Keywords

Wireless Networking, Economics, Pricing, Auction, Game theory, Cognitive radio, Wireless Service Providers

Abstract

A paradigm shift from static spectrum allocation to dynamic spectrum access (DSA) is becoming a reality due to the recent advances in cognitive radio, wide band spectrum sensing, and network aware real--time spectrum access. It is believed that DSA will allow wireless service providers (WSPs) the opportunity to dynamically access spectrum bands as and when they need it. Moreover, due to the presence of multiple WSPs in a region, it is anticipated that dynamic service pricing would be offered that will allow the end-users to move from long-term service contracts to more flexible short-term service models. In this research, we develop a unified economic framework to analyze the trading system comprising two components: i) spectrum owner--WSPs interactions with regard to dynamic spectrum allocation, and ii) WSP--end-users interactions with regard to dynamic service pricing. For spectrum owner--WSPs interaction, we investigate various auction mechanisms for finding bidding strategies of WSPs and revenue generated by the spectrum owner. We show that sequential bidding provides better result than the concurrent bidding when WSPs are constrained to at most single unit allocation. On the other hand, when the bidders request for multiple units, (i.e., they are not restricted by allocation constraints) synchronous auction mechanism proves to be beneficial than asynchronous auctions. In this regard, we propose a winner determination sealed-bid knapsack auction mechanism that dynamically allocates spectrum to the WSPs based on their bids. As far as dynamic service pricing is concerned, we use game theory to capture the conflict of interest between WSPs and end--users, both of whom try to maximize their respective net utilities. We deviate from the traditional per--service static pricing towards a more dynamic model where the WSPs might change the price of a service almost on a session by session basis. Users, on the other hand, have the freedom to choose their WSP based on the price offered. It is found that in such a greedy and non-cooperative behavioral game model, it is in the best interest of the WSPs to adhere to a price threshold which is a consequence of a price (Nash) equilibrium. We conducted extensive simulation experiments, the results of which show that the proposed auction model entices WSPs to participate in the auction, makes optimal use of the common spectrum pool, and avoids collusion among WSPs. We also demonstrate how pricing can be used as an effective tool for providing incentives to the WSPs to upgrade their network resources and offer better services.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Fall

Advisor

Chatterjee, Mainak

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0001848

URL

http://purl.fcla.edu/fcla/etd/CFE0001848

Language

English

Release Date

December 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Restricted to the UCF community until December 2007; it will then be open access.

Share

COinS