Abstract

Filaments are self-guided plasma channels generated from laser pulses with power above a critical value. They can propagate several times the Rayleigh length for diffraction and can travel through adverse atmospheric conditions. As such, filaments are useful in applications such as long wavelength electromagnetic and electric discharge guiding, and weather manipulation to name a few. Arrays of filaments can be useful to these applications, particularly in the generation of waveguides. However, understanding the filament-induced plasma dynamics of two closely propagating beams is crucial in designing the ideal waveguide. One common way to characterize a filament is through the electron density of the plasma channel, a property which has previously been proven to be clamped for a single filament. This work will show how the electron density can be enhanced through the use of two co-propagating beams, taking advantage of their interaction. Three cases were studied: two sub-critical beams, one subcritical beam and one filament, and two filaments. The separations and focusing conditions of the beams were also varied. Enhancement of the electron density and lengthening of the plasma lifetime will be discussed for each case.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2019

Semester

Summer

Advisor

Richardson, Martin

Degree

Master of Science (M.S.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0007702

URL

http://purl.fcla.edu/fcla/etd/CFE0007702

Language

English

Release Date

August 2024

Length of Campus-only Access

5 years

Access Status

Masters Thesis (Campus-only Access)

Restricted to the UCF community until August 2024; it will then be open access.

Share

COinS