Multi-core processors increasingly appear as an enabling platform for embedded systems, e.g., mobile phones, tablets, computerized numerical controls, etc. The parallel task model, where a task can execute on multiple cores simultaneously, can efficiently exploit the multi-core platform's computational ability. Many computation-intensive systems (e.g., self-driving cars) that demand stringent timing requirements often evolve in the form of parallel tasks. Several real-time embedded system applications demand predictable timing behavior and satisfy other system constraints, such as energy consumption. Motivated by the facts mentioned above, this thesis studies the approach to integrating the dynamic voltage and frequency scaling (DVFS) policy with real-time embedded system application's internal parallelism to reduce the worst-case energy consumption (WCEC), an essential requirement for energy-constrained systems. First, we propose an energy-sub-optimal scheduler, assuming the per-core speed tuning feature for each processor. Then we extend our solution to adapt the clustered multi-core platform, where at any given time, all the processors in the same cluster run at the same speed. We also present an analysis to exploit a task's probabilistic information to improve the average-case energy consumption (ACEC), a common non-functional requirement of embedded systems. Due to the strict requirement of temporal correctness, the majority of the real-time system analysis considered the worst-case scenario, leading to resource over-provisioning and cost. The mixed-criticality (MC) framework was proposed to minimize energy consumption and resource over-provisioning. MC scheduling has received considerable attention from the real-time system research community, as it is crucial to designing safety-critical real-time systems. This thesis further addresses energy-aware scheduling of real-time tasks in an MC platform, where tasks with varying criticality levels (i.e., importance) are integrated into a common platform. We propose an algorithm GEDF-VD for scheduling MC tasks with internal parallelism in a multiprocessor platform. We also prove the correctness of GEDF-VD, provide a detailed quantitative evaluation, and reported extensive experimental results. Finally, we present an analysis to exploit a task's probabilistic information at their respective criticality levels. Our proposed approach reduces the average-case energy consumption while satisfying the worst-case timing requirement.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date





Guo, Zhishan


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Electrical and Computer Engineering

Degree Program

Computer Engineering









Release Date

August 2021

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)