Abstract

Wrong-way driving (WWD) is a dangerous behavior, especially on high-speed divided highways. The nature of WWD crashes makes it difficult for agencies to combat them effectively. Advanced WWD countermeasures equipped with flashing lights, detection devices, and cameras can significantly reduce WWD. However, these countermeasures' high costs mean that agencies often cannot deploy them at all exit ramps. To help agencies identify the most cost-effective deployment locations for advanced WWD countermeasures, an innovative WWD countermeasure optimization approach was developed. This approach consists of a WWD hotspots model and a WWD countermeasures optimization algorithm. The WWD hotspots model uses non-crash WWD events, interchange designs, and traffic volumes to predict the number of WWD crashes on multi-exit roadway segments and identify hotspot segments with high WWD crash risk (WWCR). Then, the optimization algorithm uses these WWCR values to identify the optimal exits for advanced WWD countermeasure deployment based on available resources and other applicable constraints. This approach was applied to the Central Florida Expressway Authority (CFX) and Florida's Turnpike Enterprise (FTE) toll road networks. In both applications, the optimization algorithm provided significant WWCR reduction while meeting investment and other constraints and better allocated the agencies' resources compared to only deploying advanced WWD countermeasures in WWD hotspots. The optimization algorithm was also used to identify mainline sections on the CFX network with high WWCR. Additionally, the optimization algorithm was used to evaluate existing Rectangular Flashing Beacon (RFB) and Light-Emitting Diode (LED) advanced WWD countermeasures on the CFX (RFBs) and FTE (RFBs and LEDs) networks. These evaluations showed that the crash reduction and injury reduction benefits of these advanced WWD countermeasures have exceeded their costs since these countermeasures have been deployed. By using this WWD countermeasures optimization approach, agencies throughout the United States could proactively and cost-effectively deploy advanced WWD countermeasures to reduce WWD.

Graduation Date

2018

Semester

Fall

Advisor

Al-Deek, Haitham

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0007364

URL

http://purl.fcla.edu/fcla/etd/CFE0007364

Language

English

Release Date

December 2023

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS