Optical freeform shape description, shape description, freeform shape, parallel processing, local shape description


Slow-servo single-point diamond turning as well as advances in computer controlled small lap polishing enable the fabrication of freeform optics, specifically, optical surfaces for imaging applications that are not rotationally symmetric. Freeform optical elements will have a profound importance in the future of optical technology. Orthogonal polynomials added onto conic sections have been extensively used to describe optical surface shapes. The optical testing industry has chosen to represent the departure of a wavefront under test from a reference sphere in terms of orthogonal φ-polynomials, specifically Zernike polynomials. Various forms of polynomials for describing freeform optical surfaces may be considered, however, both in optical design and in support of fabrication. More recently, radial basis functions were also investigated for optical shape description. In the application of orthogonal φ-polynomials to optical freeform shape description, there are important limitations, such as the number of terms required as well as edge-ringing and ill-conditioning in representing the surface with the accuracy demanded by most stringent optics applications. The first part of this dissertation focuses upon describing freeform optical surfaces with φ-polynomials and shows their limitations when including higher orders together with possible remedies. We show that a possible remedy is to use edge-clusteredfitting grids. Provided different grid types, we furthermore compared the efficacy of using different types of φ-polynomials, namely Zernike and gradient orthogonal Q-polynomials. In the second part of this thesis, a local, efficient and accurate hybrid method is developed in order to greatly reduce the order of polynomial terms required to achieve higher level of accuracy in freeform shape description that were shown to require thousands of terms including many higher order terms under prior art. This comes at the expense of multiple sub-apertures, and as such iv computational methods may leverage parallel processing. This new method combines the assets of both radial basis functions and orthogonal phi-polynomials for freeform shape description and is uniquely applicable across any aperture shape due to its locality and stitching principles. Finally in this thesis, in order to comprehend the possible advantages of parallel computing for optical surface descriptions, the benefits of making an effective use of impressive computational power offered by multi-core platforms for the computation of φ-polynomials are investigated. The φ-polynomials, specifically Zernike and gradient orthogonal Q-polynomials, are implemented with a set of recurrence based parallel algorithms on Graphics Processing Units (GPUs). The results show that more than an order of magnitude speedup is possible in the computation of φ-polynomials over a sequential implementation if the recurrence based parallel algorithms are adopted.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Foroosh, Hassan


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Electrical Engineering and Computing

Degree Program

Computer Engineering








Release Date

December 2013

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)


Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic