Keywords

Magnetic devices, Magnetic flux

Abstract

A study was conducted to investigate the effect of magnetic devices on the precipitates in a condenser’s tubes when seawater is used as cooling water. This test was necessary to evaluate these devices as possible replacements for conventional methods of water treatment. In the test program, a small condenser was operated with conditions similar to utility condensers. This condenser was modified to include twelve tubes. The inlet water box was divided to provide for two parallel magnetic water treatment streams, and one control untreated water stream for comparison purposes. With and without the use of a magnetic device, the chemical analysis and the thickness of the deposits showed no significant difference. The only difference that was observed in these deposits was their crystallogical structure. When the magnetic device was in place, deposits were flaky (powder-like), chipped, and showed no strong adhesion to the inner surface of the condenser’s tubes. Without the use of a magnetic device, deposits were flocculated, hard, and crusty. This thesis proposes a theory which may help explain the differences in the deposits. The theory will include homogenous nucleation to explain the physical changes of the deposits. The discussion will also postulate how well the magnetic energy improved the homogenous nucleation process. A method of analysis is proposed which demonstrates how the critical radius of a nucleus is affected by a magnetic field.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

1985

Semester

Fall

Advisor

Hosler, E. Ramon

Degree

Master of Science (M.S.)

College

College of Engineering

Department

Engineering

Format

PDF

Language

English

Rights

Public Domain

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0017525

Included in

Engineering Commons

Share

COinS