Abstract

Perfluorinated compounds (PFCs) have been manufactured and used in various industries including food packaging, paintings, and coating industries. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most commonly investigated PFCs that have bioaccumulative properties and a strong persistence in environment. Despite the growing interest in using membrane technology to remove PFOA and PFOS from water, little information is available on the impact of natural water matrices on the removal of PFOA and PFOS when using nanofiltration (NF). The presence of natural organic matter (NOM) and cations (Ca2+ and Mg2+) in water matrices and their interactions with the PFCs may significantly impact their removal efficiency. The current study compared the rejection of PFOA and PFOS from laboratory-prepared water (deionized water), surface water and groundwater using a commercial NF membrane (NE 70). Three different experiments were conducted for 20 hours using a bench- scale flat sheet unit. Feed and permeate samples were collected and analyzed to determine the PFOA and PFOS concentrations using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The compound rejections varied from 71 to 80 % for PFOA and 42 to 80 % for PFOS. The results showed increased rejection of PFOA/S in the surface water and groundwaters when compared to the laboratory-prepared water. This is likely due to the presence of NOM and cations in the natural water matrices. The permeate flux declined (12.3-56.2 %) as more cations and NOM were present in the feedwater, suggesting that the increased rejection of PFOS in natural waters may be due to membrane pore blockage.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Summer

Advisor

Sadmani, A H M Anwar

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0007589

URL

http://purl.fcla.edu/fcla/etd/CFE0007589

Language

English

Release Date

February 2022

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Campus-only Access)

Share

COinS