Title

Discrete Anderson speckle

Authors

Authors

H. E. Kondakci; A. F. Abouraddy;B. E. A. Saleh

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Optica

Keywords

SCATTERING LAYERS; LOCALIZATION; LIGHT; DIFFRACTION; TRANSPORT; DISORDER; LATTICES; PHOTONS; SYSTEMS; CORNERS; Optics

Abstract

When a disordered array of coupled waveguides is illuminated with an extended coherent optical field, discrete speckle develops: partially coherent light with a granular intensity distribution on the lattice sites. The same paradigm applies to a variety of other settings in photonics, such as imperfectly coupled resonators or fibers with randomly coupled cores. Through numerical simulations and analytical modeling, we uncover a set of surprising features that characterize discrete speckle in one-and two-dimensional lattices known to exhibit transverse Anderson localization. First, the fingerprint of localization is embedded in the fluctuations of the discrete speckle and is revealed in the narrowing of the spatial coherence function. Second, the transverse coherence length (or speckle grain size) is frozen during propagation. Third, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. We take these unique features collectively to define a distinct regime that we call discrete Anderson speckle. (C) 2015 Optical Society of America

Journal Title

Optica

Volume

2

Issue/Number

3

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

201

Last Page

209

WOS Identifier

WOS:000354867000002

ISSN

2334-2536

Share

COinS