Keywords

NiTi, Shape Memory Alloy, Neutron Diffraction, Actuator, Texture, Lattice Strain, Transformation Strain, Open-Loop Strain, Phase Transformation, Load-Biased Thermal Cycling, Martensite, Austenite

Abstract

Polycrystalline NiTi shape memory alloys have the ability to recover their original, pre-deformed shape in the presence of external loads when heated through a solid-solid phase transformation from a lower-symmetry B19' martensite phase to a higher-symmetry B2 austenite phase. The strain associated with a shape memory alloy in an actuator application typically has thermal, elastic and inelastic contributions. The objective of this work was to investigate the aforementioned strains by recourse to in situ neutron diffraction experiments during selected combinations of heating, cooling and/or mechanical loading. The primary studies were conducted on polycrystalline Ni49.9Ti50.1 specimens on the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory. Quantitative information on the phase-specific strain, texture and phase fraction evolution was obtained from the neutron data using Rietveld refinement and single-peak analyses, and compared with macroscopic data from extensometry. First, the lattice strain evolution during heating and cooling in an unloaded sample (i.e., free-recovery experiment) was studied. The lattice strain evolution remained linear with temperature and was not influenced by intergranular stresses, enabling the determination of a thermal expansion tensor that quantified the associated anisotropy due to the symmetry of B19' NiTi. The tensor thus determined was subsequently used to obtain an average coefficient of thermal expansion that was consistent with macroscopic dilatometric measurements and a 30,000 grain polycrystalline self-consistent model. The accommodative nature of B19' NiTi was found to account for macroscopic shape changes lagging (with temperature) the start and finish of the transformation. Second, the elastic response of B19' martensitic NiTi variants during monotonic loading was studied. Emphasis was placed on capturing and quantifying the strain anisotropy which arises from the symmetry of monoclinic martensite and internal stresses resulting from intergranular constraints between individual variants and load re-distribution among variants as the texture evolved during variant reorientation and detwinning. The methodology adopted took into account both tensile and compressive loading given the asymmetric response in the texture evolution. Plane specific elastic moduli were determined from neutron measurements and compared with those determined using a self-consistent polycrystalline deformation model and from recently reported elastic stiffness constants determined via ab initio calculations. The comparison among the three approaches further helped understand the influence of elastic anisotropy, intergranular constraint, and texture evolution on the deformation behavior of polycrystalline B19' NiTi. Connections were additionally made between the assessed elastic properties of martensitic NiTi single crystals (i.e., the single crystal stiffness tensor) and the overall macroscopic response in bulk polycrystalline form. Lastly, the role of upper-cycle temperature, i.e., the maximum temperature reached during thermal cycling, was investigated during load-biased thermal cycling of NiTi shape memory alloys at selected combinations of stress and temperature. Results showed that the upper-cycle temperature, under isobaric conditions, significantly affected the amount of transformation strain and thus the work output available for actuation. With the objective of investigating the underlying microstructural and micromechanical changes due to the influence of the upper-cycle temperature, the texture evolution was systematically analyzed. While the changes in transformation strain were closely related to the evolution in texture of the room temperature martensite, retained martensite in the austenite state could additionally affect the transformation strain. Additionally, multiple thermal cycles were performed under load-biased conditions in both NiTi and NiTiPd alloys, to further assess and understand the role of retained martensite. Dimensional and thermal stabilities of these alloys were correlated with the volume fraction and texture of retained martensite, and the internal strain evolution in these alloys. The role of symmetry, i.e., B19' monoclinic martensite vs. B19 orthorhombic martensite in these alloys was also assessed. This work not only established a methodology to study the thermal and elastic properties of the low symmetry B19' monoclinic martensite, but also provided valuable insight into quantitative micromechanical and microstructural changes responsible for the thermomechanical response of NiTi shape memory alloys. It has immediate implications for optimizing shape memory behavior in the alloys investigated, with extension to high temperature shape memory alloys with ternary and quaternary elemental additions, such as Pd, Pt and Hf. This work was supported by funding from NASAÂ s Fundamental Aeronautics Program, Supersonics Project (NNX08AB51A) and NSF (CAREER DMR-0239512). It benefited additionally from the use of the Lujan Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Office of Basic Energy Sciences (Department of Energy) and is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2010

Advisor

Vaidyanathan, Rajan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials, and Aerospace Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0003362

URL

http://purl.fcla.edu/fcla/etd/CFE0003362

Language

English

Release Date

August 2010

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS