Coherent Nonlinear Beam Interactions In 1D Waveguide Arrays


Discrete Optics; Nonlinear Interactions; Solitons


Discrete nonlinear optical systems exhibit unique properties unknown from wave propagation in bulk materials. Among them are the possibilities to form highly localized discrete solitons and the ability of a wide beam to propagate without diffraction and modulational instability across the array. The interaction between a highly localized discrete soliton and a non-diffracting beam has potential applications for all optical routing and switching. We present our results on the experimental investigation of this kind of beam interactions in a one-dimensional AlGaAs array at a wavelength of 1550 nm. A discrete soliton, almost completely confined to a single waveguide, was excited and the interaction with a wide beam of the same or orthogonal polarization was studied. We confirmed that the wide beam is able to drag the soliton over multiple waveguides towards itself while the soliton is able to maintain its original, highly confined shape. The outcome of the coherent interaction depends on the power of the wide beam and the relative phase between the two beams. This phase-dependence is due to linear interference in the case of co-polarized beams and due to four-wave mixing for orthogonally polarized beams.

Publication Date


Publication Title

Proceedings of SPIE - The International Society for Optical Engineering



Number of Pages


Document Type

Article; Proceedings Paper

Personal Identifier


DOI Link


Socpus ID

33244473246 (Scopus)

Source API URL


This document is currently not available here.