Admire: An Algebraic Approach To System Performance Analysis Using Data Mining Techniques


Data Mining; Regression; Scalability


System performance analysis is a very difficult problem. Traditional tools rely on manual operations to analyze data. Consequently, determining which system resources to examine is often a lengthy process, where many problems are elusive, even when using data mining tools. We address this problem by introducing the Analyzer for Data Mining Results (ADMiRe) technique as a natural and flexible means to further interpret data mining outcome. In our scheme, regression analysis is first applied to performance data to discover correlations between parameters. Regression rules are defined to represent this output in a format suitable for ADMiRe. ADMiRe expressions are then used to manipulate these sets of rules, revealing information about combined, common and different features of varying configurations. This knowledge would be unavailable if regression output were considered in isolation. ADMiRe was tested with performance data collected from a TPC-C (Transaction Processing Performance Council) test on an Oracle database system, under various configurations, to demonstrate the effectiveness of our technique.

Publication Date


Publication Title

Proceedings of the ACM Symposium on Applied Computing

Number of Pages


Document Type

Article; Proceedings Paper

Personal Identifier


Socpus ID

0037998990 (Scopus)

Source API URL


This document is currently not available here.