Keywords

Green turtle, polyandry, mating, behavior, paternity, microsatellite

Abstract

Behavioral studies in the green turtle (Chelonia mydas) have indicated that promiscuous mating is commonplace. Though it has been shown that there is much variation in the rate of polyandry (females mating with multiple males), the drivers behind polyandry in this species are unknown. It has been speculated, but never demonstrated, that indirect benefits (fitness benefits resulting from offspring genetic diversity) play a role. However, previous tests of this hypothesis have limited scope of inference due to lack of environmental control. In this thesis, I attempted to study the indirect benefits of polyandry in Archie Carr National Wildlife Refuge (ACNWR) green turtles, limiting environmental variation by selecting nests over two week periods in a small subset of the ACNWR. Through the use of highly polymorphic microsatellite markers, I show that 85.7% of ACNWR green turtle females mate with multiple males, the highest rate yet reported for green turtles. I was successful in limiting environmental variation; however, I was unable to make comparisons among nests with one or multiple fathers because of a limited sample size of single father nests. Regardless, my thesis provides preliminary evidence (number of males per nest) that the density of males off Florida’s beaches may be relatively high, which is expected to be a driver behind the evolution of polyandry and likely plays a large role both in this population and the prevalence of multiple paternity in green turtles as a whole

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Fall

Advisor

Weishampel, John

Degree

Master of Science (M.S.)

College

College of Sciences

Department

Biology

Degree Program

Biology

Format

application/pdf

Identifier

CFE0005029

URL

http://purl.fcla.edu/fcla/etd/CFE0005029

Language

English

Release Date

December 2013

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Sciences, Sciences -- Dissertations, Academic

Restricted to the UCF community until December 2013; it will then be open access.

Included in

Biology Commons

Share

COinS