Keywords
EV adoption, energy demand, energy forecasting, econometric model
Abstract
The adoption of Electric Vehicles (EVs) represents a transformative change in the automotive industry. As more households make the transition to EVs, the traditional dependence on fossil fuels for transportation is being replaced by electricity as the primary energy source. This transition has the potential to increase the electricity consumption within households as well as the demand on the power grids. To maximize the environmental and economic benefits of EV adoption, strategies regarding efficient energy management, integration of renewable energy source, and grid capacity are becoming essential considerations. The current dissertation research is motivated toward evaluating the adoption of EV and its impact on the US household’s energy demand. In pursuit of these goals, this research has made several contributions. First, we proposed an econometric framework to estimate the factors influencing customers’ vehicle purchase decisions. Second, a comparative analysis is conducted between two econometric frameworks –panel mixed random utility maximization MNL model and panel mixed random regret minimization MNL model to estimate the evolving landscape of EV adoption over time. Third, we employed an advanced econometric framework- Multiple Discrete Continuous Extreme Value (MDCEV) model– to evaluate the factors that influence the energy consumption profile of various household end-uses along with their alternating trends over time. Fourth, we employed a novel fusion approach to the MDCEV model to assess the impact of travel behavior along with several household socioeconomic characteristics on various energy end-uses. Finally, by predicting household EV ownership, projections of total household energy demand for the city of Atlanta for the years 2030, 2040 and 2050 are performed. A set of independent variables including vehicle attributes, socio-economic attributes, travel behavior-related attributes, dwelling attributes, appliance-use related attributes, and climate-related attributes from various data sources are employed in this study. The research concludes with an analysis of different policy implications.
Completion Date
2024
Semester
Summer
Committee Chair
Naveen Eluru
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Department of Civil, Environmental and Construction Engineering
Degree Program
Ph.D. in Civil Engineering (Transportation Engineering)
Format
application/pdf
Language
English
Rights
In copyright
Release Date
August 2027
Length of Campus-only Access
3 years
Access Status
Doctoral Dissertation (Campus-only Access)
Campus Location
Orlando (Main) Campus
STARS Citation
Jahan, Md Istiak, "Adoption of Electric Vehicle and Its Impact on Residential Sector Energy Demand" (2024). Graduate Thesis and Dissertation 2023-2024. 400.
https://stars.library.ucf.edu/etd2023/400
Accessibility Status
Meets minimum standards for ETDs/HUTs
Restricted to the UCF community until August 2027; it will then be open access.