Title

Resonant structure of low-energy H-3(+) dissociative recombination

Authors

Authors

A. Petrignani; S. Altevogt; M. H. Berg; D. Bing; M. Grieser; J. Hoffmann; B. Jordon-Thaden; C. Krantz; M. B. Mendes; O. Novotny; S. Novotny; D. A. Orlov; R. Repnow; T. Sorg; J. Stutzel; A. Wolf; H. Buhr; H. Kreckel; V. Kokoouline;C. H. Greene

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Phys. Rev. A

Keywords

STORAGE-RING; ION; PHOTODISSOCIATION; TSR; Optics; Physics, Atomic, Molecular & Chemical

Abstract

High-resolution dissociative recombination rate coefficients of rotationally cool and hot H-3(+) in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. Asystematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380(-130)(+50) K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H-3(+). This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.

Journal Title

Physical Review A

Volume

83

Issue/Number

3

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

10

WOS Identifier

WOS:000288445700004

ISSN

1050-2947

Share

COinS