Keywords

Landfills, Age, Slope Stability, Biosolids, Compost, Reinforcement

Abstract

The solid portion of waste disposal, known as Municipal Solid Waste (MSW) can be landfilled. Landfilling has proved to be a safe, sanitary and economical method of disposal. A by-product from wastewater treatment plants called biosolids is sometimes co-disposed along with MSW in landfills. Recent work at the University of Central Florida has focused on the behavior of the mixture of MSW and biosolids. As an increased amount of waste accumulates in these landfills, it creates a new problem – the geotechnical stability of landfills. In current literature, classical geotechnical testing methods have been followed to find the strength properties of these landfill materials. Furthermore, geotechnical methods of slope stability analyses have been employed to determine the stability of landfill slopes. As these materials have a high organic content, their strength properties may potentially change with time because of the decay of the organic materials. In the present work, an attempt is made to monitor the change in the geotechnical strength properties of the landfill materials as a function of time. Direct shear tests used for soil testing, with some modifications, were performed on cured compost samples of MSW mixed with biosolids. Geotechnical strength properties of these cured samples were compared to those of an artificially prepared mixture of MSW and biosolids, from the published literature. In addition, direct shear tests are also performed to find the interface properties of a geonet with the cured samples to check the role of a geonet in reinforcing the landfill slopes. A slope stability analysis software SLOPE/W is used to analyze the stability of the landfills. Cohesion is observed to decrease with time while the friction angle increases with time. Stability (the factor of safety against failure) of landfill slopes increases with time due to increased effective stresses and increased friction angle, as the organic material decays. This may result in additional subsidence but an increase in the effective shear strength with time. Based on the interface test results and subsequent slope stability analyses, it is found that the inclusion of a geonet improves the slope stability of a landfill. This could be a potential benefit to the landfill as reinforcement if properly placed. Based on the slope stability analysis on landfills with different slopes, it is concluded that the slope stability of a landfill is improved by keeping the slopes less steep.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Spring

Advisor

Chopra, Manoj

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil and Environmental Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0000919

URL

http://purl.fcla.edu/fcla/etd/CFE0000919

Language

English

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS