Abstract

Graphene induced nanostructures in graphene-based composites and the performance of these composites have been explored in this study. For the metallic nanoparticles decorated graphene aerogels composites, the fabrication of hierarchically structured, reduced graphene oxide (rGO) aerogels with heavily metallic nanoparticles was realized. Higher loading of palladium nanoparticles in graphene aerogels leads to improved hydrogen gas sensing performance. For polymer derived ceramics (PDCs) composites with anisotropic electrical properties, the fabrication of composites was realized by embedding anisotropic reduced graphene oxide aerogels (rGOAs) into the PDCs matrix. Raman spectroscopy and X-ray diffraction studies of PDCs composites with and without graphene indicate that graphene facilitates the transition from amorphous carbon to graphitic carbon in the PDCs. For composites composed of PDCs and edge functionalized graphene oxide (EFGO), bulk PDCs based composites with embedded graphene networks show high electrical conductivity, high thermal stability, and low thermal conductivity. For the study of poly(3-hexylthiophene) (P3HT) crystallization on graphitic substrates (i.e. carbon nanotubes, carbon fibers and graphene), different types of P3HT nanocrystals (i.e. nanowires, nanoribbons, and nanowalls) were observed. The type of nanocrystals grown from graphitic substrates depends on the curvature of graphitic substrates, the molecular weight of P3HT molecules, and the concentration of P3HT marginal solutions. Besides, both specific surface area and curvature of graphitic substrates have major effects on P3HT crystallization processes.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Zhai, Lei

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Materials Science Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0007095

URL

http://purl.fcla.edu/fcla/etd/CFE0007095

Language

English

Release Date

May 2019

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS