Clostridioides difficile; Clostridium difficile; Fecal microbiota transplant; nosocomial infection


Clostrioides difficile is a common cause of nosocomial (hospital-acquired) infections. Patients receiving antibiotic treatment experience dysbiosis of gut microbiota, and C. difficile, normally held in check by the various other organisms, takes this opportunity to propagate. Symptoms of infection generally include diarrhea, colitis, dehydration, and fever. Understanding that C. difficile generally only causes illness when it is the dominant bacterium (i.e. when growth is relatively unchecked by other microbes), it is appropriate to investigate potential competitive organisms that may be introduced after antibiotic courses or during active C. difficile infection to effectively displace it. Fecal samples from the University of Central Florida Lift fecal collection station were aseptically plated onto modified cycloserine cefoxitin fructose agar (CCFA). Visually remarkable colonies (certain colonies that looked unique in comparison to others) were restreaked on new plates of the same media to verify growth, then transferred to brain heart infusion-supplemented (BHIS) plates for propagation. Colonies were inoculated in glycerol stocks for storage, then grown in BHIS liquid media to prepare for identification. Genomic extraction was performed on each sample, and spectrophotometric quantification and gel electrophoresis were executed to confirm successful extraction. Genomic samples will be sent to an external laboratory for identification via polymerase chain reaction and Sanger sequencing.

We hypothesize that at least one bacterial strain from the fecal collection station will potentially inhibit C. difficile infection. Should such an organism be identified, it follows that the efficacy of its application in conventional hospital settings may be examined. Current regulation of fecal microbiota transplants, an effective therapeutic practice, is cumbersome, and changing the classification of fecal transplants may improve timeliness and effectiveness of treatment.

Thesis Completion Year


Thesis Completion Semester


Thesis Chair

Self, William


College of Medicine


Burnett School of Biomedical Sciences

Thesis Discipline

Biomedical Sciences



Access Status

Open Access

Length of Campus Access


Campus Location

Orlando (Main) Campus



Rights Statement

In Copyright