Abbreviated Journal Title
Phys. Rev. A
Keywords
SYMMETRY; REAL; Optics; Physics, Atomic, Molecular & Chemical
Abstract
We introduce the concept of local parity-time symmetric (PT) invariance in optical waveguides (or cavity) structures. Starting from a Lagrangian formalism, we establish the connection between light dynamics in these configurations and the seemingly different physics of "supersymmetric" parametric oscillators. Using this powerful tool, we present analytical solutions for optical beam propagation in local PT-invariant coupled systems and we show that the intensity tunneling between the two channels critically depends on the initial conditions. For unbalanced inputs, symmetric as well as asymmetric power evolution can be observed depending on the excitation channel. On the other hand, under certain physical conditions, our analysis predicts that for a modal PT-symmetric input, a unidirectional fractional phase exchange can take place. Few cases where analytical solutions cease to exist are also investigated numerically. Finally, by exploiting the supersymmetric nature of the oscillator equations, we show that under certain initial conditions, one can obtain the propagation dynamics of field amplitudes that "resides" on the supersymmetric eigenfunctions of the system-a phenomenon we call resonant propagation.
Journal Title
Physical Review A
Volume
86
Issue/Number
3
Publication Date
1-1-2013
Document Type
Article
Language
English
First Page
9
WOS Identifier
ISSN
1050-2947
Recommended Citation
El-Ganainy, Ramy; Makris, Konstantinos G.; and Christodoulides, Demetrios N., "Local PT invariance and supersymmetric parametric oscillators" (2013). Faculty Bibliography 2010s. 2604.
https://stars.library.ucf.edu/facultybib2010/2604
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu