Title

On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

Authors

Authors

R. El-Ganainy; A. Eisfeld; M. Levy;D. N. Christodoulides

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Appl. Phys. Lett.

Keywords

WAVE-GUIDE ARRAYS; BLOCH OSCILLATIONS; RESONANT DELOCALIZATION; POLARIZATION SPLITTER; ISOLATORS; Physics, Applied

Abstract

We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting. (C) 2013 AIP Publishing LLC.

Journal Title

Applied Physics Letters

Volume

103

Issue/Number

16

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

3

WOS Identifier

WOS:000326148700005

ISSN

0003-6951

Share

COinS