Abstract

The Longbow Crew Trainer (LCT) is a cost effective, safe alternative to live training in the AH-64D/E Apache helicopter. Current Army doctrine and regulations have provisions for the limited use of simulator in lieu of aircraft hours toward semiannual minimum flight hour requirements. With the defense budget in decline, the Army must find innovative, cost effective methods to conduct realistic, relevant training to sustain proficiency in their warfighting capabilities. The LCT fully replicates the cockpit environment through training scenarios for requisite crew tasks and missions in a realistic, modular, and transportable solution. An attack helicopter crew can safely train in customizable scenarios ranging from basic aviation tasks to crew-level missions and gunneries. The Army is currently aligning one LCT per attack battalion under the Aviation Restructure Initiative. There are 20 Armed Reconnaissance Battalions/Squadrons in the active component with approximately 35 aircrews per battalion. The premise of this study was to review cost benefits of training in a virtual environment over a live environment while exploring the effects on proficiency. The difference in cost per hour between an AH-64D and the LCT is approximately $3,998. Using this figure and the semiannual flight hour requirements from the current Aircrew Training Manual in a weighted average between Flight Activity Category (FAC) 1 and FAC 2 pilot's flight minimum requirements formed the basis for four models: Low, Status Quo (baseline), Moderate, and High Virtual Simulation Models. This study found that while the High Virtual Simulation Model resulted in the greatest cost savings, the current budget and previous literature does not require such drastic measures. The Low Virtual Simulation Model resulted in higher costs. Therefore, the Moderate Virtual Simulation Model, proved most relevant to budget analysts, aviation unit commanders, and pilots by decreasing annual costs by an estimated $76.2 million without degrading proficiency.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2016

Semester

Spring

Advisor

Kincaid, J. Peter

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Degree Program

Modeling and Simulation

Format

application/pdf

Identifier

CFE0006539

URL

http://purl.fcla.edu/fcla/etd/CFE0006539

Language

English

Release Date

November 2019

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Open Access)

Share

COinS