCDEHL'
H <--> (SP+ 1)
L <--> (SP)
IX/H <-->(SP+ 1)
IX/L <--> (SP)
IY /H <--> (SP + 1)
IY/L <--> (SP)
(DE) <-- (HL)
DE <-- DE + 1
HL <-- HL + 1
BC <-- BC-1
repeat LDI until BC-0
(DE) <-- (HL)
DE <-- DE-1
HL <-- HL-1
BC <-- BC-1
repeat LDD until BC=O
A - (HL)
HL <-- HL + 1
BC <-- BC-1
repeat CCI until A=(HL)
A - (HL)
HL <-- HL-1
BC <-- BC-1
repeat CCD until A=(HL)
or BC=O

67

8 BIT ARITHMETIC AND LOGICAL

Z80
MNEMONIC OPERATION

ADD A,r A <-- A + r
ADD A, (HL) A <-- A + (HL)
ADD A, (Iii + d) A <-- A + (ii + d)
ADD A,n A <-- A + n
ADC A, s A <-- A + s + CY
ADC A,n A <-- A + n + CY
SUB s A <-- A - s
SUB n A <-- A - n
SBC A, s A <-- A - s - CY
SBC A,n A <-- A - n - CY
AND s A <-- A ~ s
AND n A <-- A ~ n
OR s A <-- A v s
OR n A <-- A v n
XOR s A <-- A + s
XOR n A <-- A + n
CP s A - s
CP n A - n
INC r r <-- r + 1
INC (HL) (HL) <-- (HL) + 1
INC (Iii + d) (ii + d) <-- (ii + d) + 1
DEC r r <-- r - 1
DEC (HL) (HL) <-- (HL) - 1
DEC (Iii + d) (kk + d) <-- (ii + d) - 1

68

GENERAL PURPOSE ARITHMETIC AND CONTROL GROUP

Z80
MNEMONIC

DAA

CPL
NEG
CCF
SCF
NOP
HALT
DI
EI
IMO
IM 1
IM2

OPERATION

convert A to packed BCD
after an add or subrtact
of packed BCD operands
A<-- -A-A
A <-- -A
CY <-- -cy
CY <-- 1
no operation
halt
!FF <-- 0
!FF <-- 1
interrupt mode 0
interrupt mode 1
interrupt mode 2

69

16 BIT ARITHMETIC GROUP

Z80
MNEMONIC OPERATION

ADD HL,rr HL <-- HL + rr
ADC HL,rr RL <-- HL + rr + CY
SBC HL,rr HL <-- HL - rr - CY
ADD IX,tt IX <-- IX + tt
ADD IY,uu IY <-- IY + uu
INC rr rr <-- rr + 1
INC ii ii <-- ii + 1
DEC rr rr <-- rr - 1
DEC ii ii <-- ii - 1

Z80
MNEMONIC

RLCA

RLA

RRCA

RRA

RLC r
RLC (HL)
RLC (Iii +
RL s
RRC s
RR s

SLA s

SRA s

SRL s

RLD

RRD

ROTATE AND SHIFT GROUP

OPERATION

CY <-- 7 <-- 0 <--
A

CY <-- 7 <-- 0 <--
A

7 --> 0 --> CY
A

7 --> 0 --> CY
A

Same diagram as for
Same diagram as for

d) Same diagram as for
Same diagram as for
Same diagram as for
Same diagram as for

CY <-- 7 <-- 0 <-- 0
s

7 --> 0 --> CY
s

0 --> 7 --> 0 --> CY
s

A 7 4 3 0
...... I
I v

(HL) 7 4 3 0

A 7 4 3 0

I
v I

(HL) 7 4 3 0

70

RLC
RLC
RLC
RAL
RRC
RAR

BIT SET, RESET, AND TEST GROUP

Z80
MNEMONIC

BIT b,r
BIT b, (HL)
Bit b, (Iii+ d)
SET b, r
SET b, (HL)
SET b, (Iii+ d)
RES b, s

OPERATION

ZF <-- -r-r{b}
ZF <-- -(RL){b}
ZF <-- (-(Iii+ d){b}
r{b} <-- 1
(HL){b} <-- 1
(Iii + d){b} <-- 1
S{b} <-- 0

7 1

Z80
MNEMONIC

JP nn
JP Z,nn

JP NZ,nn
JP C,nn
JP NC,nn
JP PO,nn
JP PE,nn
JP P,nn
JP M,nn
JP PE,nn
JP PO,nn
JR e

JR Z,e

JR NZ,e
JR C,e
JRNC,en
DJNZ e

JP (HL)
JP (IX)
JP (IY)

JUMP GROUP

OPERATION

PC <-- nn
if zere, then JMP
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if ave rf low
i f n o o v e r f 1 ow
PC <-- PC + e
where e=nn - PC
-126< e < 129
if zero, then JMPR
else continue
if not zero
if carry
if not carry
B <-- B - 1
if B=O then continue
else JMPR
PC <-- HL
PC <-- IX
PC <-- IY

72

Z80
MNEMONIC

CALL nn

CALL Z,nn

CALL NZ,nn
CALL C,nn
CALL NC,nn
CALL PO,nn
CALL PE,nn
CALL P,nn
CALL M,nn
CALL PE,nn
CALL PO,nn
RET

RET z

RET NZ
TER c
RET NC
RET PO
RET PE
RET p

RET M
RET PE
RET PO
RETI
RETN

RST n

CALL AND RETURN GROUP

OPERATION

(SP-1)
(SP-2)
SP

<-- PC/H
<-- PC/L
<-- SP- 2

PC <-- nn
if zero, then CALL
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
i f n o ov e r f 1 ow
PC/H <-- (SP + 1)
PC /L <-- (SP)
SP <-- SP + 2
if zero, then RET
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
if no overflow

73

return from interrupt
return from non-maskable
interrupt
(SP-1) <-- PC/H
(SP-2) <-- PC/L
PC <-- 8 * n
where 0 < n < 8

74

INPUT AND OUTPUT GROUP

Z80
MNEMONIC OPERATION

IN A, (n) A <-- In
IN r, (C) r <-- I(C)
!NI (HL) <-- I(C)

B <-- B - l
HL <-- HL + 1

INIR repeat INI until B=O
IND (HL) <-- I(C)

B <-- B - 1
HL <-- HL - 1

INDR repeat IND until B=O
OUT (n), A On <-- A
OUT (C) , r O(C) <-- r
OUT! O(C) <-- (HL)

B <-- B - 1
HL <--HL + 1

OTIR repeat OUT! until B=O
OUTD O(C) <-- (HL)

B <-- B - 1
HL <-- HL - 1

OUDR repeat OUTD until B=O

SYMBOL

r

n

ii

d

zz

nn

rr

qq

s

IFF

CY

ZF

tt

uu

75

TDL Z80 MNEMONICS

OPERATION

one of the 8-bit registers A,B,C,D,E,R,L

any 8-bit absolute value

an index register reference, either X or Y

an 8-bi index displacement, where
-1 28 < d < 127

B for the BC register pair, D for the DE
pair

any 16-bit value, absolute or relocatable

B for the BC register pair, D for the DE
pair, H for the HL pair, SP for the stack
pointer

B for the BC register pair, D for the DE
pair, H for the HL pair, PSW for the
A/Flag pair.

any of r (defined above), M, or d(ii)

interrupt flip-flop

ca r ry f 1 i p - f 1 op

zero flag

B for the BC register pair, D for the DE
pair, SP for the stack pointer, X for
index register IX

B for the BC register pair, D for the DE
pair, SP for the stack poiuter, Y foL
index register IY

b

PC

b{n}

vv/H

vv/L

Iv

Ov

w <-- v

w <--> v

a bit position in an 8-bit byte, where
the bits are numbered from right to left
0 t 0 7.

p r o g ram c ou n t e r

bit n of the 8-bit value or register v

the most significant byte of the 16-bit
value or register vv

the least significant byte of the 16-bit
value or register vv

an input operation on port v

an output operation on port v

the value of w is replaced by the value
of v

76

the value of w is exchanged with the value
of v

8 BIT LOAD GROUP

TDL
MNEMONIC

MOV r,r'
MOV r, M
MOV r,d(ii)
MOV M,r
MOV d (ii) , r
MVI r,n
MVI M,n
MVI d(ii), n
LDA nn
STA nn
LDAX zz
STAX zz
LDAI
LDAR
STAI
STAR

OPERATION

r <-- r'
r <-- (HL)
r <-- (ii + d)
(HL) <-- r
(ii + d) <-- r
r <-- n
(HL) <-- n
(ii + d) <-- n
A <-- (nn)
(nn) <-- A
A<-- (zz)
(zz) <-- A
A <-- I
A <-- R
I <-- A
R <-- A

77

78

1 6 BIT LOAD GROUP

TDL
MNEMONIC OPERATION

LXI rr,nn rr <-- nn
LXI ii,nn ii <-- nn
LBCD nn B <-- (nn + 1)

c <-- (nn)
LDED nn D <-- (nn + 1)

E <-- (nn)
LHLD nn H <-- (nn + 1)

L <-- (nn)
LIXD nn IX/H <-- (nn + 1)

IX/L <-- (nn)
LIYD nn IY/H <-- (nn + 1)

IY/L <-- (nn)
LSPD nn SP/H <-- (nn + 1)

SP/L <-- (nn)
SBCD nn (nn + 1) <-- B

(nn) <-- c
SDED nn (nn + 1) <-- D

(nn) <-- E
SHLD nn (nn + 1) <-- H

(nn) <-- L
SIXD nn (nn + 1) <-- IX/H

(nn) <-- IX/L
SIYD nn (nn + 1) <-- IY/H

(nn) <-- IY/L
SSPD nn (nn + 1) <-- SP/H

(nn) <-- SP/L
SPHL SP <-- HL
SPIX SP <-- IX
SPIY SP <-- IY
PUSH qq (SP-1) <-- qq/H

(SP- 2) <-- qq/L
SP <-- SP-2

PUSH ii (SP-1) <-- ii/H
(SP-2) <-- ii/L
SP <-- SP-2

POP qq qq/H <-- (SP-1)
qq/L <-- (SP)
SP <-- SP-2

POP ii ii/H
ii/L
SP

<-
<- -
<--

(SP + 1)
(SP)
SP + 2

79

80

EXCHANGE, BLOCK TRANSFER, AND SEARCH GROUP

TDL
MNEMONIC

XCHG
EXAF
EXX
XTHL

XTIX

XTIY

LDI

LDIR
LDD

LDDR
CCI

CCIR
CCD

CCDR

OPERATION

HL <--> DE
PSW <--> PSW'
BCDEHL <--> BCDEHL'
H <--> (SP+ 1)
L <--> (SP)
IX/H <--> l..,~ + 1)
IX/L <--> (SP)
IY /H <--> (SP + 1)
IY /L <--> (SP)
(DE) <-- (HL)
DE <-- DE + 1
HL <-- HL + 1
BC <-- BC-1
repeat LDI until BC=O
(DE) <-- (HL)
DE <-- DE-1
HL <-- HL-1
BC <-- BC-1
repeat LDD until BC=O
A - (HL)
HL <-- HL + 1
BC <-- BC-1
repeat CCI until A=(HL)
A - (HL)
HL <-- HL-1
BC <-- BC-1
repeat CCD until A=(HL)
or BC=O

8 1

8 BIT ARITHMETIC AND LOGICAL

TDL
MNEMONIC OPERATION

ADD r A <-- A + r
ADD M A <-- A + (HL)
ADD d(ii) A <-- A + (ii + d)
ADI n A <-- A + n
ADC s A <-- A + s + CY
ACI n A <-- A + n + CY
SUB s A <-- A - s
SUI n A <-- A - n
SBB s A <-- A - s - CY
SBI n A <-- A - n - CY
ANA s A <-- A s
ANI n A <-- A .-

n
ORA s A <-- A v s
ORI n A <-- A v n
XRA s A <-- A + s
XRI n A <-- A + n
CMP s A - s
CPI n A - n

INR r r <-- r + 1
INR M (HL) <-- (HL) + 1
INR d(ii) (ii + d) <-- (ii + d) + 1
DCR r r <-- r - 1
DCM M (HL) <-- (HL) - l
DCR d(ii) (kk + d) <-- (ii + d) - 1

82

GENERAL PURPOSE ARITHMETIC AND CONTROL GROUP

TDL
MNEMONIC

DAA

CMA
NEG
CMC
STC
NOP
HLT
DI
EI
IMO
IM 1
IM2

OPERATION

convert A to packed BCD
after an add or subrtact
of packed BCD operands
A <-- - A
A <-- -A
CY <-- -cy
CY <-- 1
no operation
halt
IFF <-- 0
IFF <-- 1
interrupt mode 0
i n t e r ru p t m o d e 1
interrupt mode 2

83

16 BIT ARITHMETIC GROUP

TDL
MNEMONIC OPERATION

DAD rr HL <-- HL + rr
DADC rr HL <-- HL + rr + CY
D SBC rr HL <-- HL - rr - CY
DADX tt IX <-- IX + tt
DADY uu IY <-- IY + uu
INX rr rr <-- rr + 1
INX ii ii <-- ii + 1
DCX rr rr <-- rr - 1
DCX ii ii <-- ii - 1

ROTATE AND SHIFT GROUP

TDL
MNEMONIC

RLC

RAL

RRC

RAR

RLCR r
RLCR M
RLCR d(ii)
RALR s
RRCR s
RARR s

SLAR s

SRAR s

SRLR s

RLD

RRD

OPERATION

CY <-- 7 <-- 0 <--
A

CY <-- 7 <-- 0 <--
A

7 --> 0 --> CY
A

7 --> 0 --> CY
A

Same diagram as for
Same diagram as for
Same diagram as for
Same diagram as for
Same diagram as for
Same diagram as for

CY <-- 7 <-- 0 <-- 0
s

7 --> 0 --> CY
s

0 --> 7 --> 0 --> CY
s

A 7 4 3 0
..... I
I v

(HL) 7 4 3 0

A 7 4 3 0

I
v I

(HL) 7 4 3 0

84

RLC
RLC
RLC
RAL
RRC
RAR

85

BIT SET, RESET, AND TEST GROUP

TDL
MNEMONIC OPERATION

BIT b,r ZF <-- - r{b}
BIT b,M ZF <-- -(HL){b}
BIT b,d(ii) ZF <-- -(Iii+ d) {b}
SET b,r r{b} <-- 1
SET b,m (HL){b} <-- 1
SET b,d(ii) (Iii + d){b} <-- 1
RES b,s S{b} <-- 0

TDL
MNEMONIC

JMP nn
JZ nn

JNZ nn
JC nn
JNC nn
JPO nn
JPE nn
JP nn
JM nn
JO nn
JNO nn
JMPR nn

JRZ nn

JRNZ nn
JRC nn
JRNC nn
DJNZ nn

PCHL
PCIX
PCIY

JUMP GROUP

OPERATION

PC <-- nn
if zere, then JMP
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
i f no o v e r f 1 ow
PC <-- PC + e
where e=nn - PC
-126< e < 129
if zero, then JMPR
else continue
if not zero
if carry
if not carry
B <-- B - 1
if B=O then continue
else JMPR
PC <-- HL
PC <-- IX
PC <-- IY

86

TDL
MNEMONIC

CALL nn

CZ

CNZnn
CC nn
CNC nn
CPO nn
CPE nn
CP nn
CM nn
CO nn
CNO nn
RET

RZ

RNZ
RC
RNC
RPO
RPE
RP
RM
RO
RNO
RETI
RETN

RST n

CALL AND RETURN GROUP

OPERATION

(SP-1)
(SP-2)
SP
PC

<--
<--
<--
<--

PC/H
PC/L
SP-2
nn

if zero, then CALL
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
i f no o v e r f 1 ow
PC/H <-- (SP + 1)
PC/L <-- (SP)
SP <-- SP + 2
if zero, then RET
else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if ove rf 1 ow
i f no ov e r f 1 ow

87

return from interrupt
return from non-maskable
interrupt
(SP-1) <-- PC/H
(SP-2) <-- PC/L
PC <-- 8 * n
where 0 < n < 8

88

INPUT AND OUTPUT GROUP

TDL
MNEMONIC OPERATION

IN n A <-- In
INP r r <-- I(C)
!NI (HL) <-- I(C)

B <-- B - 1
HL <-- HL + 1

INIR repeat !NI until B=O
IND (HL) <-- I(C)

B <-- B - 1
HL <-- HL - 1

INDR repeat IND until B=O
OUT n On <-- A
OUTP r O(C) <-- r
OUT! O(C) <-- (HL)

B <-- B - 1
HL <--HL + 1

OUT IR repeat OUT! until B=O
OUTD O(C) <-- (HL)

B <-- B - 1
HL <-- HL - l

OUTDR repeat OUTD until B=O

89

BIBLIOGRAPHY

C oh en , Ha rv e y A • , a n d F r a n c i s , Rh y s S. " Ma c r o - As s em b 1 e r s
and Macro-Based Languages in Microprocessor
So f tw a re Dev e 1 op men t • " Computer (February 1 9 7 9) :
43 - 57.

Crespi - Reghiz zi, Stefano; Corti, Pierlvigi; and Dapra,
Alberto. "A Survey of Microprocessor Languages."
Computer (January 1980): 37 - 46.

Davies, Owen L. The Design and Analysis of Industrial
Exp e rim en t s • New Y o r k , New Yo r k : Long ma n , 1 9 6 0 •

Fairclough, Dennis A.
Instruction Set."

"A Unique Microprocessor
Micro (May 1982): 8 - 19.

Fischer, Wayne P. "Microprocessor Assembly Language
D r a f t S t and a r d • " C om p u t e r (D e c em b e r 1 9 7 9) :
16- 40.

Johnson, Gearold R., and Mueller, Robert A. "Automated
Generation of Cross - System Software for
Mi c r o c om p u t e rs • " C om p u t e r (J a nu a ry 1 9 7 7) :
10 - 17.

Korn, Granino A. "A Proposed Method for Simplified
Microcomputer Programming." Computer (October
1975): 55 - 66.

Kriger, Morris. Structured Microprocessor Programm.!..!!.z.
New Yo rk , New Yo r k : Y o u rd on , 1 9 7 9 •

.
Patterson, David A., and Piepho, Richard s.

RISCs in High-Level Language Support."
(November, 19 8 2) : 9 - 19.

"Assessing
Micro

Shneiderman, Ben.
Massachusett:

Software Psychology. Cambridge,
Winthrop Publishers, Inc, 1980.

Tanen b au m , And r ew S • ; K 1 i n t , Pa u 1 ; and B ohm , W i m •
"Guidelines for Software Portability."
Software - Practice and Experience 8 (1978):
59 - 65.

	Pilot Study of Applicability of a Generic Microprocessor Assembly Language
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv

	CHAPTER I. INTRODUCTION
	01
	02
	03
	04
	05
	06

	CHAPTER II. THE PROBLEM
	07
	08

	CHAPTER III. STATISTICS
	09
	10
	11
	12

	CHAPTER IV. EQUIPMENT
	13
	14

	CHAPTER V. SUBJECTS
	15

	CHAPTER VI. EXPERIMENTAL METHODOLOGY
	16
	17
	18

	CHAPTER VII. RESULTS
	19
	20
	21

	CHAPTER VIII. DISCUSSION OF RESULTS
	22
	23
	24
	25
	26

	APPENDICES
	27
	Appendix A. IEEE Generic Instruction Set
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55

	Appendix B. Material Provided to Subjects
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88

	BIBLIOGRAPHY
	89

