Abstract

This dissertation aims to explore the feasibility of incorporating electric vehicles into the electric power grid and develop a comprehensive assessment framework to predict and evaluate the life cycle environmental, economic and social impact of the integration of Vehicle-to-Grid systems and the transportation-water-energy nexus. Based on the fact that electric vehicles of different classes have been widely adopted by both fleet operators and individual car owners, the following questions are investigated: 1. Will the life cycle environmental impacts due to vehicle operation be reduced? 2. Will the implementation of Vehicle-to-Grid systems bring environmental and economic benefits? 3. Will there be any form of air emission impact if large amounts of electric vehicles are adopted in a short time? 4. What is the role of the Vehicle-to-Grid system in the transportation-water-energy nexus? To answer these questions: First, the life cycle environmental impacts of medium-duty trucks in commercial delivery fleets are analyzed. Second, the operation mechanism of Vehicle-to-Grid technologies in association with charging and discharging of electric vehicles is researched. Third, the feasible Vehicle-to-Grid system is further studied taking into consideration the spatial and temporal variance as well as other uncertainties within the system. Then, a comparison of greenhouse gas emission mitigation of the Vehicle-to-Grid system and the additional emissions caused by electric vehicle charging through marginal electricity is analyzed. Finally, the impact of the Vehicle-to-Grid system in the transportation-water-energy nexus, and the underlying environmental, economic and social relationships are simulated through system dynamic modeling. The results provide holistic evaluations and spatial and temporal projections of electric vehicles, Vehicle-to-Grid systems, wind power integration, and the transportation-water-energy nexus.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Tatari, Omer

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0007300

URL

http://purl.fcla.edu/fcla/etd/CFE0007300

Language

English

Release Date

June 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS