Abstract

In this dissertation, three separate studies, wherein techniques from graph theory and consensus control are used to address control allocation problems, are presented. In the first study, a decentralized allocator is presented for synthetic jet actuators and control surfaces onboard a small unmanned aerial vehicle to cooperatively generate desired aerodynamic moments. First order linear dynamics are assumed for both the synthetic jet actuators and control surfaces. A weighted consensus algorithm with limited feedback is used for the aerodynamic moment contribution allocator considering constraints. In the second study, the same allocation problem as in the first study is considered, but the actuator dynamics are now assumed to behave according to second order nonlinear dynamics. In the third study, a spray allocator is presented for an array of nozzles used to cool a large heated surface in order to address the local disagreement in surface temperature within sprayed sections. Within each study, the stability of each system is proven, and the performance of each allocator is demonstrated via simulations.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Spring

Advisor

Xu, Yunjun

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0007496

URL

http://purl.fcla.edu/fcla/etd/CFE0007496

Language

English

Release Date

May 2022

Length of Campus-only Access

3 years

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS