Title

Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

Authors

Authors

S. Stolbov;M. A. Ortigoza

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Chem. Phys.

Keywords

PLATINUM-MONOLAYER ELECTROCATALYSTS; HYDROGEN FUEL-CELLS; CARBON-MONOXIDE; SURFACE ALLOYS; METAL-SURFACES; NANOPARTICLES; PERFORMANCE; DISSOLUTION; CATALYSTS; HYBRIDS; Physics, Atomic, Molecular & Chemical

Abstract

In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices. (C) 2015 AIP Publishing LLC.

Journal Title

Journal of Chemical Physics

Volume

142

Issue/Number

15

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

9

WOS Identifier

WOS:000353307700043

ISSN

0021-9606

Share

COinS