Authors

D. K. Singla; R. D. Singla; L. S. Abdelli;C. Glass

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

PLoS One

Keywords

SMOOTH-MUSCLE-CELLS; MYOCARDIAL-INFARCTION; INFLAMMATORY MEDIATORS; TISSUE-INJURY; FGF9; MONOCYTES; MICE; FIBROBLAST-GROWTH-FACTOR-9; PATHOPHYSIOLOGY; INTERLEUKIN-6; Multidisciplinary Sciences

Abstract

Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean +/- SEM; MI: 2.02% +/- 0.23% vs. Sham 0.75% +/- 0.07%; p < 0.05) and associated pro-inflammatory cytokines (TNF-alpha, MCP-1, and IL-6), adverse cardiac remodeling (Mean +/- SEM; MI: 33% +/- 3.04% vs. Sham 2.2% +/- 0.33%; p < 0.05), and left ventricular dysfunction (Mean +/- SEM; MI: 35.4% +/- 1.25% vs. Sham 49.19% +/- 1.07%; p < 0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean +/- SEM; MI+FGF-9: 1.39% +/- 0.1% vs. MI: 2.02% +/- 0.23%; p < 0.05), increased M2 macrophage differentiation (Mean +/- SEM; MI+FGF-9: 4.82% +/- 0.86% vs. MI: 0.85% +/- 0.3%; p < 0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean +/- SEM; MI+FGF-9: 11.59% +/- 1.2% vs. MI: 33% +/- 3.04%; p < 0.05), and improved cardiac function (Fractional shortening, Mean +/- SEM; MI+FGF-9: 41.51% +/- 1.68% vs. MI: 35.4% +/- 1.25%; p < 0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to mediate monocyte to M2 differentiation and confer cardiac protection in the post-MI diabetic heart.

Journal Title

Plos One

Volume

10

Issue/Number

3

Publication Date

1-1-2015

Document Type

Article

Language

English

First Page

13

WOS Identifier

WOS:000351277500134

ISSN

1932-6203

Share

COinS