Title

Spitzer transit and secondary eclipse photometry of GJ 436b

Authors

Authors

D. Deming; J. Harrington; G. Laughlin; S. Seager; S. B. Navarro; W. C. Bowman;K. Horning

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Astrophys. J.

Keywords

eclipses; infrared : stars; planetary systems; stars : fundamental; parameters; stars : individual (GJ 436); stars : low-mass; brown dwarfs; NEPTUNE-MASS PLANET; M-DWARF GJ-436; EXTRASOLAR PLANET; TIDAL; DISSIPATION; SPACE-TELESCOPE; INFRARED RADIUS; HD 189733B; SATELLITES; EVOLUTION; EMISSION; Astronomy & Astrophysics

Abstract

We report the results of infrared (8 mu m) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ 436b using Spitzer. The nearly photon-limited precision of these data allows us to measure an improved radius for the planet and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/- 0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star 0.00016 radius ratio (), independent of the stellar properties. However, we obtain the planetary radius, 0.0839 +/- 0.0005 as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M dwarfs (M = R). We find R* = M* 0.47 +/- 0.02 in solar units, and R-p = 27,600 +/- 1170 km 4.33 +/- 0.18 R-circle plus). This radius significantly exceeds the radius of a naked ocean planet and requires a gaseous hydrogen-helium envelope. The secondary eclipse occurs at phase, proving a significant orbital 0.587 +/- 0.005 eccentricity (e = 0.150 +/- 0.012). The amplitude of the eclipse [(5.7 +/- 0.8) x 10(-4)] indicates a brightness tem- perature for the planet of T = 712 +/- 36 K. If this is indicative of the planet's physical temperature, it suggests T = 712 +/- 36 the occurrence of tidal heating in the planet. An uncharacterized second planet likely provides ongoing gravitational perturbations that maintain GJ 436b's orbit eccentricity over long timescales.

Journal Title

Astrophysical Journal

Volume

667

Issue/Number

2

Publication Date

1-1-2007

Document Type

Article

Language

English

First Page

L199

Last Page

L202

WOS Identifier

WOS:000249700100021

ISSN

0004-637X

Share

COinS