nonlinear optics, nonlinear guided waves, solitons, instabilities


This work is divided into two main parts. In the first part (chapters 2-7) we consider the nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these arrangements the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. We also investigate the modulation instability of plane waves and the transverse instabilities of soliton stripe beams propagating in nonlinear nano-suspensions. We show that in these systems, the process of modulational instability depends on the boundary conditions. On the other hand, the transverse instability of soliton stripes can exhibit new features as a result of 1D collapse caused by the exponential nonlinearity. Many-body effects on the systems' nonlinear response are also examined. Mayer cluster expansions are used in order to investigate particle-particle interactions. We show that the optical nonlinearity of these nano-suspensions can range anywhere from exponential to polynomial depending on the initial concentration and the chemistry of the electrolyte solution. The consequence of these inter-particle interactions on the soliton dynamics and their stability properties are also studied. The second part deals with linear and nonlinear properties of optical nano-wires and the coupled mode formalism of parity-time (PT) symmetric waveguides. Dispersion properties of AlGaAs nano-wires are studied and it is shown that the group velocity dispersion in such waveguides can be negative, thus enabling temporal solitons. We have also studied power flow in nano-waveguides and we have shown that under certain conditions, optical pulses propagating in such structures will exhibit power circulations. Finally PT symmetric waveguides were investigated and a suitable coupled mode theory to describe these systems was developed.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date



Christodoulides, Demetrios


Doctor of Philosophy (Ph.D.)


College of Optics and Photonics


Optics and Photonics

Degree Program









Release Date

February 2010

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)