Cell cycle, mitosis, lim kinase 1, limk1, aurora a, p27, spindle


LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, has been shown to be involved in cell cycle progression. In this study we examine the role of LIMK1 in G1 phase and mitosis. We found ectopic expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase Cyclin D1/Cdk4 inhibitor. Overexpression of LIMK1 resulted in lower levels of p27Kip1 and p27Kip1-pY88 (inactive p27Kip1). Knockdown of LIMK1 resulted in elevated levels of p27Kip1 and p27Kip1-pY88. Together, these results suggest LIMK1 regulates progression of G1 phase through modulation of p27Kip1 expression. LIMK1 is involved in the mitotic process through inactivating phosphorylation of Cofilin. Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with ?-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one other's function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation. The substrates of LIMK1, Aur-A and Cofilin, are also involved in the mitotic process. Aur-A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through regulation of the actin cytoskeleton. Aur-A phosphorylates Cofilin at multiple sites including S3 resulting in inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during progression of prophase to metaphase. Inhibition of Aur-A activity altered subcellular localization of Cofilin and induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the early mitotic stage through regulation of actin cytoskeleton reorganization. ?


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Chakrabarti, Ratna


Doctor of Philosophy (Ph.D.)


College of Medicine


Burnett School of Biomedical Sciences

Degree Program

Biomedical Sciences








Release Date


Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Open Access)