Nanoscale Mos Devices: Device Parameter Fluctuations And Low-Frequency Noise


Flicker noise; Nanoscale MOS transistor; Parameter fluctuation; Tunneling oxide


It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

Publication Date


Publication Title

Proceedings of SPIE - The International Society for Optical Engineering



Number of Pages


Document Type

Article; Proceedings Paper

Personal Identifier


DOI Link


Socpus ID

28444437730 (Scopus)

Source API URL


This document is currently not available here.