#### Title

Probability and Fourier Duality for Affine Iterated Function Systems

#### Abbreviated Journal Title

Acta Appl. Math.

#### Keywords

Iterated function system; Fourier; Fourier decomposition; Hilbert space; Orthogonal basis; Spectral duality; Dynamical system; Path-space; measure; Spectrum; Infinite product; HARMONIC-ANALYSIS; FRACTAL MEASURES; WAVELETS; OPERATORS; ALGEBRA; Mathematics, Applied

#### Abstract

Let d be a positive integer, and let mu be a finite measure on R-d. In this paper we ask when it is possible to find a subset Lambda in R-d such that the corresponding complex exponential functions e. indexed by Lambda are orthogonal and total in L-2(mu). If this happens, we say that (mu, Lambda) is a spectral pair. This is a Fourier duality, and the x-variable for the L-2(mu)-functions is one side in the duality, while the points in Lambda is the other. Stated this way, the framework is too wide, and we shall restrict attention to measures mu which come with an intrinsic scaling symmetry built in and specified by a finite and prescribed system of contractive affine mappings in R-d; an affine iterated function system (IFS). This setting allows us to generate candidates for spectral pairs in such a way that the sets on both sides of the Fourier duality are generated by suitably chosen affine IFSs. For a given affine setup, we spell out the appropriate duality conditions that the two dual IFS-systems must have. Our condition is stated in terms of certain complex Hadamard matrices. Our main results give two ways of building higher dimensional spectral pairs from combinatorial algebra and spectral theory applied to lower dimensional systems.

#### Journal Title

Acta Applicandae Mathematicae

#### Volume

107

#### Issue/Number

1-3

#### Publication Date

1-1-2009

#### Document Type

Article; Proceedings Paper

#### Language

English

#### First Page

293

#### Last Page

311

#### WOS Identifier

#### ISSN

0167-8019

#### Recommended Citation

"Probability and Fourier Duality for Affine Iterated Function Systems" (2009). *Faculty Bibliography 2000s*. 1501.

http://stars.library.ucf.edu/facultybib2000/1501

## Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu