The development of an 18-locus Y-STR system for forensic casework



A. Hall;J. Ballantyne

Abbreviated Journal Title

Anal. Bioanal. Chem.


Y chromosome markers; post-coital vaginal swabs; multiplex Y-STR; analysis; REFERENCE DATABASE; HUMAN DNA; CHROMOSOME; MICROSATELLITE; MULTIPLEX; POLYMORPHISMS; POPULATIONS; SURNAMES; MARKERS; Biochemical Research Methods; Chemistry, Analytical


The aim of the present work was to improve the discriminatory potential, and hence the probative value, of Y-STR-based testing by extending the set of Y chromosome STR loci available for forensic casework. In accordance with the requirements of a Y chromosome multiplex analytical system developed specifically for forensic casework use, we have sought to maximize the number of loci able to be co-amplified, ensure appropriate assay sensitivity (1-2 ng of input genomic DNA), balance inter-locus signals and minimize confounding female DNA artifacts. Two Y chromosome STR systems, multiplex I (MPI) and multiplex II (MPII), have been developed which permit the robust co-amplification of 18 Y-STRs. The loci include DYS19, DYS385(a) and (b), DYS388, DYS389I and II, DYS390, DYS391, DYS392, DYS393, DYS425, DYS434, DYS437, DYS438, DYS439, Y-GATA-C4, Y-GATA-A7.1 (DYS460) and Y-GATA-H4. The two multiplex systems are robust over a wide range of primer, magnesium, and DNA polymerase concentrations and perform well under a variety of cycling conditions. Complete male haplotypes can be obtained with as little as 100-250 pg of template DNA. Although a limited number of female DNA artifacts are observed in mixed stains in which the male DNA comprises 1/100 of the total, the male profile is easily discernible. Slightly modified versions of MPI and MPII demonstrate a significant reduction in female artifacts. Thus, it may not be necessary to employ a differential extraction strategy to obtain a male haplotype (or haplotypes in the case of multiple male donors) in cases of sexual assault. The potential utility of MPI and MPII for forensic casework is exemplified by their ability to dissect out the male haplotype in post-coital vaginal swabs and to determine the number of male donors in mixed semen stains. This study has emphasized the need for novel Y-STR multiplexes developed for forensic use to undergo a series of validation exercises that go beyond simply optimizing the PCR reaction conditions. Specifically, stringent performance checks on their efficacy need to be carried out using casework-type specimens in order to determine potential confounding effects from female DNA.

Journal Title

Analytical and Bioanalytical Chemistry





Publication Date


Document Type




First Page


Last Page


WOS Identifier