Abstract

Shock tubes are considered ideal reactors and are used extensively to provide valuable chemical kinetic measurements, such as ignition delay times and in-situ species time-histories. However, due to nonideal affects the combustion of fuel inside shock tubes can become nonhomogeneous, particularly at low temperatures, which complicates the acquired data. In this work, the combustion of practical fuels used by society are investigated with high-speed imaging. First, high-speed images were captured through the end wall of the shock tube for two hydrogen-oxygen systems. The combustion process was found to initiate in two modes, one that is homogeneous across the fluid medium and one that proceeds through a deflagration to detonation channel. In the second part of this work, the shock tube test section was redesigned to promote optical access from the end and side walls of the shock tube test section. Two high-speed cameras were used to capture perpendicular views of the combustion of isooctane and n-heptane, two primary reference fuels. A homogeneous and nonhomogeneous combustion process were seen for these fuels as well. Using the side view images, the impact of the sporadic ignition process was evaluated on commonly used diagnostics in shock tubes. Based on these results, it is recommended that shock tube diagnostics be confined to the homogeneous ignition modes of fuels. This is found to strongly correlate with the temperature of the combustion process, where high temperatures promote a homogeneous ignition event.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Vasu Sumathi, Subith

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Thermo-Fluids Track

Format

application/pdf

Identifier

CFE0008012; DP0023152

URL

https://purls.library.ucf.edu/go/DP0023152

Language

English

Release Date

May 2021

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Share

COinS