Title

The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial: an adaptive trial design case study

Authors

Authors

J. T. Connor; K. R. Broglio; V. Durkalski; W. J. Meurer;K. C. Johnston

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Trials

Keywords

Bayesian adaptive design; Group sequential; Sample size estimation; Predictive probabilities; Neurologic emergencies; PROTOCOL; Medicine, Research & Experimental

Abstract

Background: The 'Adaptive Designs Accelerating Promising Trials into Treatments (ADAPT-IT)' project is a collaborative effort supported by the National Institutes of Health (NIH) and United States Food & Drug Administration (FDA) to explore how adaptive clinical trial design might improve the evaluation of drugs and medical devices. ADAPT-IT uses the National Institute of Neurologic Disorders & Stroke-supported Neurological Emergencies Treatment Trials (NETT) network as a 'laboratory' in which to study the development of adaptive clinical trial designs in the confirmatory setting. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial was selected for funding by the NIH-NINDS at the start of ADAPT-IT and is currently an ongoing phase III trial of tight glucose control in hyperglycemic acute ischemic stroke patients. Within ADAPT-IT, a Bayesian adaptive Goldilocks trial design alternative was developed. Methods: The SHINE design includes response adaptive randomization, a sample size re-estimation, and monitoring for early efficacy and futility according to a group sequential design. The Goldilocks design includes more frequent monitoring for predicted success or futility and a longitudinal model of the primary endpoint. Both trial designs were simulated and compared in terms of their mean sample size and power across a range of treatment effects and success rates for the control group. Results: As simulated, the SHINE design tends to have slightly higher power and the Goldilocks design has a lower mean sample size. Both designs were tuned to have approximately 80% power to detect a difference of 25% versus 32% between control and treatment, respectively. In this scenario, mean sample sizes are 1,114 and 979 for the SHINE and Goldilocks designs, respectively. Conclusions: Two designs were brought forward, and both were evaluated, revised, and improved based on the input of all parties involved in the ADAPT-IT process. However, the SHINE investigators were tasked with choosing only a single design to implement and ultimately elected not to implement the Goldilocks design. The Goldilocks design will be retrospectively executed upon completion of SHINE to later compare the designs based on their use of patient resources, time, and conclusions in a real world setting.

Journal Title

Trials

Volume

16

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

12

WOS Identifier

WOS:000350593200001

ISSN

1745-6215

Share

COinS